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Abstract:We investigate compactifications of type II and M-theory down to AdS5 with generic

fluxes that preserve eight supercharges, in the framework of Exceptional Generalized Geometry.

The geometric data and gauge fields on the internal manifold are encoded in a pair of general-

ized structures corresponding to the vector and hyper-multiplets of the reduced five-dimensional

supergravity. Supersymmetry translates into integrability conditions for these structures, gen-

eralizing, in the case of type IIB, the Sasaki-Einstein conditions. We show that the ten and

eleven-dimensional type IIB and M-theory Killing-spinor equations specialized to a warped AdS5
background imply the generalized integrability conditions.
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1 Introduction

Flux compactifications play a central role both in the construction of phenomenologically-

relevant models due to their potential to stabilize moduli, as well as in gauge/gravity duality

where they realize duals of less symmetric gauge theories. There has been significant progress

in understanding the geometry of the internal manifolds arising in flux compactifications, using

the tool of G-structures, and their extension to generalized geometry.

For the lower dimensional effective theory to be supersymmetric, the existence of globally

defined spinors on the internal manifold is required [1]. This leads to a reduction of the structure

group on the d-dimensional tangent bundle to a subgroupG ⊂ SO(d), or in other words to have a

G-structure. The degrees of freedom of the internal metric are then parameterized by geometric

structures which are singlets of the corresponding G-structure.

In generalized geometry, the metric degrees of freedom are combined with those of the

gauge fields into a generalized metric. Similarly, the lower dimensional effective theory is super-

symmetric if the generalized metric is encoded in structures which are singlets of a generalized

G-structure [2–6]. The group G in this case corresponds to the structure group of the general-

ized tangent bundle. The latter combines the tangent bundle of the manifold, where the vectors

generating the diffeomorphism symmetry of general relativity live, with powers of the cotangent

bundle, whose sections are the p-forms generating the gauge symmetry of the supergravity gauge

fields.

While supersymmetric Minkowski backgrounds in the absence of fluxes are described by

integrable G-structures, their flux analogues are integrable generalized G structures [4, 6–11].

This geometric reformulation of backgrounds with fluxes gives a characterization that allows

in principle to find new solutions, as well as to understand the deformations, which are the

moduli of the lower dimensional theory. In the context of gauge/gravity duality, deformations of

the background correspond to deformations of the dual gauge theory. For compactifications to

AdS, the G structures are weakly integrable, and so are the corresponding generalized structures

[10, 12, 13].

In this paper we focus on AdS5 compactifications of type IIB and M-theory preserving

eight supercharges. These are dual to four-dimensional N = 1 conformal field theories. The

internal manifolds are respectively five and six-dimensional. The generalized tangent bundle

combines the tangent bundle plus in the case of M-theory the bundle of two and five-forms,

corresponding to the gauge symmetries of the three form field and its dual six-form field, while

in type IIB two copies of the cotangent bundle and the bundle of five forms and the bundle of

three-forms, corresponding respectively to the symmetries of the B-field and RR 2-form field

and their dual six-forms and the RR 4-form. In both cases the generalized bundle transforms in

the fundamental representation of E6(6) , the U-duality group that mixes these symmetries.

Compactifications leading to backgrounds with eight supercharges in the language of (excep-

tional) generalized geometry are characterized [5] by two generalized geometric structures that

describe the hypermultiplet and vector multiplet structures of the lower dimensional supergrav-

ity theory. When this theory is five-dimensional, the generalized tangent bundle has reduced

structure group USp(6) ⊂ USp(8) ⊂ E6(6) [11], where USp(8), the maximal compact subgroup

of E6(6) , is the generalized analogue of SO(6), namely the structure group of the generalized

tangent bundle equipped with a metric.

– 2 –



The integrability conditions on these structures required by supersymmetry were formulated

in [13]. The “vector multiplet” structure is required to be generalized Killing, namely the general-

ized vector corresponding to this structure generates generalized diffeomorphisms (combinations

of diffeomorphisms and gauge transformations) that leave the generalized metric invariant. The

integrability condition for the hypermultiplet structure requires the moment maps for generic

generalized diffeomorphisms to take a fixed value proportional to the cosmological constant of

AdS. These conditions can be seen as a generalization of Sasaki-Einstein conditions: they imply

that the generalized Ricci tensor is proportional to the generalized metric. They parallel the

supersymmetry conditions obtained from five-dimensional gauged supergravity [14].

In this paper, we prove the integrability conditions for the generalized structures directly

from the supersymmetry equations of type IIB and eleven dimensional supergravity. For that,

the generalized structures are written in terms of USp(8) bispinors. These are subject to differ-

ential and algebraic conditions coming from the supersymmetry transformation of the internal

and external gravitino (plus dilatino in the case of type IIB). We show that the latter imply the

integrability conditions for the generalized structure.

The paper is organized as follows. Section 2 starts with a short review of generalized ge-

ometry for type IIB compactifications, focusing on the case of E6(6) structure group relevant to

compactifications down to five dimensions. We then present the generalized structures describing

backgrounds with eight supercharges, and their integrability conditions for AdS5 compactifica-

tions. In section 3 we show that the Killing spinor equations imply the integrability conditions.

We outline the key points in the main text, while leaving the details to the Appendices. In

section 4 we show the analogous statements for M-theory. Section 5 is a short discussion of the

results.

2 Generalizing the Geometry

We begin with a brief review of generalized geometry, its description of backgrounds with eight

supercharges and the supersymmetry conditions.

The starting point of generalized geometry is the extension of the tangent bundle TM of

the internal manifold to a generalized tangent bundle E in such a way that the elements of

this bundle generate all of the bosonic symmetries of the theory (diffeomorphisms and gauge

transformations). The generalized tangent bundle transforms in a given representation of the

corresponding duality group acting on the symmetries. Following the historical path, we start

by discussing the O(d, d) generalized geometry, relevant to the NS-NS sector of type II theories

compactified on d-dimensional manifolds. We then briefly introduce Ed(d) generalized geometry

which encodes the full bosonic sector of type II theories compactified on a (d − 1)-dimensional

manifold, or M-theory on a d-dimensional geometry. In this paper we will concentrate on the

case d = 6, i.e. compactifications of type II (in particular type IIB) and M-theory down to five

dimensions, but most of the statements in the next section are valid for any d.

2.1 Geometrizing the supergravity degrees of freedom

The NS-NS sector of type II supergravity contains the metric g(mn), the Kalb-Ramond field

B[mn] and the dilaton φ. The symmetries of this theory are diffeomorphisms generated by

vectors k and gauge transformations of the B-field which leave the H = dB invariant and which

– 3 –



are parametrized by one-forms ω. The combined action of these symmetries can be thought to

be generated by a single object

V = (k, ω) , k ∈ TM , ω ∈ T ∗M (2.1)

on the combined bundle TM⊕ T ∗M. In fact, V is well-defined only in a patch of M. If there

is H-flux, in order to construct a global section of the bundle, we need to consider

eBV ≡ (k, ω + ιkB) (2.2)

taking thus into account the non-trivial transformation of the B-field on the overlap of two

patches. These generalized vectors belong to the generalized tangent bundle

E ≃ TM⊕ T ∗M (2.3)

where the isomorphism is provided by the eB defined above. The structure group of this bundle

can be reduced from GL(2d) to O(d, d)1 by observing that there exists an invariant metric

defined by

η(V, V ′) ≡ 1

2
(ιkω

′ + ιk′ω) . (2.4)

It is possible to extend many of the concepts of ordinary differential geometry on TM to

analogues on E. The resulting geometry is called generalized complex geometry or O(d, d)-

generalized geometry2.

One of the key elements in this construction is the analogue of the Lie derivative. This

is the so-called Dorfman derivative along a generalized vector V on another generalized vector

V ′3. It expresses the infinitesimal action of the symmetries encoded in V and is given by4

LV V
′ = (Lkk

′,Lkω
′ − ιk′dω) (2.5)

where L is the ordinary Lie derivative. One can write this in a more O(d, d)-covariant way by

embedding the ordinary derivative in a O(d, d)-covariant object through

DM = (∂m, 0) ∈ E∗ (2.6)

where m = 1, ..., d, while M = 1, ..., 2d. The Dorfman or generalized Lie derivative (2.5) takes

the form

LV V
′ = (V ·D)V ′ − (D × V )V ′ (2.7)

where · and × stand respectively for the inner product and the projection to the adjoint repre-

sentation between the vector and dual vector representations5.

In order to include the gauge transformations of the RR fields, or to do a generalized geom-

etry for M-theory, one needs to extend the tangent bundle even further. Not surprisingly, the

1The group O(d, d) corresponds to the T-duality group of the massless sector of type II string theory when

compactified on a d-dimensional manifold.
2For a more complete introduction to this with a focus on supergravity applications, see [15]
3By the Leibniz rule, it can be extended to arbitrary tensors constructed from E and E∗.
4Note that V and V ′ now are sections of E and therefore the Dorfman derivative takes into account the

non-triviality of the B-field patching.
5Using explicit indices, V ·D = V MDM , (D×V ) = DMV N |adjoint. In theO(d, d) case, the latter is (D×V )M

N =

DMV N − ηNP ηMQDPV
Q.
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appropriate generalized bundle should transform covariantly under the group Ed(d) [4, 16], which

is the U-duality group of the massless sector of type II string theory (M-theory) when compact-

ified on a d-1 (d) dimensional manifold. In this paper, we will deal with compactifications of

type IIB and M-theory down to five dimensions, and the relevant group is therefore E6(6) . This

extended version of generalized geometry is called Exceptional Generalized Geometry [17, 18].

In the following sections we concentrate on the type IIB case, while in section 4 we discuss the

M-theory analogue.

The generalized tangent bundle for type IIB decomposes as follows

E ≃ TM⊕ (T ∗M⊕ T ∗M)⊕ ∧3T ∗M⊕ (∧5T ∗M⊕∧5T ∗M) (2.8)

where the additional components T ∗M , ∧3T ∗M and the two copies of ∧5T ∗M correspond to

the gauge transformations of C2, C4, C6 and B6, the dual of B2 (one can also understand this

in terms of the charges of the theory, namely D1, D3, D5 and NS5 -brane charges respectively).

In the above expression, we have grouped together terms that transform as doublets under the

SL(2,R) symmetry of type IIB supergravity.

The isomorphism implied in (2.8) is given by an element eµ ∈ E6(6) , µ ∈ e6(6) which can

be constructed from the gauge fields of the theory in such way that the generalized vectors are

well-defined in the overlap of two patches. This is in direct analogy with the O(d, d) case where

the only non-trivial gauge field is the B-field. The expression for µ in our case is given below in

(2.13).

One can also here embed the derivative in a covariant object in E∗, such that its non-zero

components are on T ∗M. The Dorfman derivative takes the same form as in the O(d, d) case,

namely (2.7). For its expression in terms of the GL(5) decomposition of E in (2.8), namely the

analogue of (2.5), see [17].

Finally, let us mention that a complete treatment of both O(d, d) and Ed(d) generalized

geometry also includes the geometrization of the so-called trombone symmetry (see [17] for de-

tails). This is an additional R+ symmetry which exists in warped compactifications of M-theory

and can be understood as a combination of the scaling symmetry in the eleven-dimensional

theory6 (and therefore is inherited also in type II) and constant shifts of the warp factor in the

compactified theory. We incorporate the action of this symmetry by rescaling appropriately our

structures (see (2.23) below) where the appearance of the dilaton in the type IIB case reflects

the fact that the dilaton can be interpreted as a contribution to the warp factor in an M-theory

set-up.

