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One-dimensional topological insulators are characterized by edge states with exponentially small energies.
According to one generalization of topological phase to non-Hermitian systems, a finite system in a nontrivial
topological phase displays surface states with exponentially long lifetimes. In this work we explore the possibility
of exploiting such non-Hermitian topological phases to enhance the quantum coherence of a fiducial qubit
embedded in a dissipative environment. We first show that a network of qubits interacting with lossy cavities can
be represented, in a suitable super-one-particle sector, by a non-Hermitian “Hamiltonian” of the desired form. We
then study, both analytically and numerically, one-dimensional geometries with up to three sites per unit cell and
up to a topological winding number W = 2. For finite-size systems the number of edge modes is a complicated
function of W and the system size N. However, we find that there are precisely W modes localized at one end of
the chain. In such topological phases the qubit’s coherence lifetime is exponentially large in the system size. We
verify that for W > 1, at large times, the Lindbladian evolution is approximately a nontrivial unitary. For W = 2
this results in Rabi-like oscillations of the qubit’s coherence measure.

DOI: 10.1103/PhysRevA.96.053858

I. INTRODUCTION

There is a growing interest in the study of non-Hermitian
generalizations of topological phases of matter [1-10] which
can be observed in dissipative systems. Topological features
are potentially useful, as they tend to be robust with respect
to small perturbations and local noise sources. In this work
we explore the possibility of exploiting such nontrivial, non-
Hermitian topological phases to protect the coherence of a
preferential qubit in a network of dissipative cavities.

Since eigenvalues of non-Hermitian matrices are complex,
there are at least two possible definitions of topological phases
in non-Hermitian systems [3,9]. These definitions differ in
how one generalizes the Hermitian notion of gap, namely,
one can consider either the real or the imaginary part of the
eigenvalues. According to the imaginary-part classification
of Ref. [9], as a consequence of a generalized bulk-edge
correspondence, a nontrivial topological dissipative phase is
characterized at finite size by the presence of quasidark states
localized at the boundary of the system. By quasidark states
we mean eigenstates of the system that have a decay time
exponentially large in the system size. It is natural to expect
that this feature may be useful to protect quantum coherence.
Indeed, as we will show, if a fiducial qubit is placed at one
end of a linear system, both these features, localization and
darkness, conspire to preserve its coherence in a well-defined
way.

In recent experiments such non-Hermitian systems—in
fact, essentially non-Hermitian quantum walks—can be ob-
served in classical waveguides using the analogy between the
Helmholtz and Schrodinger equation [6]. In Ref. [1] it was
proposed that a non-Hermitian version of the Su-Schrieffer-
Heeger (SSH) model [11] could emerge from a single resonator
described by a Jaynes-Cummings model in the semiclassical,
large-photon-number regime.

Here we consider a network of dissipative cavity resonators
interacting 4-la Jaynes-Cummings. This model is known to
describe the physics of many experimental quantum platforms,
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ranging from superconducting qubits to arrays of microcavities
[12]. We show that, in an appropriate super-one-particle sector,
the Lindbladian is precisely given by a non-Hermitian quantum
walk determined by the network geometry. Moreover, the
coherence of a preferential qubit in the network is exactly
described by the Schrodinger evolution with such a “non-
Hermitian Hamiltonian.”

Having in mind the goal of prolonging the coherence, we
analyze analytically, and confirm numerically, the behavior of
the coherence for various finite-size networks. The simplest of
such networks is a non-Hermitian tight-binding model with a
single, both diagonal and off-diagonal, impurity. We then con-
sider fopologically nontrivial models, such as a non-Hermitian
SSH model, that can have topological charge zero or 1. In finite
size, there are always two dark modes for N odd, while there
is one quasidark mode in the topologically nontrivial sector
for N even. However, there is always (irrespective of N) a
dark or quasidark mode localized at one end of the chain. An
analogous situation is found in models with three sites per unit
cell, were the topological winding number W can be zero, 1
or 2. The exact number of quasidark modes is not a simple
function of W alone. However, we find precisely W dark or
quasidark modes localized at one end of the chain. In the case
W =2, the long-time dynamics of the dissipative network
becomes unitary, spanning a two-dimensional space were the
coherence shows Rabi-like oscillations.

II. SETTING THE STAGE

Our model is a network of dissipative cavities (modes) inter-
acting with two-level systems (qubit) in a Jaynes-Cummings
fashion. To make it more general, we allow qubits to interact
with more than one cavity, although this may be experimentally
challenging to realize. We imagine a network of M qubits
interacting with K cavity modes. Excitations can hop from
mode to mode and also from qubit to mode. At this stage we
do not include hopping from qubit to qubit, as this is definitely
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FIG. 1. A general network of qubits interacting with lossy
cavities. Wavy lines indicate coherent hopping and straight arrows
incoherent decay. White dots represent (leaky) cavities while black
dots are (long-lived) two-level systems (qubit).

harder to realize. Our goal will be to monitor, and possibly
enhance, the coherence of a fiducial qubit in this network.

We assume the standard rotating-wave approximation, such
that the coherent part of the evolution is given by the following
Hamiltonian:

M K
H = Zw?aiz + Z Jim(ajay +H.c.)
i=1

I,m=1

K M K
+ Y wala +Y Y Kkafo; +He), (1)
=1 i=1 I=1

where a,T and g are the creation and annihilation operators for
the cavity mode / and aii are the ladder operators for qubit
i. On top of this, cavities leak photons at rate I';. A Lindblad
master equation for the system can be written as p = L[p]
with £ = IC 4+ D. The coherent term is I = —i[H,e], and the
dissipative part reads

X 1
Dipl=) T [ama) - E{a}al,p}], )
=1

i.e., we assume sufficiently low temperatures such that no
photons are excited via interaction with the bath. This form of
the dissipation is consistent with the cavity physics whereby
essentially only the cavity modes decay, whereas the two-level
systems (corresponding to some hyperfine level of an atom in
the cavity) are extremely long lived and decay only indirectly
through interaction with the cavity. An example of such a
dissipative network with M = 4 and K = 5 is schematically
depicted in Fig. 1. Leti = 1 indicate the fiducial qubit. In order
to study the evolution of the qubit’s coherence, we initialize it
inapurestate og| 1) + Bol | ), while we require that all cavities
be empty and all other qubits in the | | ) state. We denote with
|0) the overall vacuum (cavities with no photons and qubits
in the | |) state) and |j),j=1,...,N = M + K the state
with an excitation, either bosonic or spinlike, at position j,
with j = 1 denoting the fiducial qubit and j =2,3,...,N
the remaining cavities or qubits. With this initial condition
the relevant Hilbert space is H = Span{|0),|j),j = 1,...,N},
and the dynamics are restricted to the space V = L(H). A
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density matrix in ) has the form

N N
p = poolONOl+ | D po 0} (il +He. | + Y pijli)(l.
j=1 i,j=1

3)

After tracing out all but the fiducial qubit degrees of freedom,
the reduced qubit density matrix reads

N
pPt = (Po,o +> p,-,,-)| D
=2

+ (ol (T [+He)+pual DML )

A coherence measure of the qubit can be defined as [13]

coy= Y [p"0). ©)
i, jU#])
Using Eq. (4) we obtain C = 2|pg 1]

III. MAPPING TO A NON-HERMITIAN
TIGHT-BINDING MODEL

If we initialize the system with at most one excitation,
the Lindbladian generates states with at most one excitation
and the dynamics are contained in the sector V. We
are then led to consider the following linear spaces:
Voo = Span(|0)(0), Vo1 = Span({|0)(jl.j = 1,...,N}),
Vio = Span({|j)(0].j = 1,....N}), and Vin=
Span({|i)(jl|,i,j = 1,...,N}). The Hamiltonian conserves
the number of excitations so the coherent part K is block
diagonal in the reduced space V = Vo ® Vo1 @ Vio @ Vi.1-
Moreover,

D(]0){0]) = 0, (6)

. r; ,
D(0)(j) = —7'|0)(J|7 (7N
D(li)(j1) = Ti8;,;10)(0] — 3(T'; + T pIi){jl. 3

Note that I'; = 0 for the i = qubit site, as we are ignoring the
spontaneous decay of the qubits (typically much smaller than
cavity loss rate). This implies that on V' the Lindbladian has the
following block structure (asterisks denote the only nonzero
elements) in V = Vo0 @ Vo1 ® Vi.o @ V1.1t

0 * ok ok

* %k

* %k

* %
Lly = - SO

* ok %k
I
* %k %k

We also call £ = Lly,, the restriction of £ to Vy 1 and, in

this basis, one has L}, = L (overline indicates complex
conjugate). Clearly the vacuum |0)(0] is a steady state (with
eigenvalue zero). We use the following notation for the
Hilbert-Schmidt scalar product in V: (x|y) = Tr(xy) and
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FIG. 2. The “single impurity model”: aqubitin a cavity connected
to a linear array of cavities.

use the identification |j) <> |0)(j| for j = 1,...,N, which
defines a basis of Vp ;.