2.1.1 Particular case of E6(6)

Let us now specialize to the case of E6(6) . The generalized tangent bundle E transforms in the

fundamental 27 representation, whose decomposition is given in (2.8). In terms of representa-

tions of GL(5)× SL(2)7, this is

27 = (5,1) ⊕ (5,2) ⊕ (10,1)⊕ (1,2) . (2.9)

It will actually turn out to be convenient to use the SL(6)×SL(2) decomposition, where the two

SL(2) singlets are combined into a two-vector, while the two SL(2) doublets are combined into

6The M-theory action is invariant under gMN → e2αgMN , C3 → e3αC3.
7Here, the SL(2) symmetry is the type IIB S-duality which acts linearly on the doublet of 2-form potentials

and by fractional linear transformations transformations on the axio-dilaton.
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a doublet of forms. Under SL(6)×SL(2) the fundamental (anti-fundamental) representation V

(Z) of E6(6) therefore decomposes as

27 = (6,2) + (15,1), V = (V i
a, V

ab) (2.10a)

27 = (6,2) + (15,1), Z = (Za
i, Zab) (2.10b)

where a, b, c, . . . run from 1 to 6 and i, j, k, . . . from 1 to 2.

The derivative embeds naturally in the anti-fundamental representation as8

Di
m = Di

6 = Dmn = 0, Dm6 = e2φ/3∂m (2.11)

where we use m,n, . . . for the coordinate indices on the internal manifold.

The adjoint representation splits under SL(6) × SL(2) as

78 = (35,1) + (1,3) + (20,2), µ = (µab, µ
i
j, µ

i
abc) . (2.12)

In our conventions, the dilaton and gauge fields embed in this representation in the following

way

µ1mn6 = eφCmn (2.13a)

µ2mn6 = Bmn (2.13b)

µmn = −φ
6
δmn (2.13c)

µ66 =
5φ

6
(2.13d)

µn6 = −eφ(∗C4)
n (2.13e)

µij =

(
−(φ/2) eφC0

0 (φ/2)

)
(2.13f)

while the other components of µ vanish9. Note that the the gauge fields from the RR sector

carry an eφ factor.

2.2 Backgrounds with eight supercharges

In the previous section we mentioned briefly how the supergravity degrees of freedom can be

packed into generalized geometric objects which belong to representations of the corresponding

duality group. In this section, we focus on the case of backgrounds that have eight supercharges

off-shell, and in the next subsection we show how the on-shell restriction (i.e., the requirement

that the background preserves the eight supercharges) is written in the language of exceptional

generalized geometry.

Backgrounds with off-shell supersymmetry are characterized in ordinary geometry by the

existence of well-defined spinors, or in other words a reduction of the structure group of the

tangent bundle from SO(d) to subgroups of it singled out by the fact that they leave the well-

defined spinors invariant. This means that the metric degrees of freedom can be encoded in

8The reason for the additional factor of e2φ/3 is related to the rescaling of the bispinors which will be introduced

later, see (2.23).
9These other components of µ could have non-vanishing values in a different U-duality frame.
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objects that are invariant under the structure group, built out of bilinears of the spinors. For

the familiar case of SU(d/2) structures (like the case of Calabi-Yau), these objects are the Kähler

2-form ω and the holomorphic d/2-form Ω, satisfying certain compatibility conditions10.

On-shell supersymmetry imposes differential conditions on the spinors, which are translated

into differential conditions on the bilinears of spinors. In the absence of fluxes, the supersym-

metric solutions involve an external Minkowski space, and the differential conditions lead to

integrable structures on the internal space. In the case of M-theory compactifications down

to five dimensions preserving eight supercharges, the internal manifold has to be Calabi-Yau,

namely the Kähler 2-form and the holomorphic 3-form are closed.

Compactifications to AdS require on one hand some flux to support the curvature, and on

the other hand the integrability conditions are weaker (they are usually referred to as weakly

integrability conditions). For full integrability all torsion classes are zero, while for weak inte-

grability there is a torsion in a singlet representation of the structure group, proportional to the

curvature of AdS. The simplest example of compactifications to AdS5 is that of type IIB, where

the curvature is fully provided by the 5-form flux, and the internal space is Sasaki-Einstein (the

simplest case being S5). Sasaki-Einstein manifolds are U(1)-fibrations over a Kähler-Einstein

base (defined by a Kähler 2-form ωB and a holomorphic 2-form ΩB satisfying the compatibility

condition) and a contact structure σ, satisfying

dσ = 2mωB, dΩB = 3imσ ∧ΩB (2.14)

where m is at the same time the curvature of the internal space (more precisely, the Einstein

condition is Rmn = 4m2gmn), that of AdS5, and give also the units of five-form flux. The

integrability conditions on the structures for more general solutions were obtained in [19].

In M-theory there is no such a simple AdS5 solution. The most well known solution is that

of Maldacena and Nuñez [20], corresponding to the near horizon limit of M5-branes wrapped

on holomorphic cycles of a Calabi-Yau 3-fold. More general solutions are studied in [21], and

correspond topologically to fibrations of a two-sphere over a Kähler-Einstein base.

The effective five-dimensional gauged supergravity encodes the deformations of the back-

ground. When there is a G-structure, the moduli space of metric deformations is given by the

deformations of the structures. Together with the moduli coming from the B-field and the RR

fields, they form, in the case of N = 2 gauged supergravity, the hypermultiplets and vector

multiplets of the effective theory.

In the generalized geometric language, metric degrees of freedom can also be encoded in

bilinears of spinors (this time transforming under the the compact subgroup of the duality

group, namely USp(8) for the case of E6(6) ), and furthermore these can be combined with the

degrees of freedom of the gauge fields such that the corresponding objects (called generalized

structures11) transform in given representations of the Ed(d) group. For eight supercharges in

five dimensions the relevant generalized structures form a pair of objects (K,Ja), first introduced

in [5]. In the next section we are going to give their explicit form, but for the moment let us

explain their geometrical meaning.

The structure K transforms in the fundamental representation of E6(6) and it is a singlet

under the SU(2) R-symmetry group of the relevant effective supergravity theory. If K was to

10These are ω ∧ Ω = 0, ωd/2 =
(d/2)!

2d/2
(−1)

d(d/2+1)
4 id/2Ω ∧ Ω̄.

11In the case of O(d, d) generalized geometry these are Spin(d, d) pure spinors.
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be built just as a bispinor (we will call that object K, its explicit expression is given in (3.21)),

then it would be a section of the right-hand side of (2.8) and it would not capture the non-trivial

structure of the flux configuration on the internal manifold. Therefore, the proper generalized

vector which transforms as a section of E is the dressed one

K = eµK . (2.15)

This structure was called the V-structure (vector-multiplet structure) in [11] since it parametrizes

the scalar fields of the vector multiplets in the effective theory.

The other algebraic structure, or rather an SU(2)R triplet of structures, describing the

hypermultiplets (and thus called H-structure in [11]) is Ja, a = 1, 2, 3. It transforms in the

adjoint of E6(6). As for K, we need the dressed object

Ja = eµJae
−µ = eJµ,·KJa (2.16)

where we are using J·, ·K to denote the e6(6) adjoint action. These are normalized as12

Tr(Ja,Jb) = 8ρ2δab (2.17)

where ρ will be related to the warp factor, and satisfy the SU(2) algebra

JJa,JbK = (4iρ)ǫabcJc . (2.18)

As in Calabi-Yau compactifications where ω and Ω have to satisfy compatibility conditions

to define a proper Calabi-Yau structure (see footnote 10), similar requirements apply here, and

read

JaK = 0 , c(K,K,K) = 6ρ3 (2.19)

where in the first expression we mean the adjoint action of J on K, and in the second one c is

the cubic invariant of E6(6) . Since the above expressions are E6(6) -covariant, they have exactly

the same form if we replace (K,Ja) with their dressed version (K,Ja).

2.3 Supersymmetry conditions

In the previous section we have introduced the generalized structures defining the backgrounds

with eight supercharges off-shell, namely those that allow to define a five-dimensional (gauged)

supergravity upon compactification. Here we discuss the integrability conditions that these

backgrounds need to satisfy in order to preserve all eight supersymmetries leading to an AdS5
geometry on the external space. The supersymmetry conditions were originally introduced

in [13], and the relevant backgrounds called “exceptional Sasaki-Einstein” (the simplest case

corresponding to Sasaki-Einstein manifolds). Here we will write the supersymmetry conditions

in a slightly different way, and in the next section we will use the fact that they are independent

of the (generalized) connection to choose a convenient one to verify them directly from the 10d

supersymmetry conditions.

Compactifications to warped AdS5 require, both in M-theory and in type IIB

DJ̃a + κ ǫabcTr(J̃b,DJ̃c) = λac(K̃, K̃, ·) (2.20)

12We use the notation Tr(·, ·) to denote the Killing form for e6(6).
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LK̃K̃ = 0 (2.21)

LK̃ J̃a =
3i

2
ǫabcλbJ̃c (2.22)

These equations involve the rescaled bispinors, which for type IIB are (the analogue expressions

for M-theory are given in (4.4))

K̃ = e−2φ/3K , J̃a = e2A−2φJa , (2.23)

where A is the warp factor and φ the dilaton. D is the derivative defined in (2.11), whose explicit

index we have omitted, and corresponds to the direction missing in the cubic invariant13. The

coefficient κ is related to the normalization of the structures and is given by

1

κ
= i‖J̃a‖ ≡ i

√
8Tr(J̃a, J̃a) (2.24)

and for type IIB is14

κ = − i

4
√
2
e−3A+2φ. (2.25)

Finally, λa are a triplet of constants related to the AdS5 cosmological constant m by

λ1 = λ2 = 0, λ3 = −2im . (2.26)

Let us explain very briefly the meaning of these equations. For more details, see [11, 13].

The first equation which one can write in terms of the Dorfman derivative along a generic

generalized vector,15 implies that the moment map for the action of a generalized diffeomorphism

along V takes a fixed value that involves the vector multiplet structure and the SU(2)R breaking

parameters λa (AdS5 vacua only preserve a U(1)R ∈ SU(2)R [14, 22]), given by λaJa. The second

and third equation imply that K̃ is a generalized Killing vector of the background. Indeed, (2.21)

implies that it leaves K̃ invariant, while (2.22) shows that the generalized diffeomorphism along

K̃ amounts to an SU(2)R rotation of the Ja. This rotation does not affect the generalized metric

which encodes all the bosonic degrees of freedom. Thus, the generalized vector K̃ was called

“generalized Reeb vector” of the exceptional Sasaki-Einstein geometry.

As shown in [13], these conditions imply that these backgrounds are generalized Einstein,

as the generalized Ricci tensor is proportional to the generalized metric.

We can compare these to the conditions coming from the five dimensional gauged super-

gravity [14]. More specifically, (2.22) corresponds to the hyperini variation, (2.21) corresponds

to the gaugini, while (2.20) corresponds to a combination of the gravitini and the gaugini.

In the next section, we will give more details of the construction of H-and V structures in

terms of internal spinors, and we show by an explicit calculation that AdS5 compactifications

preserving eight supercharges require conditions (2.20)-(2.22).

13To write this index explicitly we substitute D → DM , c(K̃, K̃, ·) → cMNP K̃
N K̃P .