According to Eq. (5) we need the matrix element
[o(®)]o.1 = (0]p()]|1) = (1]p(?)). Because of the block struc-
ture of the Lindbladian one obtains [o(t)]o.1 = {1]e*|p(0)) =
(11e'%15(0)), where we indicated with 5(0) the projection
of p(0) to Vy,1 according to the above direct sum decom-
position of V. Note that if the qubit is initialized in the
state ag| 1) + Bol {), we have p(0) = @fp|0)(1| or equiv-
alently, |5(0)) = opBo|1). In the following we will always
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consider ogfy = 1/2, i.e., the maximal initial coherence,
such that

() = 1{11e ). (10)

As usual, we can identify V| >~ CV, and the Hilbert-Schmidt
scalar product carries over to the €2 scalar product. We
also use the the norm ||x|| = +/{x|x) for x € Vy; and the
induced norm for elements of L(Vp ;). Since the basis |j) is
orthonormal, the Hilbert-Schmidt adjoint simply corresponds
to transposition and complex conjugation in this basis. With
these identifications the setting resembles that of standard
one-particle quantum mechanics, with the important difference
that operators are not Hermitian. For example, for the case of
a single qubit, M = 1, interacting with a single cavity and
cavities connected on a linear geometry J; = J; ;4 (see Fig. 2
for a schematic picture), the matrix £ becomes

o) K 0 0
K a)]—i% ]1 0
L=—i| 0 Ji wy —iF 0 = —iH, (11)
: ; Jx
0 0 0 Jg wx—itk

where we also defined the matrix H which is a non-Hermitian
generalization of a tight-binding chain.

Remark. The ¢2 scalar product (and corresponding norm)
in Vy; is natural in that, via Hilbert-Schmidt, it allows one to
move from Schrodinger to Heisenberg representation. How-
ever, in this setting, the £2 moduli square are not probabilities.
Conservation of quantum-mechanical probabilities is enforced
by the complete positivity and trace-preserving property of
the full map e’ for t > 0. Trace conservation in turn implies
(I £ = 0, where (1| corresponds to the identity operator on
the Hilbert space V. This property, however, does not carry
over to the restricted generator £. What can still be said is that
the eigenvalues of £, since they are a subset of those of £,
fulfill Re(%) < 0.

In general, C(¢) will decay in time starting from its
maximum value 1 at ¢ = 0. From Eq. (10) we realize that our
goal is to make a particular matrix element of the restricted
evolution e'“ have large absolute value for possibly large
times. In fact, ideally we would like (i) £|1) = A;|1) and
(i) Re(—A;) = 0. Both of these conditions can be trivially
achieved by simply setting «; ; = 0, VI. However, this entirely
decouples the qubit from the rest of the network, which means
one does not have a way to address the qubit anymore; in
fact, experimenters generally try to increase the qubit-mode
coupling. In view of this we replace the two conditions above
with the more physical requirements, (i) £|1) & A;|1) and (ii)
Re(—A;) as small as possible.

Condition (ii) (that there exists an eigenvalue of £ with
almost zero real part) resembles the condition for having an
approximate zero mode familiar in (Hermitian) topological
insulators. More generally, in a linear geometry, a way to
fulfill conditions (i) and (ii) is to find the approximate,

non-Hermitian, topological zero mode of £. Non-Hermitian
generalizations of topological insulators have been studied
to some extent (see, e.g., [1,3,6,14]). In particular, we will
be concerned with finite-size systems which have not been
discussed in the literature so far. Before turning to topological
models, let us first consider what seems to be the simplest
geometry.

IV. SINGLE IMPURITY

The simplest case is that of linear geometry with a single
impurity (see Fig. 2), i.e., we set J; = J,[; =T, and also
w; = oY for all i (no detuning) in Eq. (11):

0 « 0 0
K % J 0
H=|0 J 7 01, (12)
S
o 0o o J =

where H has been transformed to the rotating frame of
frequency a)(l). This is a non-Hermitian generalization of a
single impurity in a tight-binding chain [15]. For N =3
this model has been investigated in [16,17], where it was
established that adding one auxiliary cavity to a dissipative
optical cavity coupled to a qubit can significantly increase the
coherence time of the qubit. An equation for the eigenvalues
can be found using the techniques to diagonalize tridiagonal
matrices. The eigenvalues of the matrix (12) £ can be written
as Ay = —i2J cos(k) — I'/2, where k is a (possibly complex)
quasimomentum that satisfies the following equation:

[2 cos(k) + ia] sin(kN) — B sin[k(N — )] =0,  (13)

053858-3



CAMPOS VENUTIL MA, SALEUR, AND HAAS

0.8} AN
06} BRI
=
(S
0.4+
0.2
0 ~—
0 2 4 6 8 10

tJ

FIG. 3. Behavior of the coherence for the single impurity model.
Here and in the following we compute Eq. (10) by numerical diag-
onalization of the corresponding reduced Lindbladian. Continuous
lines are numerical simulation and dashed lines are an analytical
approximation of Egs. (16) and (17). Dissipation is fixed to I' = 4J.
The results for N = 4 are indistinguishable from those at N = 400.

where a = T'/(2J), B = «/J. In order to look for a localized
state we look for a solution of the above equation with complex
k = x 4 iy. Essentially the localization length is given by { =
y~!'. More details are provided in Appendix A. Neglecting
terms of order O(e~V") the eigenvalues of £ of such localized
modes are given by

452

T /1602 k3112

+ 0@ "Ph. 14

This formula is valid in regions where Re(A1) < 0. Because
the wave vector k is complex, a plane-wave trial solution will
decay like e " = ="/, which defines the localization length
¢. In such cases the localization length is given by

4J
n .
I+ /16(J2 — k%) 4+ TI2

c=1/1 (15)

For «/T" small (strong dissipative regime), using a pertur-
bative argument (more details in Appendix C), one can show
that the coherence has approximately the form of a single
exponential decay e~"/®, with T, ' = 2«2/ T. Using Eq. (14),
the eigenvalue connected with 7, "is A,.. By continuity, we can
now use the expression for the localized mode outside from
the strict perturbative region. In other words we have

C(r)~ e '™, (16)

a7)

2 2 2
TZR{F+WAQJ x)+r}'

42

The above equations are extremely accurate in the region
of small « but surprisingly are quite accurate also for large
k. Upon increasing « one starts observing non-Markovian
oscillations [18] in the coherence also noted in [17] at an
energy scale of the order of J? + I'?/16 [when the square-root
term in Eq. (17) becomes imaginary]. In this regime Eq. (16)
describes well the envelope of the coherence. See Fig. 3 for
comparisons with numerics.

PHYSICAL REVIEW A 96, 053858 (2017)

V. TOPOLOGICAL CLASSIFICATION OF
DISSIPATIVE SYSTEMS

We recall here for completeness the basics of the topological
classification of models of Ref. [9] (see also [3]). Since
eigenvalues are now complex, there are at least two ways
to generalize this notion to the non-Hermitian world. Namely,
one may extend the role played by the Hermitian gap to either
the imaginary or the real part of the eigenvalues. Two points
in parameter space are defined to be in the same phase if the
corresponding (non-Hermitian) Hamiltonians can be smoothly
connected without closing the imaginary (resp. real) part of
the eigenvalues. For the “imaginary-gap” classification of
Ref. [9], according to a generalized bulk-edge correspondence,
a nontrivial phase at finite size would have edge modes with
infinite or exponentially large lifetime. Clearly this is the
relevant classification in our context.

We assume a periodic linear chain with r sites per unit cell
such that, in the thermodynamic limit, the Hamiltonian is given
by H=§dk/2n)3_, sHup(k)lk,a){k,B| and we simply
need to focus on the n x n Bloch matrix H(k). The dissipation
has the special form shown in Sec. III, which consists of
imaginary terms on the diagonal (of negative imaginary part).
Without constraint, such models are topologically trivial if the
number of leaky sites per cell is greater than 1 [9]. We then
focus on the case where there is only one leaky site per cell.
As shown in [9], any such H(k) that does not admit a dark state
can be written in the following way:

(UMK 0\ [hkK) Uk Uk o
H(k)_< 0 1)(62 A(k)—ir>< 0 1)’
(18)

where Ai(k)isan (n — 1) x (n — 1) diagonal matrix with real
eigenvalues, and U(k) is an (n — 1) X (n — 1) unitary matrix
that diagonalizes /2(k) and also makes the (n — 1)-dimensional
vector ¥y real and positive. Any U (k) satisfying the above
criteria can be chosen without affecting the following result.
In Ref. [9] it is further shown that the winding number of
H then reduces to the winding number of U(k), which is
given by

W= ?{ d—k,ak Indet (U (k)). (19)
2mi

From what we have said, in a nontrivial topological phase, at
finite size one expects to observe dark states localized at the
edges. Such a dark (or quasidark) state |&) fulfills £|£) = A|€)
with Re(A) >~ 0. However, given the structure of the space V |
all such states are, e.g., traceless. Hence these are not strictly
quantum states, they are in fact off-diagonal elements of a
quantum state. In the quantum-chemistry community these
are sometimes called coherences.