14Note that κ accounts for both the normalization of the internal spinors (Eq. (3.11)) and the rescalings (2.23)

as can be seen by writing it as κ = (8iρe2A−2φ)−1.
15The expression is as follows

κ ǫabcTrJJ̃b,LV J̃cK = λac(K̃, K̃, V ) .
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3 From Killing spinor equations to Exceptional Sasaki Einstein conditions

3.1 IIB compactifications to AdS5 with general fluxes

In this section we show that supersymmetry requires the integrability conditions (2.20)-(2.22).

We are interested in solutions of type IIB supergravity which

• respect the isometry group SO(4, 2) of AdS5 and

• preserve 1/4 of the original supersymmetry, i.e. 8 supercharges.

According to the former condition, the ten-dimensional metric is written as

ds2 = e2A(y)g̃µν(x)dx
µdxν + gmn(y)dy

mdyn (3.1)

where g̃µν(x) is the metric of AdS5 and gmn(y) is the metric of the internal manifold, while the

fluxes are of the form

G(n) = F(n) + vol5 ∧ F̂(n−5) (3.2)

where F(n) is purely an internal piece.

We start with the supersymmetry transformations of type IIB supergravity for the gravitino

and the dilatino which read respectively (in the democratic formulation [23])

δΨM = ∇M ǫ−
1

4
/HMσ

3ǫ+
eφ

16

[
(/G1 + /G5 + /G9)ΓM (iσ2) + (/G3 + /G7)ΓMσ

1
]
ǫ (3.3)

δλ =

(
/∂φ− 1

2
/Hσ3

)
ǫ− eφ

8

[
4(/G1 − /G9)(iσ

2) + 2(/G3 − /G7)σ
1
]
ǫ (3.4)

where /Gn =
1

n!
GM1...MnΓ̂

M1...Mn (we are using hats for quantities defined in ten dimensions)

and σ1, σ2, σ3 are the Pauli matrices acting on the doublet of type IIB spinors

ǫ =

(
ǫ1
ǫ2

)
. (3.5)

For backgrounds preserving eight supercharges, we parametrize16 the ten-dimensional su-

persymmetry parameters ǫi as

ǫi = ψ ⊗ χi ⊗ u+ ψc ⊗ χc
i ⊗ u, i = 1, 2. (3.6)

Here ψ stands for a complex spinor of Spin(4, 1) which represents the supersymmetry param-

eter in the corresponding five-dimensional supergravity theory, and satisfies the Killing spinor

equation of AdS5
∇µψ =

m

2
ρµψ (3.7)

wherem is the curvature of the AdS17. (χ1, χ2) is a pair of (complex) sections of the Spin bundle

for the internal manifold. The two component complex object u fixes appropriately the reality

and chirality properties of the ten-dimensional supersymmetry parameters ǫi (see (A.13)).

16Our conventions for spinors and gamma matrices as well as their properties are described in appendix A.
17Five-dimensional Minkowski solutions are described by taking appropriately the limit m → 0.
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Inserting this decomposition in (3.3) and (3.4) and requiring the variations to vanish gives

rise to 3 equations corresponding to the external gravitino, internal gravitino and dilatino re-

spectively:18

[
m− eA(/∂A)Γ6Γ7 + i

eφ+A

4

(
(/F 1 + /F 5)Γ

6 − /F 3

)]
(
χ1

χ2

)
= 0 (3.8)

[
∇m − 1

4
/HmΓ6 + i

eφ

8

(
/F 1 + /F 5 − /F 3Γ

6
)
ΓmΓ(7)

](
χ1

χ2

)
= 0 (3.9)

[
(/∂φ)Γ6Γ(7) +

1

2
/HΓ7 −

ieφ

2

(
2/F 1Γ

6 − /F 3

)]
(
χ1

χ2

)
= 0 (3.10)

where we have used the duality ⋆10Gn = (−)Int[n/2]G10−n to write the fluxes F̂ in terms of purely

internal components F . The Γ- matrices appearing in the above equations are constructed from

the ten-dimensional ones as shown in appendix A.

Now, let us mention some generic properties of IIB flux compactifications down to AdS5
which are implied by the supersymmetry requirements. Although these statements can be proved

without any reference to generalized geometry (as in [19]), we will postpone their proof until

appendix C.1 to see how nicely this formalism incorporates them. Here, we just state them.

The first property has to do with the norms of the internal spinors. From (C.8), we see that

the two internal spinors have equal norms and from (C.11) that they scale as eA:19

χ†
1χ1 = χ†

2χ2 ≡ ρ =
eA√
2

(3.11)

Moreover, (C.9) expresses the following orthogonality property

χ†
1χ2 + χ†

2χ1 = 0 (3.12)

An important consequence of the supersymmetry conditions which will be crucial for the

geometrical characterization of M is the existence of an isometry parametrized by a vector ξ

[19], the so-called Reeb vector20. The components of ξ can be constructed from spinor bilinears

as

ξm =
1√
2
(χ†

1γ
mχ1 + χ†

2γ
mχ2) (3.13)

Actually, it turns out (see Appendix C.1) that ξ generates a symmetry of the full bosonic sector

of the theory:

Lξ{g,A, φ,H,F1 , F3, F5} = 0. (3.14)

Using this, we can easily see that the Lie derivatives Lξχi of the spinors satisfy the same equations

(3.8) - (3.10) as the spinors themselves21 and so they are proportional to them which means

18Note that for the Sasaki-Einstein case we have χ2 = iχ1 and in the simplest example only the five-form flux

is present.
19Note that the ρ defined here is the same as the one appearing in the normalization condition of J , Eq. (2.17).
20In the context of AdS/CFT, this isometry corresponds in the dual picture to the surviving R-symmetry of

the N = 1 gauge theory.
21Here, note that the existence of the isometry is crucial for the Lie derivative to commute with the covariant

one.
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that they have definite charge. This charge is computed in appendix C.1. From (C.31) we have

Lξχi =
3im

2
χi (3.15)

These conditions are very useful in proving the integrability conditions in the next section.

3.2 The H and V structures as bispinors

Let us now construct the H and V structures from the internal spinors, as appropriateE6(6) objects.

For this, it is useful to decompose the group in its maximal compact subgroup USp(8) .22

The fundamental 27 (anti-fundamental 27 ) representation is undecomposable, and cor-

responds to an antisymmetric 8 × 8 matrix V αβ (Zαβ) which is traceless with respect to the

symplectic form Cαβ of USp(8)

27 , V = V αβ , such that VαβCαβ = 0 (3.16)

The adjoint 78 representation corresponds to a symmetric 8×8 matrix and a fully antisymmetric

rank 4 tensor

78 = 36+ 42, µ = (µαβ , µαβγδ) (3.17)

The internal spinors (χ1, χ2) which are sections of Spin(5) ∼= USp(4), are combined into the

following USp(8) spinors

θ1 =

(
χ1

χ2

)
, θ2 =

(
χc
1

χc
2

)
. (3.18)

In terms of the USp(8) spinors θi, the normalization condition (3.11) implies

θ∗αi θj,α = 2ρ δij . (3.19)

Now, one can define the H and V structures as bispinors in a natural way. The triplet of H

structures Ja are defined as

(Ja)
β
α = (σa)

ijθi,αθ
⋆β
j (3.20)

where σa = (σ1, σ2, σ3) are the Pauli matrices. Note that Ja have components only in the 36

piece of the 78.

For the V structure, we have

Kαβ = J αβ
0 − 1

8
CαβCδγJ γδ

0 , with (J0)
β
α = δijθi,αθ

⋆β
j (3.21)

where Cαβ is the charge conjugation matrix, which in our conventions is the symplectic form of

USp(8) . Note that K is traceless by construction. From now on, we will drop the USp(8) indices

α, β in K, J .

The su(2) algebra of the structures Ja, Eq. (2.18), follows from the orthogonality and

normalization of the spinors (3.19). Similarly we have

J 2
a = J 2

0 = 2ρJ0 (3.22a)

22Here, we just present some basic facts. More details are given in appendix B.
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J0Ja = JaJ0 = 2ρJa (3.22b)

where ρ can also be related to the trace part of J0, namely

ρ =
1

4
Tr[J0] (3.23)

The fact that Ja and J0 commute translates in E6(6) language (by using (B.12)) into the

compatibility condition (2.19).

In the following, it will turn out useful to have explicitly the GL(5)× SL(2) components of

K and Ja. For the former, using the decomposition of the 27 representation given in (2.9), we

have:

K = [ξ, (ζ, ζ7), V, (R,R7)] . (3.24)

These can be organized in terms of a Clifford expansion as

K =
1

2
√
2

[
iξmΓm67 + ζmΓm + iζ7mΓm7 +

i

2
VmnΓ

mn7
]

(3.25)

where the various components can be obtained by taking appropriate traces with K 23. In terms

of bilinears involving the internal spinors χ1 and χ2 these components are

ζm =
1√
2
(χ†

1γ
mχ2 + χ†

2γ
mχ1)

ζm7 =
1√
2
(−χ†

1γ
mχ1 + χ†

2γ
mχ2)

ξm =
1√
2
(χ†

1γ
mχ1 + χ†

2γ
mχ2) (3.26)

V mn =
1√
2
(χ†

1γ
mnχ2 − χ†

2γ
mnχ1)

R =
1√
2
(χ†

1χ1 − χ†
2χ2)

R7 =
1√
2
(χ†

1χ2 + χ†
2χ1)

Note the absence of R and R7 in the expansion (3.25). This is because these vanish as a conse-

quence of the supersymmetry conditions that impose the two internal spinors to be orthogonal

and have equal norm (see (3.11), (3.12)). Moreover, note that the vector component ξ of K
appearing in the above expression is the Reeb vector given in (3.13).

For the particular case of Sasaki-Einstein manifolds, where χ2 = iχ1, also the one-forms ζ

and ζ7 are zero, while the two-form V corresponds to ∗(σ ∧ ωB).
24 The holomorphic 2-form of

the base ΩB is instead embedded in Ja, to which we now turn.

The triplet Ja is in the 36 representation of USp(8) , which decomposes underGL(5)×SL(2)
as

36 = (5,1) + (10,1) + (1,1) + (10,2) . (3.27)

The Clifford expansion of Ja is 25

Ja = −1

8

[
Jm6
a Γm6 +

1

2
Jmn
a Γmn − J 7

a Γ7 +
1

2
Jmn6
a Γmn6 +

1

6
Jmnp
a Γmnp

]
(3.28)

23For example, ξm = 1

2
√

2
Tr[KΓm67].

24The Reeb vector ξ and the contact structure σ satisfy ιξσ = 1.
25We use the notation J (I)

a = Tr[JaΓ
(I)], a = 1, 2, 3 where (I) is a collection of indices.
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where each piece is given by the first terms in (B.24).

In particular, one can identify in the expansion (3.28) all possible spinor bilinears with

non-zero charge under ξ26

Jm6
+ = 4χT

1 γ
mχ2

Jmn
+ = −2(χT

1 γ
mnχ1 + χT

2 γ
mnχ2)

Jmn6
+ = −2(χT

1 γ
mnχ1 − χT

2 γ
mnχ2) (3.29)

Jmnp
+ = −4χT

1 γ
mnpχ2

J 7
+ = 4iχT

1 χ2

where we have defined

J± = J1 ± iJ2 . (3.30)

The components of J− have exactly the same form with the replacement χi → χc
i and an overall

minus sign in the above expressions.27 On the other hand, J3 is neutral since it is constructed

from two oppositely charged spinors (χ and χ†). The explicit expressions for the related bilinears

are

Jm6
3 = 2(−χ†

1γ
mχ2 + χ†

2γ
mχ1)

Jmn
3 = 2(χ†

1γ
mnχ1 + χ†

2γ
mnχ2)

Jmn6
3 = 2(χ†

1γ
mnχ1 − χ†

2γ
mnχ2) (3.31)

Jmnp
3 = 2(χ†

1γ
mnpχ2 + χ†

2γ
mnpχ1)

J 7
3 = 2i(−χ†

1χ2 + χ†
2χ1)

Together with those coming from K (3.26), these form the set of spinor bilinears which are

neutral under the Killing vector ξ. Moreover, note that expansions similar to (3.25) and (3.28)

can be done for the rescaled bispinors K̃ and J̃ .

3.3 Proof of the generalized integrability conditions

In this section we describe the general methodology used to prove the generalized integrability

conditions (2.20)-(2.22) from the Killing spinor equations (3.8)-(3.10), while we relegate the

details to the appendices.

3.3.1 Killing spinor equations

In order to use the supersymmetry conditions efficiently, we need to turn the Killing spinor

equations (3.8)-(3.10) into equations on Ja and J0. This can be done easily by taking the

complex conjugate and transpose of the former. From the equation coming from requiring that

the variation of the external gravitino equation vanishes, Eq. (3.8), we get

External gravitino

mJ± = ±J±G
E (3.32a)

26Our notation is χTγχ′ = χαγ
αβχ′

β and χ†γχ′ = χ∗αγ β
α χ′

β for a Cliff(5) element γ and two Spin(5) spinors

χ and χ′.
27For example, we have Jm6

− = −4χcT
1 γmχc

2.
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mJ3 = −J0G
E (3.32b)

mJ0 = −J3G
E (3.32c)

where

GE = eA
[
(/∂A)Γ6Γ7 + i

eφ

4

(
(/F 1 + /F 5)Γ

6 − /F 3

)]
(3.32d)

From the requirement that the variation of the internal component of the gravitino vanishes,

Eq. (3.9), we get

Internal gravitino

∇mJa = [Ja, G
IS
m ] + {Ja, G

IA
m }, a = 0, 1, 2, 3 (3.33a)

where

GIS
m = −1

4
/HmΓ6 +

ieφ

8
(F1,m + /F 3,mΓ6)Γ7 −

eφ

8
(∗F5)Γm6 (3.33b)

GIA
m =

ieφ

8
(F pΓmp +

Fnpq

3!
ΓmnpqΓ

6)Γ7 (3.33c)

From requiring that the dilatino stays invariant, Eq. (3.10), we get

Dilatino

JaG
D = 0, a = 0, 1, 2, 3 (3.34a)

where

GD =

[
(/∂φ)Γ6Γ(7) −

1

2
/HΓ7 +

ieφ

2

(
2/F 1Γ

6 − /F 3

)]
(3.34b)

3.3.2 Integrability conditions

Now, we are ready to prove the integrability conditions (2.20)-(2.22) for the H and V structures.

These are given in terms of the dressed objects Ja,K, but it turns out to be more tractable to

work with the undressed objects J , K, in particular since the gauge fields and the derivative

satisfy

µ̃D ≡ (µ+
2φ

3
)D = 0 (3.35)

where µ̃ is an element of e6(6) ⊕ R
+. The dilaton appears here due to the way it embeds in the

GL(5) piece in the adjoint action (see (2.13c), (2.13d)), and it reflects the fact that the (anti)

fundamental representation is actually charged under the R
+, i.e. we are working with objects

which are dressed under the trombone (see (2.11) and (2.23)).

We will also use a crucial trick: the generalized integrability conditions stem from the

generalized Lie derivative operation (2.7), which is independent of the generalized connection,

as long as it is torsion free [17]. Thus, instead of embedding the partial derivative into the

generalized derivative as in (2.11), we are going to embed the covariant derivative, namely we

will use as generalized connection the ordinary Levi-Civita connection. We thus have

Dm6 = e2φ/3∇m . (3.36)
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Ja equations

Let us start with the moment map condition for the hyper-multiplet structure, Eq. (2.20),

that we repeat here

DJ̃a + κ ǫabcTr(J̃b,DJ̃c) = λac(K̃, K̃, ·) (3.37)

When undressing Ja, each term on the left hand side contributes two terms, one where the

derivative is acting on the naked J , and another one with the derivative acting on µ. Acting

on the whole equation by e−µ to undress it, we get the twisted moment map densities Ma

Ma ≡ e−µ
(
DJ̃a + κ ǫabcTr(J̃b,DJ̃c)

)
=

DJ̃a + JDµ, J̃aK + κǫabcTrJJ̃b,DJ̃cK + κǫabcTrJJ̃b, JDµ, J̃cKK (3.38)

where in analogy with their twisted counterparts (2.23), we have defined the rescaled bispinors

J̃a = e2A−2φJa , K̃ = e−2φ/3K . (3.39)

We are going to perform this calculation in USp(8) basis, where the derivative D has com-

ponents (cf. (B.21b))

Dαβ =
ie2φ/3

2
√
2
(Γm67)αβ∇m ≡ (vm)αβ∇m (3.40)

where for later use we have defined the generalized vector v, which has only a vectorial component

along direction of the generalized derivative. We then get that (3.38) reads, in USp(8) basis

Ma = [∇mJ̃a, v
m] + (J∇mµ, J̃aKv

m) + Tr[J̃aG
IS
m ]vm − Tr[(∇mµ)J̃a)]v

m . (3.41)

Here we have used the fact that the Ja contain only a 36 component (and thus the Killing

form (B.19) just reduces to a matrix trace) and in the third and fourth terms we have used

the su(2) algebra (2.18). For the third term we also used the internal gravitino equation (3.33).

The commutators [ , ] and the traces are now understood as matrix commutators and traces

respectively (vm ∝ Γm67). The second term means the action of the adjoint element J∇mµ, J̃aK

on the fundamental vm.

Although (3.41) seems not to be gauge-invariant (µ contains the gauge fields), this is not

the case since the second and the fourth term together project onto the exterior derivative of

the gauge fields, i.e. the fluxes. Using the internal and external gravitino equations (3.33) and

(3.32) as well as the dilatino equations (3.34), we find (see appendix D for the details of this

computation)

M± = 0 (3.42a)

M3 = (−2im)ρe−4φ/3K (3.42b)

We thus verify the ± components of the moment map equations (3.37), for the choice λ± = 0,

in agreement with (2.26). The third component M3, should be, according to (3.37) and (2.26)

proportional to the dual vector of K through the cubic invariant. Indeed, one can check using

the explicit form of K in terms of spinors (3.21), as well as the spinor normalizations (3.22a)

and the definition of the rescaled K (3.39) that

[
c(K̃, K̃, ·)

]αβ
= ρe−4φ/3Kαβ . (3.43)
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We therefore verify the third component of the moment map equation with λ3 = −2im, in

accordance to (2.26).

K and compatibility equations

We rewrite here the integrability condition for K and the condition coming from requiring

compatibility of the integrable H and V structures, Eqs (2.21) and (2.22)

LK̃K̃ = 0 (3.44)

LK̃ J̃a =
3i

2
ǫabcλbJ̃c . (3.45)

They both contain the Dorfman derivative along the (rescaled) twisted generalized vector K̃ =

e−2φ/3K = e−2φ/3(eµK). As before, it is convenient to split the contributions coming from the

derivative of µ from the rest. Using the expression for the Dorfman derivative (2.7), one gets

e−µ
LK̃ = (K̃ · v)

(
∇+∇µ

)
−
(
v × (∇K̃ + (∇µ)K̃)

)
(3.46)

where the generalized vector v along the direction of the derivative D was defined in (3.40). The

first and third term are the same as in LK̃, while with the second and the fourth we define a

twisted Dorfman derivative L̂K̃, namely

L̂K̃ ≡ e−µ
LK̃ = LK̃ + (K̃ · v)∇µ − v ×

(
(∇µ)K̃

)
. (3.47)

Using this twisted derivative, we can now rewrite the integrability conditions (3.44) and (3.45)

as equations on the undressed structures K and J (or rather their rescaled versions K̃ and J̃
defined in (3.39)) as follows

L̂K̃K̃ = 0 (3.48)

L̂K̃J̃a =
3i

2
ǫabcλbJ̃c (3.49)

These equations turn out to be very simple using the fact that the twisted Dorfman deriva-

tive along K̃ on spinor bilinears actually reduces to the usual Lie derivative along the vector

part of K [11], namely the Killing vector ξ defined in (3.13)

L̂K̃ = Lξ on bispinors . (3.50)

Let us show briefly why this is so. The derivative acting on a generic element can be split as in a

differential operator, corresponding to the first term in (2.7), and the rest, which is an algebraic

operator from the point of view of the element that it acts on:

L̂K̃ = (K̃ · v)∇ +A (3.51)

The first piece reduces to the directional derivative along the Killing vector ξ. For the algebraic

part, we decompose the operator A, which acts in the adjoint, into the USp(8) pieces

A = A|36 +A|42 (3.52)

and we have furthermore that A|36 can be viewed as an element of Cliff(6). We show in the

appendix E that supersymmetry implies that

A|36 =
1

4
(∇mξn)Γ

mn, A|42 = 0 (3.53)
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Now let us consider the action of L̂K on K and Ja. These are respectively in the 27 and 36 of

USp(8) , and combined they form the 63, the representation of hermitean traceless bispinors,

and thus we have simply

AK =
1

4
(∇mξn)[Γ

mn,K], JA,JaK =
1

4
(∇mξn)[Γ

mn,Ja] (3.54)

where the commutators are just gamma matrix commutators. Together with the directional

derivative along ξ from the first term in (3.51), we conclude that L̂K̃ = Lξ.

Using this, it is very easy to show (3.48) and (3.49). Given that the Spin(5) spinors have

a definite charge under this action, Eq. (3.15), the USp(8) spinors θ1,2 have charges ±(3im/2)

and therefore the bispinors satisfy

LξJ± = ±3imJ± and LξJ3 = LξK = 0 (3.55)

from which one can immediately verify (3.48) and (3.49).

Before closing this section, let us note that the fact that the twisted generalized Lie derivative

along K̃ reduces to an ordinary Lie derivative along its vector part is actually a generic feature

of “generalized Killing vectors”28: it can be shown that if a generalized vector is such that the

generalized Lie derivative along that vector on the objects defining the background –generalized

metric for a generic background, and spinors or spinor bilinears for a supersymmetric one–

vanishes, then the Dorfman derivative along such a generalized vector reduces to an ordinary

Lie derivative along its vector component [24].

4 The M-theory analogue

In this section, we prove the generalized integrability conditions for compactifications of eleven-

dimensional supergravity down to AdS5. The situation is similar to the type IIB case since

the group of global symmetries remains the same, namely E6(6) . However, the proof is more

transparent since M-theory combines the degrees of freedom in a more compact form, avoiding

thus the complications due to the GL(5) ⊂ SL(6) embedding. In particular, the generalized

tangent bundle is decomposed in this case as

E ≃ TM⊕∧2T ∗M⊕∧5T ∗M (4.1)

where the internal manifold M is now six-dimensional and the various terms correspond to

momenta, M2- and M5-brane charges respectively. The latter can be dualized to a vector,

and together with the first piece they form the (6,2) piece in the split of the fundamental 27

representation under SL(6) × SL(2) given in (2.10). The derivative is embedded in one of the

two components of this doublet appearing in the anti-fundamental representation29

D2
a = ∇a, D1

a = Dab = 0 . (4.2)

The decomposition of the adjoint representation is given in (2.12), and the three-form gauge

field C embeds in µ as

µ1abc = −(⋆C)abc (4.3a)

28We thank C. Strickland-Constable for sharing this with us.
29Note that here D does not carry a rescaling factor in contrast to the type IIB case.
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µ2abc = µij = µab = 0. (4.3b)

The rescaled structures for M-theory are

K̃ = K , J̃a = e2AJa , (4.4)

having the same form as for type IIB but with a vanishing dilaton.