We would like to conclude this section by reminding a
general result for completely positive maps or semigroups.
We assume here finite dimensionality. Let the Jordan decom-
position of Lbe £ = )", APy + D, where D is the nilpotent
part. Define the projector onto the dark-state sector as

Pu= Y P (20)

k.Re(A)=0
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Decomposing the Liouville space as I = Pys @ (I — Pgs) one
has ¢’“ =W, @ R,, where W, is the part of the evolution
inside the dark-state sector, W, = Py W, = W, Py, and the
remaining term R, can be made as small as one wishes in
norm by taking larger ¢. It can be shown (see Theorem 6.16 of
[19]) that VW, is a unitary evolution, more precisely, W;[po] =
U; ,50U,T, where the state py is partly determined by the initial
state pg. In other words, the time evolution inside the dark-state
sector is unitary.

VI. NON-HERMITIAN SSH MODEL

To start we consider the model given by the following
non-Hermitian generalization of the SSH Hamiltonian (for
simplicity we rename all hopping constants J; both for qubit-
mode and mode-mode hopping):

0 Ji 0 0 0
Ji =il ) 0 0

o J,» 0 J 0

H= 2 : . 1)
0 0 Jl —il
0 0 0

One may obtain an intuitive understanding of the model by
considering the periodic boundary conditions version of the
above. In that case it suffices to consider the 2 x 2 Bloch
Hamiltonian
0 Uk

Hk) = <51< —iF)’ 22)
with v, = J; + Je'f. Model (22) _is, up to a constant
term, pseudo-anti-Hermitian in that H(k) := H(k) + i(I"'/2)1
satisfies az[l:l(k)]TaZ = —H(k). Moreover, H(k) is a linear
combination of the matrices {—o*, — ¢”,ic*} which span the
Lie algebra of SU(1,1). [S(1,1) in turn is the group of 2 x 2
complex matrices U satisfying UTo?U = o and det(U) = 1.]
Model (22) is then also referred to as the SU(1, 1) model [3], the
more familiar, Hermitian SSH model being an SU(2) model.

The eigenvalues of Eq. (22) are simply

A 'F:I:,/l 2 r
k& ) k 4

I ) ) r2
=-iz x4/ I+ J5 +2J1J>cos(k) — R (23)
with momenta given by k = 4wn/N (N even). For example,
if 1'2/4 < v2, = (J} + J7 —2|J1 1), the square-root term
above is real and all the modes decay at a rate I'/2. This
model admits a topological phase characterized by a winding
number according to the “imaginary-gap” classification of [9].
The winding number W [Eq. (19)] turns out to be analogous
to that of the Hermitian SSH model, and it simply counts the
number of times the vector J; + J,e'¥ winds around the origin
as k moves around the Brillouin zone [0,27). Consequently,
W =1 for |J| > |J;| while W = 0 for |J»| < |J;] [20].

This picture gets modified for an open chain. Most
importantly, as a consequence of the topological character of
the model and the so-called bulk-edge correspondence, there
will appear edge state(s) localized at the boundary of the chain.
The calculations are different depending on whether N is even

PHYSICAL REVIEW A 96, 053858 (2017)

J1 Jo Ji Jo J1 Jo

r r

FIG. 4. Non-Hermitian SSH model Eq. (21) for N odd.

or odd. We fix the geometry by fixing the dissipation to act
only on the even sites as in Eq. (21).

A. N odd

For N odd the configuration of the bonds is given in Fig. 4.
For N odd there is always one edge state irrespective of the
values of Ji,J,. In this case the edge mode has exactly zero
eigenvalue i.e., it is a dark state. The edge mode is localized at
the site where the weak link is (whether it is J; or J,). Clearly
the transition is at J; = J,. If J; is the weak link we can write
such an edge mode as

ey =a| 9 |, (24)

where A is a normalization factor. One finds that H|&,) = 0
provided J; + J,e?* = 0. Under this condition |£;) is a dark
state. From this equation we see that

l(nl&L) > = A%

for n odd, where § =1In(|J>/J1|) > 0 was assumed to be
positive. Hence we call £ = 1/1n(|J,/J;|) the localization
length of the edge mode. Fixing the normalization one finds

1 —x2

2
Al = ————
x — xN+2°

(25)
withx = |J;/ | < 1.