Equations (2.20) and (2.21) have exactly the same form as in the type IIB case, with

κ = − i

4
√
2
e−3A = (8iρe2A)−1 (4.5)

while (2.22) has a different sign in our conventions, i.e.

LK̃ J̃a = −3i

2
ǫabcλbJ̃c (4.6)

where again λ1 = λ2 = 0, λ3 = −2im. This sign difference is due to the fact the internal spinor

has opposite charge compared to the type IIB case (cf. (C.39)).

The supersymmetry variation of the gravitino (up to quadratic terms) reads30

δΨM = ∇M ǫ+
1

288

(
Γ̃ NPQR
M − 8δNM Γ̃PQR

)
GNPQRǫ (4.7)

where G = dC and ǫ is the eleven-dimensional (Majorana) supersymmetry parameter.

The eleven-dimensional metric is written again in the form (3.1) where now the internal met-

ric gab
31 is six-dimensional and the spinor decomposition ansatz for M-theory compactifications

reads

ǫ = ψ ⊗ θ + ψc ⊗ θc (4.8)

where θ is a complex 8-component spinor on the internal manifold. Finally, the field strength G

is allowed to have only internal components in order to respect the isometries of AdS5.

There is again a vector field ξ which generates a symmetry of the full bosonic sector

Lξ{g,A,G} = 0, (4.9)

where ξ is now given by

ξa =
i√
2
θ†Γa7θ (4.10)

One can construct the H and V structures in exactly the same way as for the type IIB case.

In particular, the expressions (3.19) to (3.23) have exactly the same form where

θ1 = θ , θ2 = θc . (4.11)

However, the θi are not constructed from two Spin(5) spinors as in type IIB.

The decomposition of the supersymmetry variation (4.7) in external and internal pieces is

similar to the type IIB case with the difference that here we do not have a dilatino variation.

In terms of Ja and J0, we get the differential condition

∇aJ = [J , GIS
a ] + {J , GIA

a }, J = J±,J3,J0 (4.12)

30We use tildes for the eleven-dimensional gamma-matrices (see appendix A).
31We use a, b, c, . . . to describe representations of the GL(6) group of diffeomorphisms of the internal manifold.

Moreover, we will suppress from now on the SU(2)R adjoint index a in Ja in order to avoid confusion with the

GL(6) ones.
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where

GIS
a = − 1

36
GabcdΓ

bcd, GIA
a = − i

12
(⋆G)abΓ

b7 (4.13)

and the algebraic ones

mJ± = ±J±G
E (4.14)

mJ3 = −J0G
E (4.15)

mJ0 = −J3G
E (4.16)

where now GE is given by

GE = eA
[
(/∂A)Γ7 +

i

12
(⋆G)abΓ

ab

]
(4.17)

The Clifford expansion for K is now

K =
1

2
√
2

[
ζaΓ

a + iξaΓ
a7 +

i

2
VabΓ

ab7
]

(4.18)

where the components correspond to the different pieces in the SL(6) decomposition of the

fundamental, Eq. (4.1), and correspond to the following spinor bilinears

ζa =
1√
2
θ†Γaθ, V ab =

i√
2
θ†Γab7θ (4.19)

and the vector ξ is the Killing vector defined in (4.10).

For the triplet J , the expansion reads

J = −1

8

[1
2
J abΓab − J 7Γ7 +

1

6
J abcΓabc

]
(4.20)

where now the the analogue of the (3.27) split under GL(6) is

36 = 15+ 1+ 20 (4.21)

The components of J+ are given by the following spinor bilinears, all charged under ξ

J ab
+ = −2θTΓabθ, J abc

+ = −2θTΓabcθ, J 7
+ = −2θTΓ7θ (4.22)

and the corresponding expressions for J− are given by the replacement θ → θc and an overall

minus sign. For J3, the analogous expressions are

J ab
3 = 2θ†Γabθ, J abc

3 = 2θ†Γabcθ, J 7
3 = 2θ†Γ7θ (4.23)

The procedure to prove the integrability conditions is the same as the one described in

subsection 3.3 for type IIB. In particular, we again work with the undressed structures K and J
and with the twisted moment map density and the twisted Dorfman derivative defined in (3.38)

and (3.46) respectively for type IIB. We leave the details of this calculation to the appendices.

The key point that the twisted Dorfman derivative along K reduces to the ordinary Lie derivative

along ξ, Eq. (3.50), is also true here and from (C.39), we get

LξJ± = ∓3imJ± and LξJ3 = LξK = 0 (4.24)
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5 Discussion

We have proven that the supersymmetry equations relevant for AdS5 vacua with generic fluxes

preserving eight supercharges in type IIB and M-theory compactifications translate into the

integrability conditions (2.20),(2.21) and (2.22) in Exceptional Generalized Geometry. The inte-

grability conditions involve generalized structures in the fundamental and adjoint representations

of the E6(6) U-duality group. Although our calculations were performed for the particular case

of AdS5 compactifications, the integrability conditions are expected to be the same for other

AdSd vacua of type II (either IIA or IIB) and M-theory compactifications preserving eight su-

percharges, since these are described by vector and hypermultiplets. A particularly interesting

case to analyze is that of AdS4 vacua, where the relevant U-duality group is E7(7), with maximal

compact subgroup SU(8). The construction of the generalized structures from spinor bilinears

is the same, and since our calculations were done in USp(8) language, the extension to SU(8)

should be rather straightforward.

The description of AdS5 vacua in exceptional generalized geometry has nice applications in

AdS/CFT. The original example is the AdS5 × S5 solution supported by five-form flux (in the

type IIB case) which is dual to N = 4 SYM. Allowing for generic internal manifolds (and fluxes)

but still preserving some supersymmetry corresponds to supersymmetric deformations on the

field theory side. AdS vacua are dual to deformations that preserve conformal invariance on the

gauge theory. Having a compact description of the internal geometry opens then the way for

finding the supergravity dual of these deformations in a rather systematic way, as very recently

shown in [25]. We will explore this direction further in future work.
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A Spinor conventions

In the paper we use spinors of Spin(1, 4) and Spin(5) and Spin(1, 9) for type IIB, and Spin(6)

and Spin(1, 10) in M-theory. We give our conventions for all of them, explain their relations

and provide some useful formulae for our calculations. In this section, all the indices are meant

to be flat.

For five Euclidean dimensions, the gamma matrices are denoted by γm, m = 1, . . . 5 and

satisfy32

(γm)† = γm (A.1a)

(γm)T = C5γ
mC−1

5 (A.1b)

(γm)∗ = D5γ
mD−1

5 (A.1c)

32An explicit construction of them can be given by γ1 = σ1 ⊗ σ0, γ2 = σ2 ⊗ σ0, γ3 = σ3 ⊗ σ1, γ4 = σ3 ⊗ σ2 and

γ5 = −σ3 ⊗ σ3, in which case the interwiner is C5 = σ1 ⊗ σ2.
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where we take D5 = C5 and we have γ12345 = 14. For a spinor χ, the conjugate spinor is defined

as

χc = D∗
5χ

∗ (A.2)

and satisfies the properties

(γmχ)c = γmχc, D∗
5D5 = −1 ⇒ χcc = −χ (A.3)

For the 5-dimensional external space, we have a Lorentzian version of the above. The

intertwining relations for the gamma matrices ρµ are33

(ρµ)† = −A1,4ρ
µA−1

1,4 (A.4a)

(ρµ)T = C1,4ρ
µC−1

1,4 (A.4b)

(ρµ)∗ = −D1,4ρ
µD−1

1,4 (A.4c)

where µ = 0, . . . , 4, ρ01234 = −i 14 and D1,4 = −C1,4A1,4. The conjugate spinor is defined as

ψc = D∗
1,4ψ

∗ (A.5)

and satisfies

(ρµψ)c = −ρµψc, D∗
1,4D1,4 = −1 ⇒ ψcc = −ψ (A.6)

Now, let us combine the above representations to construct a 10-dimensional Clifford alge-

bra. We define

Γ̂µ = ρµ ⊗ 14 ⊗ σ3, µ = 0, . . . , 4 (A.7a)

Γ̂m+4 = 14 ⊗ γm ⊗ σ1, m = 1, . . . , 5 (A.7b)

The last factor is needed to allow for a chirality matrix in 10 dimensions:

Γ̂(11) = Γ̂0 . . . Γ̂9 = 14 ⊗ 14 ⊗ σ2 (A.8)

The 10-dimensional interwiners are constructed as follows

A1,9 = −A1,4 ⊗ 14 ⊗ σ3 =⇒ (Γ̂M )† = −A1,9Γ̂
MA−1

1,9 (A.9a)

C1,9 = C1,4 ⊗ C5 ⊗ σ2 =⇒ (Γ̂M )T = −C1,9Γ̂
MC−1

1,9 (A.9b)

D1,9 = D1,4 ⊗D5 ⊗ σ1 =⇒ (Γ̂M )∗ = D1,9Γ̂
MD−1

1,9 (A.9c)

A 10-dimensional spinor ǫ splits as

ǫ = ψ ⊗ χ⊗ u (A.10)

where u is acted upon by the Pauli matrices. For the conjugate spinor we have

ǫc = D∗
1,9ǫ

∗, D∗
1,9D1,9 = 1 ⇒ ǫcc = ǫ (A.11)

The type IIB Majorana-Weyl spinors ǫi are

ǫi = ψ ⊗ χi ⊗ u+ ψc ⊗ χc
i ⊗ u, i = 1, 2 (A.12)

33Explicitly we can take ρ0 = iσ2 ⊗ σ0, ρi = σ1 ⊗ σi with i = 1, 2, 3, ρ4 = −σ3 ⊗ σ0 and A1,4 = ρ0, C1,4 = ρ0ρ2.
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Their chirality and reality properties require

u = σ2u = σ1u∗ (A.13)

We construct now gamma matrices Γa, a = 1, . . . 6 for Cliff(6) from our representation for

Cliff(5). We define

Γm =

(
0 γm

γm 0

)
, m = 1, . . . , 5, Γ6 =

(
1 0

0 −1

)
(A.14)

Γ7 = iΓ1 . . .Γ6 =

(
0 −i
i 0

)
, iΓ67 =

(
0 1

1 0

)
(A.15)

The interwiner for Cliff(6) is

C = Cαβ =

(
C5 0

0 C5

)
, C−1 = Cαβ =

(
C−1
5 0

0 C−1
5

)
(A.16)

which raises and lowers spinor indices as Γαβ = CαγΓγ
β, Γαβ = Γα

γCγβ . For any Cliff(6)

element Γ, we have

Γ
(n)
βα = −(−)Int[n/2]Γ

(n)
αβ (A.17)

while the reality properties read34

Γ∗
a = CΓaC

−1 (A.18)

The 6-dimensional gamma matrices act on USp(8) spinors θα, α = 1, ..8. In the main text, we

use the following

θ1 =

(
χ1

χ2

)
, θ2 =

(
χc
1

χc
2

)
(A.19)

satisfying

θ∗iα = (−iσ2)ijCαβθjβ (A.20)

The eleven-dimensional gamma-matrices relevant for M-theory can be built directly from

the six-dimensional ones Γa constructed above and from the ρµ of AdS5 as follows

Γ̃µ = ρµ ⊗ Γ7, µ = 0, . . . , 4 (A.21a)

Γ̃a+4 = 14 ⊗ Γa, a = 1, . . . , 6 (A.21b)

The relevant interwiners for eleven dimensions are

C1,10 = C1,4 ⊗ C6Γ7 =⇒ (Γ̃M )T = −C1,10Γ̃
MC−1

1,10 (A.22a)

D1,10 = D1,4 ⊗D6 =⇒ (Γ̃M )∗ = D1,10Γ̃
MD−1

1,10 (A.22b)

A spinor in eleven dimensions ǫ decomposes as

ǫ = ψ ⊗ θ (A.23)

34All the C’s defined in this section are antisymmetric, hermitian and unitary.
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while the conjugate spinor is given by

ǫc = D∗
1,10ǫ = ψc ⊗ θc (A.24)

The Majorana property of the M-theory supersymmetry parameter requires then

ǫ = ψ ⊗ θ + ψc ⊗ θc (A.25)

We finish by giving some Fierz identities which are heavily used in our calculations

(Γab7)
αβ(Γab7)γδ − 2(Γa)

αβ(Γa)γδ + 2(Γa7)
αβ(Γa7)γδ = 16δα[γδ

β
δ] + 2CαβCγδ (A.26)

Γ
(a
[αβΓ

b)7
γδ] =

1

6
gabΓc

[αβΓ
c7
γδ] (A.27)

Γ
[a
[αβΓ

b]7
γδ] = −Γab7

[αβCγδ] = − i

24
ǫabcdefΓ

cd7
[αβΓ

ef7
γδ] (A.28)

Γ
[a|7
[αβΓ

bc]7
γδ] = Γa7

[αβΓ
bc7
γδ] + 2ga[bΓ

c]
[αβCγδ] (A.29)

Γ6
[αβΓ

m
γδ] = −Γ67

[αβΓ
m7
γδ] (A.30)

Γm67
[αβ Γnp7

γδ] + Γmnp6
[αβ Cγδ] = 2gm[nΓ

p]
[αβΓ

6
γδ] (A.31)

γαβmn(γ
mn)γδ = 10Cαβ

5 Cγδ
5 + 6γαβm (γm)γδ + 8γαγm (γm)βδ (A.32)

Let us note that one can derive additional Fierz identities by exploiting the following Leibniz-like

rule:

A[αβBγδ] = C[αβDγδ] =⇒ (AΓ)[αβBγδ] +A[αβ(BΓ)γδ] = (CΓ)[αβDγδ] + C[αβ(DΓ)γδ] (A.33)

for any antisymmetric elements A,B,C,D and Γ of Cliff(6).

B E6(6) representation theory

The group E6(6) is a particular real form of the E6 family of Lie groups. It is generated by 78

elements, out of which 36 are compact and 42 are not. It contains as subgroups USp(8) and

SL(6) × SL(2) .

B.1 SL(6)× SL(2)decomposition

The vector representation V of E6(6) is 27-dimensional and splits under SL(6)× SL(2) as

27 = (6,2) + (15,1), V = (V i
a, V

ab) (B.1a)

while we will also need its dual

27 = (6,2) + (15,1), Z = (Za
i, Zab) (B.1b)

The adjoint decomposes

78 = (35,1) + (1,3) + (20,2), µ = (µab, µ
i
j, µ

i
abc) (B.2)
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and its action on the vector is given by

(µV )ia = −µbaV i
b + µijV

j
a +

1

2
µiabcV

bc (B.3a)

(µV )ab = µacV
cb − µbcV

ca − ǫij(⋆µ
i)abcV j

c (B.3b)

while on the dual vector by

(µZ)ai = µabZ
b
i − µjiZ

a
j − 1

2
ǫij(⋆µ

j)abcZbc (B.4a)

(µZ)ab = −µcaZcb + µcbZca − µiabcZ
c
i (B.4b)

where a, b, c, . . . run from 1 to 6 and i, j from 1 to 2.

The e6(6) algebra Jµ, νK is

Jµ, νKij = µikν
k
j +

1

12
µiabcǫjk(⋆ν

k)abc − (µ ↔ ν) (B.5a)

Jµ, νKab = µacν
c
b −

1

4
µibcdǫij(⋆ν

j)acd − (µ ↔ ν) (B.5b)

Jµ, νKiabc = µijν
j
abc − 3µd[aν

i
bc]d − (µ↔ ν) (B.5c)

The group E6(6) has a quadratic and a cubic invariant. Given a vector V and a dual vector

Z, the quadratic invariant is

b(V,Z) = V i
aZ

a
i +

1

2
V abZab (B.6)

while the cubic is given by

c(V,U,W ) =
1

2
√
2
ǫij

(
V abU i

aW
j
b + UabV i

aW
j
b +W abV i

aU
j
b

)
− 1

16
√
2
ǫabcdefV

abU cdW ef (B.7)

where U, V and W are all in the fundamental. This allows to construct a dual vector from two

vectors by “deleting” one of the vectors in the cubic invariant, namely

[c(V,U, ·)]ai =
1

2
√
2
ǫij

(
V abU j

b + UabV j
b

)
(B.8a)

[c(V,U, ·)]ab =
1√
2
ǫijV

i
[aU

j
b] −

1

8
√
2
ǫabcdefV

cdU ef (B.8b)

B.2 USp(8)decomposition

The other subgroup of E6(6) that we use is USp(8) . The 27 fundamental representations of

E6(6) is irreducible under USp(8) , and encoded by an antisymmetric traceless tensor

V = V αβ (B.9)

with V α
α = 0. The USp(8) indices α, β, . . . are raised and lowered with Cαβ in (A.16) , which

plays the role of USp(8) symplectic invariant.

The adjoint decomposes as

78 = 36+ 42, µ = (µαβ, µ
αβγδ) (B.10)
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with µαβ = µβα, µ
αβγδ = µ[αβγδ] and µαβγδCγδ = 0. Furthermore, in our conventions we have

µ∗αβ = −µαβ, µ∗αβγδ = µαβγδ (B.11)

The adjoint action is

(µV )αβ = µαγV
γβ − µβγV

γα − µαβγδVγδ (B.12)

(µZ)αβ = µαγZ
γβ − µβγZ

γα + µαβγδZγδ (B.13)

and the e6(6) algebra is given by

Jµ, νKαβ = µ γ
α νγβ − 1

3
µ γδǫ
α νγδǫβ − (µ ↔ ν) . (B.14a)

Jµ, νKαβγδ = −4µ ǫ
[ανβγδ]ǫ − (µ↔ ν) (B.14b)

The quadratic and the cubic invariant of E6(6) take a particularly simple form in the USp(8) basis

b(V,Z) = V αβZβα (B.15)

and

c(V,U,W ) = V α
βU

β
γW

γ
α (B.16)

and we also have

[c(V,U, ·)]αβ =
1

2
(V α

γV
′γβ − V β

γV
′γα − 1

4
CαβV γδV ′

δγ) (B.17)

In our calculations we also need the adjoint projection built out of a vector V and a dual vector

Z. This is given by

(V × Z)αβ = 2V (α
γZ

|γ|β) (B.18a)

(V × Z)αβγδ = 6
(
V [αβZγδ] + V [α

ǫZ
|ǫ|βCγδ] +

1

3
(V ǫ

ζZ
ζ
ǫ)C

[αβCγδ]
)

(B.18b)

Finally, the Killing form is

Tr(µ, ν) = µαβναβ +
1

6
µαβγδναβγδ (B.19)

B.3 Transformation between SL(6)× SL(2)and USp(8)

Our calculations involve objects which are more naturally described in the SL(6)× SL(2) basis

(gauge fields and derivative) and others (spinors) which have a natural USp(8) description.

Therefore, it is useful to have explicit formulae for the transformation rules between them. For

this purpose, we use the gamma matrices Γa defined in 6 dimensions. It’s also useful to introduce

two sets of them:

Γa
i = (Γa, iΓaΓ7), i = 1, 2 (B.20)

The transformation rules for the vector (fundamental) and the dual vector (anti-fundamental)

representation are

V αβ =
1

2
√
2
(Γa

i )
αβV i

a +
i

4
√
2
(Γab7)

αβV ab (B.21a)

Zαβ =
1

2
√
2
(Γi

a)
αβZa

i +
i

4
√
2
(Γab7)αβZab (B.21b)
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and are easily inverted

V i
a =

1

2
√
2
V αβ(Γi

a)βα, V ab =
i

2
√
2
V αβ(Γab7)βα (B.22a)

Za
i =

1

2
√
2
Zαβ(Γa

i )βα, Zab =
i

2
√
2
Zαβ(Γab7)βα (B.22b)

For the adjoint representation we have35

µαβ =
1

4

[
µab(Γ

b
a )αβ + iǫ j

i µ
i
j(Γ7)αβ +

1

6
ǫ j
i µ

i
abc(Γ

abΓc
j)αβ

]
(B.23a)

µαβγδ =
1

8

[
− µab

(
(Γi

a)
[αβ(Γb

i)
γδ] − (Γac7)

[αβ(Γcb7)γδ]
)

+ µij(Γ
a
i )

[αβ(Γj
a)

γδ]

+ iµiabc(Γ
a
i )

[αβ(Γbc7)γδ]

]
(B.23b)

Their inverses are given by

µab = −1

4
µαβ(Γa

b)βα − 1

16
µαβγδ(Γa

i )[αβ(Γ
i
b)γδ] (B.24a)

µij = − i

4
ǫijµ

αβ(Γ7)βα +
1

48
µαβγδ(Γi

a)[αβ(Γ
a
j )γδ] (B.24b)

µiabc = − i

4
µαβ(Γi

aΓbc7)βα +
i

8
µαβγδ(Γi

a)[αβ(Γbc7)γδ] (B.24c)

C Some constraints from supersymmetry

In this section we are going to prove some useful conditions that the spinor bilinears in (3.29),

(3.31), (3.26), (4.22), (4.23), (4.19) and (4.10) satisfy and which serve as an intermediate step

in order to derive the integrability conditions (2.20)-(2.22). The most important relations are

also stated in the main text. We split into the bilinears in type IIB, and those of M-theory.

C.1 Type IIB

Let us start by studying the vector ξ defined in (3.13). By tracing (3.33) with Γn67, we get

∇mξn = −1

2
ζp7Hmnp +

eφ

4
ζpFmnp +

eφ

4
(∗V )mnpF

p +
eφ

4
Vmn(∗F5) (C.1)

Since the right hand side is antisymmetric, we have ∇(mξn) = 0 and therefore ξ is a Killing

vector:

Lξg = 0 (C.2)

Actually ξ is more than an isometry. By taking 0 = Tr[J0G
D] = Tr[J0G

DΓ7] from (3.34a), we

obtain

Lξφ = LξC0 = 0 (C.3)

35SL(2) indices are raised and lowered with δij .
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and by using the Bianchi identity for F1 we get

LξF1 = 0 . (C.4)

Moreover, by taking the trace of (3.32b), we get

LξA = 0 . (C.5)

Using that Tr[JaG
DΓ6] = Tr[JaG

DΓ67] = 0, we get

Jmn
a (∗H)mn = 0, a = 1, 2, 3 (C.6)

Jmn
a (∗F3)mn = 0, a = 1, 2, 3 (C.7)

By tracing (3.32c) with Γ6 we also get that

R = 0 (C.8)

Then, by tracing (3.32c) with Γ67 and using (C.7) with a = 3, we have

R7 = 0 (C.9)

The power of the warp factor in the norm of the spinors also comes from supersymmetry. By

tracing (3.33) for a = 0, we get

∂mρ =
eφ

4
√
2
VmnF

n − eφ

4
√
2
ζn(∗F3)mn (C.10)

The right-hand side can be related to the warp factor by tracing (3.32b) with Γm67 which yields36

∂mρ− ρ∂mA = 0 ⇒ ρ = c eA (C.11)

and we chose c = 1/
√
2. Let us now show that the Lie derivative along ξ acting on the rest of

the fluxes H,F3 and F5 vanishes. By tracing (3.33) for a = 0 with Γn7 and antisymmetrizing

over [mn], we get

∇[mζ
7
n] = −1

2
ξpHmnp ⇒ d(ιξH) = 0 (C.12)

which by the Bianchi identity for H yields

LξH = 0 (C.13)

The situation for F3 is slightly more complicated due to the non-standard Bianchi identity it

satisfies. By tracing (3.33) for a = 0 with Γn and antisymmetrizing over [mn], we get

∇[mζn] = −1

4
(∗V )pq[mH

pq
n] − eφ

4
ξpFmnp −

1

2
√
2
ρeφ(∗F3)mn (C.14)

We eliminate the H-term using 0 = Tr[J0G
DΓmn67] from (3.34) and we get

dζ = dφ ∧ ζ − eφF1 ∧ ζ7 − 2eφιξF3 (C.15)

36The integration constant is chosen so that it reproduces the standard value of the charge of the spinors, see

(C.31).
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Taking the exterior derivative of this expression, replacing again ιξF3 from (C.15) and using

(C.12), we get

dιξF3 + F1 ∧ ιξH = 0 (C.16)

The second term is equal to ιξdF3 as can be seen from the RR Bianchi identities dF1 = 0 and

dF3 = H ∧ F1. Thus, (C.16) becomes simply

LξF3 = 0 (C.17)

In order to compute the the Lie derivative along ξ on F5, we first need LξJ 7
3 . By tracing (3.33)

with Γ7, we get for a = 1, 2, 3

∂mJ 7
a = −1

4
J np67
a Hmnp +

ieφ

8
J np6
a Fmnp +

ieφ

4
J a
mpF

p (C.18)

and using 0 = Tr[JaG
DΓm6] from (3.34), we get

∂mJ 7
a = J 7

a ∂mφ+
3ieφ

8
J np6
a Fmnp −

3ieφ

4
J a
mpF

p (C.19)

If we trace (3.32c) with Γm6 and replace in the above equation for a = 3, we get

∂mJ 7
3 = J 7

3 ∂m(φ− 3A) ⇒ LξJ 7
3 = 0 (C.20)

where (C.3) and (C.5) were used. Now, it is easy to compute LξF5. Taking the trace of (3.32b)

with Γ7 and using (C.11) gives

mJ 7
3 = −e

φ+2A

2
√
2
(∗F5) (C.21)

Taking the Lie derivative along ξ on both sides and using (C.2), (C.3), (C.5) and (C.20), we get

LξF5 = 0 (C.22)

Finally, let us also state another relation which will be useful later. This is easily derived by

tracing (3.33) for a = 0 with Γmn7 and eliminating the H-term using 0 = Tr[J0G
DΓn6]. We get

∇mVmn = Vmn∂
mφ− eφζm7 (∗F3)mn + ζm(∗H)mn − ξn(∗F5) (C.23)

The spinor charges

Here, we compute the charge q of the spinors χi under the U(1) generated by the Killing

vector ξ. Actually, it turns out that it is more convenient to compute first 2q, i.e. the charge of

some charged spinor bilinear (we choose J 7
+), and then divide by 2. In order to do that, we first

need to derive some identities. Multiplying (A.26) with (JaΓ7)βαJ δγ
0 and using J0Ja = 2ρJa,

we get for a = 1, 2, 3

J ab
a Tr[J0Γab7] = −16Tr[J0JaΓ7] + 8ρJ 7

a = −24ρJ 7
a (C.24)

Actually, we can prove a stronger identity by rewriting this in terms of the 5-dimensional spinors

χi, for which we use (3.29). We will need

J 7
+ = 4iCαβ

5 χ1
αχ

2
β (C.25a)
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Jm6
+ = 4(γm)αβχ1

αχ
2
β (C.25b)

Jmn
+ = −2(γmn)αβ(χ1

αχ
1
β + χ2

αχ
2
β) (C.25c)

and (see (3.26))

ξm =
1√
2
γαβm (χ1c

α χ
1
β + χ2c

α χ
2
β) (C.26a)

Vmn =
1√
2
γαβmn(χ

1c
α χ

2
β − χ2c

α χ
1
β) . (C.26b)

Using (A.32) and the symmetry properties for gamma matrices in five dimensions, we can show

VmnJmn
+ = 4ξmJm6

+ (C.27)

Combining this with (C.24) for a = + and using (C.11) we get

ξmJm6
+ = −ieAJ 7

+ (C.28)

Now, we are ready to see how supersymmetry determines the spinor charges. If we trace (3.32a)

with Γm6 and replace in (C.19) for a = ±, we get

∂mJ 7
± = J 7

±∂m(φ− 3A)∓ 3me−AJm6
± (C.29)

If we contract with ξm, the first term drops out due to (C.3) and (C.5). For the second term,

we get using (C.28)

LξJ 7
+ = 3imJ 7

+ (C.30)

and therefore the charges of the spinors χi are

q =
3im

2
(C.31)

C.2 M-theory

The Killing vector in M-theory is the bilinear (4.10). This is indeed Killing since (4.12) yields

∇aξb = −1

6
GabcdV

cd − 1

3
√
2
ρ(⋆G)ab (C.32)

and the right-hand side is antisymmetric in a and b. Therefore

Lξg = 0 (C.33)

The trace of (4.15) immediately gives

ξa∂aA = LξA = 0 (C.34)

Finally, we can compute dV by using (4.12) for J0 to get

dV = ιξG4 =⇒ LξG4 = 0 (C.35)

where the Bianchi identity for G4 was used. We see that similarly to the type IIB case, ξ

generates a symmetry of the full bosonic sector of the theory.
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Let us also derive the warp factor dependence of the normalization of the spinors given by

θ∗αi θj,α = 2ρ δij . Taking the trace of (4.12) for a = 0 and eliminating G by taking the trace of

(4.15), we find

∂mρ− ρ∂mA = 0 ⇒ ρ =
eA√
2

(C.36)

where we have chosen the integration constant in the same way as for the IIB case.

Another useful relation is found by tracing (4.12) with Γa, which yields

∇aζ
a =

1

2
(⋆G)abV

ab (C.37)

Finally let us mention that the M-theory spinor has also definite charge under the action of

ξ, i.e.

Lξθ = q θ (C.38)

Matching our conventions with those of [13], we find that

q = −3im

2
(C.39)

D The moment map for Ja

D.1 Type IIB

In this section, we prove Eq. (2.20), which says that the moment map for the action of a

generalized diffeomorphism is related to the dual vector associated to K (given by the cubic

invariant of E6(6) c(K,K, V )). As explained in the main text, this condition can be written in

terms of the twisted moment map density Ma which is given by (3.41) and we rewrite here for

convenience:

Ma = [∇mJ̃a, v
m] + (J∇mµ, J̃aK v

m) + Tr[J̃aG
IS
m ]vm − Tr[(∇mµ)J̃a)]v

m (D.1)

where the second term means the action of J∇mµ, J̃aK on vm while in the rest of the terms vm

is understood as an element of Cliff(6) and is given by vm = ie2φ/3

2
√
2
Γm67.

Let us compute the various terms in the above expression. The first term is computed by

using (3.33) for a = 1, 2, 3. We give the result as a Clifford expansion

[∇mJ̃a,Γ
m67] =

[ 1

16
J̃ a
mnpq7H

npq − ieφ

8
J̃ a
mn6F

n − 1

2
J̃ a
mn67∂

nA+
1

2
J̃ a
mn67∂

nφ
]
Γm

+
[1
8
J̃ np
a Hmnp +

ieφ

8
J̃ a
mn67F

n − ieφ

48
J̃ a
mnpq7F

npq +
1

2
J̃ a
mn6∂

nA− 1

2
J̃ a
mn6∂

nφ
]
Γm7

+
[ 1

16
J̃ a
pqmH

pq
n +

ieφ

16
J̃ a
mnp67F

p − eφ

16
J̃ a
mn(∗F5) +

1

2
J̃ a
m6∂nA− 1

2
J̃ a
m6∂nφ

]
Γmn7

+
[
− 1

8
J̃ a
np6H

mnp − ieφ

4
J̃ a
7 Fm − eφ

4
J̃ a
m6(∗F5)−

1

2
J̃ a
mn∂

nA+
1

2
J̃ a
mn∂

nφ
]
Γm67

(D.2)

where the derivatives of the dilaton and the warp factor appear as a result of the rescalings (3.39).

The second and the fourth term in (D.1) are those that “twist” the moment map density. If we

consider them separately they are not gauge invariant, however, their sum is, as it projects onto
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the fluxes. These terms are computed as follows. For the second term, it is more convenient

to use the SL(6) × SL(2) basis. We first insert (2.13) and the SL(6) × SL(2) components of

J̃a
37 in (B.5). We then use the resulting expression in (B.4) to compute the action on vm and

finally we transform it to the USp(8) basis using (B.21b). For the fourth term in (D.1), we first

transform ∇mµ to the USp(8) basis using (B.23a) (exploiting the fact that the Ja do not have

a 42 component) and then use (B.19). The combined result of these two terms is then38

J∇mµ, J̃aKΓ
m67 − Tr[∇mµJ̃a]Γ

m67 =
[
− 1

24
J̃ a
mnpq7H

npq − 1

4
J̃ a
mn67∂

nφ
]
Γm

+
[ ieφ
24

J̃ a
mnpq7F

npq +
ieφ

4
J̃ a
mn67F

n
]
Γm7

+
[1
4
J̃ a
m6∂nφ

]
Γmn7

+
[1
8
J̃ a
np6H

np
m − ieφ

8
J̃ a
np67F

np
m +

eφ

4
J̃ a
m6(∗F5)−

ieφ

4
J̃ a
7 Fm

]
Γm67

(D.3)

Finally, the third term in (D.1) is computed directly from (3.33b) and the result reads

Tr[J̃aG
IS
m ]Γm67 =

[
− 1

8
J̃ np6
a Hmnp +

ieφ

8
J̃ 7
a Fm +

ieφ

16
J̃ np67
a Fmnp −

eφ

8
J̃ a
m6(∗F5)

]
Γm67 (D.4)

When adding (D.2), (D.3) and (D.4), the various terms organize themselves as coefficients

of a Cliff(6) expansion. In the next step, we eliminate the H-field using the dilatino equation

(3.34) by taking appropriate traces. More specifically, we use Tr[JaGdΓ
m] = 0 for the Γm terms,

Tr[JaGdΓ
m7] = 0 for the Γm7 terms, Tr[JaGdΓ

mn7] = 0 for the Γmn7 terms and Tr[JaGdΓ
m67] =

0 for the Γm67 terms. The result is
( ie2φ/3

2
√
2

)−1
Ma =

[ ieφ
8

J̃ a
mn6F

n − ieφ

16
J̃ np
a Fmnp −

1

2
J̃ a
mn67∂

nA
]
Γm

+
[
− ieφ

8
J̃ a
mn67F

n − ieφ

48
J̃ a
mnpq7F

npq +
1

2
J̃ a
mn6∂

nA
]
Γm7

+
[
− ieφ

16
J̃ a
mnp67F

p − ieφ

16
J̃ a
pqm7F

pq
n − eφ

16
J̃ a
mn(∗F5) +

1

2
J̃ a
m6∂nA

]
Γmn7

+
[ ieφ
8

J̃ a
7 Fm +

ieφ

16
J̃ np67
a Fmnp −

eφ

8
J̃ a
m6(∗F5)−

1

4
J̃ a
mn∂

nφ− 1

2
J̃ a
mn∂

nA
]
Γm67

(D.5)

For a = 3 we can find the relation between this and K by using the external gravitino

equation (3.32c). Reading off the Γm,Γm7,Γmn7 and Γm67 components of this equation, we see

that the right-hand sides are exactly the brackets appearing in the above equation. Thus

M3 = −ime
A−4φ/3

2

[
ζmΓm + iζ7mΓm7 +

i

2
VmnΓ

mn7 + iξmΓm67
]

= −2imρe−4φ/3K (D.6)

where in the last step we used (3.25). Following the same procedure for a = ± and using this

time (3.32a), we get

M± = 0 (D.7)

37These can be easily found using (B.24).
38Here, we mean J∇mµ, J̃aKΓm67 = ( ie

2φ/3

2
√

2
)−1J∇mµ, J̃aKvm.
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These are exactly the conditions (3.42) which in turn imply the J̃a integrability condition (2.20).

D.2 M-theory

In this section, we will present the calculation leading to the integrability condition for the Ja
for M-theory compactifications. The methodology is similar to the one for IIB described in the

previous subsection. However the details are different due to the different E6(6) embedding of

the derivative and the gauge field in M-theory (Eqs. (4.2) and 4.3). The general expression for

the moment map density (3.38) now reads39

M = [∇aJ̃ , va] + (J∇aµ, J̃ K va) + Tr[J̃GIS
a ]va − Tr[(∇aµ)J̃ )]va (D.8)

where now

va =
i

2
√
2
Γa7 (D.9)

and GI
a is given by (4.13).

The various terms are computed in exactly the same way as in type IIB so we just give the

results here. The first term reads

[∇aJ̃ ,Γa7] =
[ 1

72
J̃ bcd7Gabcd −

1

2
J̃ 7∂aA

]
Γa+

+
[
− 1

36
J̃ bcdGabcd −

1

2
J̃ab∂

bA
]
Γa7

+
[ i
6
J̃ 7(⋆G)ab +

1

48
J̃ cdGabcd −

1

4
J̃abc∂

cA
]
Γab7 (D.10)

while the sum of the second and the fourth is simply

J∇aµ, J̃ KΓa7 − Tr[∇aµJ̃ ]Γa7 =
[
− i

8
J̃ 7(⋆G)ab

]
Γab7 (D.11)

and the third gives

Tr[J̃GI
a]Γ

a7 =
[
− 1

36
J̃ bcdGabcd

]
Γa7 (D.12)

For M = M±, we see that the sum of (D.10), (D.11) and (D.12) vanishes by virtue of

(4.14)40. Thus

M± = 0 (D.13)

For M =M3, we follow the same procedure but this time using (4.16). The result is

M3 = − ime
A

2

[
ζaΓ

a + iξaΓ
a7 +

i

2
VabΓ

ab7
]

= −2imρK (D.14)

where we used (4.18). We this verify the M-theory moment map equation (2.20) where the

rescaled structures are those of (4.4), are as in type IIB λ1 = λ2 = 0, and λ3 = −2im.

39As in the main text, we omit the SU(2) index a with the understanding that J̃ = J̃±, J̃3.
40By taking the trace with Γa, Γa7 and Γab7.
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E The Dorfman derivative along K

E.1 Type IIB

The Dorfman derivative is a generalization of the usual Lie derivative for “generalized flows”

parametrized by the E6(6) vector K. Here we show that the background is invariant under this

flow.

The embedding of the derivative in the E6(6) object D, Eq. (3.40), picks a particular direc-

tion v in the space of generalized vectors. We start by showing Eq. (3.50), namely the fact that

the (twisted) Dorfman derivative actually reduces to the Lie derivative along this direction.

As explained in the main text (see (3.51) and the discussion after that), the twisted Dorfman

derivative can be split into a differential piece which is just the directional derivative along the

Killing vector ξ, given in (3.13), namely

(K̃ · vm)∇m = ξm∇m (E.1)

and an algebraic piece A in the adjoint of E6(6) . We show that A satisfies the equations in

(3.53). We start with the 36 piece which according to (3.46) reads

Aαβ = (K̃ · vm)∇mµαβ −
[
∇mK̃, vm

]
αβ

−
[
(∇mµ)K̃, vm

]
αβ

(E.2)

where the commutators are just matrix commutators, ∇mµαβ in the first term is just the deriva-

tive of the 36 piece of µ interpreted as a Cliff(6) element, ((∇mµ)K̃)αβ is the standard action41

of E6(6) on the fundamental and (B.18a) was used for the projection in the adjoint.

The first and the third term in (E.2) twist the Dorfman derivative, so we are computing them

together42. ∇mµ is computed just by inserting (2.13), in (B.23a) while we compete (∇mµ)K̃
using (B.3) and then use (B.21a) to transform that to the USp(8) basis. The result is

(K̃ · vm)∇mµ−
[
(∇mµ)K̃, vm

]
=
[
− 1

6
ξm∂nφ

]
Γmn

+
[
− 1

4
ζp(∗H)np +

eφ

4
ζp7 (∗F3)np −

eφ

4
ξn(∗F5) +

1

12
Vmn∂

mφ
]
Γn6

+
[
− 1

8
ξpHmnp +

1

6
ζ7m∂nφ

]
Γmn6

+
[ ieφ
8
ξpFmnp +

i

12
ζm∂nφ− ieφ

4
ζ7mFn

]
Γmn67 (E.3)

where we have expressed the result in terms of the spinor bilinears ξ, ζ, ζ7 and V defined in

(3.25). Finally, the second term in (E.2) is easily computed by using (3.25):

−
[
∇mK̃, vm

]
=
[1
4
∇mξn +

1

6
ξm∂nφ

]
Γmn

+
[
− 1

4
∇mVmn +

1

6
Vmn∂

mφ
]
Γn6

+
[
− 1

4
∇mζ

7
n − 1

6
ζ7m∂nφ

]
Γmn6

+
[ i
4
∇mζn +

i

6
ζm∂nφ

]
Γmn67 (E.4)

41This term has contributions from both the 36 and the 42 components of µ.
42Similarly to the moment map equation described in the previous section, each of these terms is not gauge

invariant but their sum is.
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where the derivatives of the dilaton appear due to the rescaling of K̃ given in (2.23).

Collecting the pieces together, i.e. adding (E.3) and (E.4), we easily see that the terms

proportional to Γn6 cancel out due to (C.23), those proportional to Γmn6 due to (C.12) and

those proportional to Γmn67 due to (C.15). The remaining terms in (E.1) are the sum of the

first lines of (E.3) and (E.4) which is simply

A|36 =
1

4
(∇mξn)Γ

mn . (E.5)

This is exactly the first equation in (3.53). Let us now look at A|42, given by

A|αβγδ = (K̃ · vm)∇mµαβγδ − (vm ×∇mK̃)αβγδ − (vm × (∇mµ)K̃)αβγδ (E.6)

where the 42 piece of the adjoint projection is given in (B.18b). The first term is computed

by inserting (2.13) into (B.23b) while the third by using (B.18b). Using Fierz identities from

appendix A, we get for the sum of these two terms

[
(K̃ · vm)∇mµ− (vm × (∇mµ)K̃)

]
αβγδ

=
[1
2
ξm∂nφ

]
Γm67
[αβ Γn67

γδ]

+
[3
4
ζp(∗H)np −

3eφ

4
ζp7 (∗F3)np

+
3eφ

4
ξn(∗F5)−

1

4
Vmn∂

mφ
]
Γn
[αβΓ

6
γδ]

+
[3ieφ

8
ξpFmnp −

3ieφ

4
ζ7mFn +

i

4
ζm∂nφ

]
Γmn7
[αβ Γ6

γδ]

+
[
− 3

8
ξpHmnp +

1

2
ζ7m∂nφ

]
Γmn7
[αβ Γ67

γδ] (E.7)

containing only the fluxes. The second term in (E.6) is given by inserting (3.25) in (B.18b) and

using again some Fierz identities from appendix A:

−(vm ×∇mK̃)αβγδ =
[
− 1

2
ξm∂nφ

]
Γm67
[αβ Γn67

γδ]

+
[3
4
∇mVmn − 1

2
Vmn∂

mφ
]
Γn
[αβΓ

6
γδ]

+
[
− 3

4
∇mζ

7
n − 1

2
ζ7m∂nφ

]
Γmn7
[αβ Γ67

γδ]

+
[3i
4
∇mζn +

i

2
ζm∂nφ

]
Γmn7
[αβ Γ6

γδ] (E.8)

If we insert now (E.7) and (E.8) in (E.6) and use (C.12), (C.15) and (C.23) (as for the 36

component), we get

A|42 = 0 , (E.9)

which completes thus the proof of (3.53). Combining this with (E.1) and the fact that the Ja

have only a 36 component we arrive at (3.50) as we explain in the main text.

E.2 M-theory

Let us now perform the same kind of calculation for the M-theory set-up. Although the details

are different than in type IIB, the basic procedure to prove that the twisted Dorfman derivative
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along K is equal to the usual Lie derivative along the corresponding Killing vector is actually

the same. The differential piece is again the directional derivative along ξ43

(K · va)∇a = ξa∇a (E.10)

The 36 piece of the operator A is given by

Aαβ = (K · va)∇aµαβ −
[
∇aK, va

]
αβ

−
[
(∇aµ)K, va

]
αβ

(E.11)

The first term together with the third is

(K · va)∇aµ−
[
(∇aµ)K, va

]
=
[ 1

24
ξdGabcd

]
Γabc +

[ i
8
V ab(⋆F )ab

]
Γ7 . (E.12)

while the second is

−
[
∇aK, va7] =

[1
4
∇aξb

]
Γab +

[
− 1

8
∇aVbc

]
Γabc +

[
− i

4
∇aζ

a
]
Γ7 . (E.13)

It is straightforward to see using (C.35) and (C.37) that their sum is just

A|36 =
1

4
(∇aξb)Γ

ab (E.14)

We finally show that A|42 = 0 also in M-theory. We have

Aαβγδ = (K · va)∇aµαβγδ − (va ×∇aK)αβγδ − (va × (∇aµ)K)αβγδ (E.15)

Similarly to type IIB

[
(K · va)∇aµ− (va × (∇aµ)K)

]
αβγδ

=
[ i
16
V ab(⋆G)ab

]
Γc
[αβΓ

c7
γδ] +

[
− 1

8
ξdGabcd

]
Γa7
[αβΓ

bc7
γδ]

(E.16)

where we have used (A.27) and (A.28) to simplify the terms proportional to V and (A.29) for

the terms proportional to ξ. Using (4.18), we also get

−
[
va ×∇aK]αβγδ =

[
− i

8
∇aζ

a
]
Γc
[αβΓ

c7
γδ] +

[
− 3

8
∇[aVbc]

]
Γa7
[αβΓ

bc7
γδ] (E.17)

where again the terms proportional to derivatives of ζ are absent because of (A.27) (A.28) while

due to (A.29) only the exterior derivative of V appears. The sum of (E.16) and (E.8) vanishes

using (C.35) and (C.37). We thus get

A|42 = 0 (E.18)

and therefore we verify (3.50) for M-theory as well.
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