The case |J»| < |J1] can be reduced to the previous one by a
left-right symmetry transformation. Under this transformation
the dark state is mapped onto |£Eg), which is localized at the
opposite end of the chain.

Recalling the result for the periodic case, one sees that, in
general, the other, nonlocalized modes decay on a relaxation
time scale given by Trx &~ I'"' O(1). Coming to the behavior
of the coherence, we see that, after a time e,y all but the mode
|&.) will have decayed. Hence the coherence for f > Tjux iS
approximately given by

D (1] Pel)
k

~ [(1IELELIY = LI

2

C(t) =

_ 1—x
T ] — N+

(26)

Note that since x < 1, this is a decreasing function of N. The
largest value with N > 1, odd, is obtained for N = 3.
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FIG. 5. Behavior of the coherence in the non-Hermitian SSH
model with an odd number of sites. Continuous lines are results
in the topological phase (W = 1) with parameters J; = 1, J, = 1.8,
and ' = 0.5. Dashed lines are for the topologically trivial phase
(W=0,J;=1,J, =05T =0.5). The thin dashed lines are the
asymptotic values given by Eq. (27). The qubit has infinite lifetime
for all values of parameters, but the asymptotic coherence is
exponentially small in the topologically trivial region. The intrinsic
coherence lifetime of the qubit (N = 2) is added for comparison. We
observe that the lattice of cavities with W = 1 vastly improves the
lifetime of the coherence.

For|J;| < |Ji|theroles of |£; ) and |£x) are reversed. Hence
now the dark state is localized at the end of the chain. After a
time Teelax the coherence drops to a value C(1) >~ |{&g|1) 1> =
HELINY> = ZV1(1 — 22)(1 — ZV1)~!, where z is now z =
|J2/J1],1.e., an exponentially small value. The two asymptotic
expressions are in fact the same and can be combined in a
single expression valid for all J;, J,:

JN-1_ i)t

N+1 N+1

C(t) ~ 22 -,
N+1

J1 # D
Jy =/

27

To summarize, for N odd there is always an exact localized
dark state for all values of parameters and consequently,
an infinite lifetime of the coherence’s qubit. However, in
the topologically trivial phase W =0 (|J;| > |J2]) the edge
mode is localized at the opposite end of the chain, and the
asymptotic value of the coherence is exponentially small. The
numerical simulations confirm that a nontrivial topological
winding number has a strong effect on the coherence time of
the qubit, as illustrated on Fig. 5.

To connect with the previous discussion we see that, in
general, we satisfy the requirement (ii) (there is an eigenmode
with Re(}) = 0), but not necessarily (i). In other words, in
general |£,) (£, | is not close to |1){1]. We progressively enter
this regime when the localization length becomes very short
(or § very large). Clearly this happens when |J;| > |J;].

B. N even

For N is even the configuration of the links is depicted in
Fig. 6. When N is even, |£,) of Eq. (24) does not satisfy the
last row of the eigenvalue equation but rather one has H|&,) =
J1e*™W=D| N} This is consistent with our expectation of an ex-
ponentially small eigenvalue. The exact diagonalization of the
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J1 Ja Ji J2 Ji Ji

FIG. 6. Non-Hermitian SSH model Eq. (21) for N even.

model can be found in [21] (see also [22,23]). For N even edge
modes appear ford = J,/J; > 1 + 2/N. Thisis an interesting
effect, as one can in principle enter the topologically nontrivial
phase for fixed values of the parameters by only changing N.
The eigenvalues of the edge modes are given by [21]

F 2 2 Fz
b = =iz £\ JP +JF + 20 hcosh(y) — - (28)

where y satisfies

. N . N
sinh (?y> = x sinh [(3 + l)y:|. (29)

For N large the solution of Eq. (29) approaches e = d. Up to
first order in 4~V one obtains that the solution of Eq. (29) is

e =d+dNd ' —d)+ 0. (30)
Plugging the above into Eq. (29) one finds

JZ
Ay = —i?ld*N(d*1 —d)?, (31)

J2
A= —il + i?ld*N(d*I —d)>. (32)

The A, eigenvalue corresponds to the mode localized at
the first site of the chain. Moreover, even if there are two
localized modes, only one of them has exponentially large
lifetime in the system size. So for N even the left edge mode
has a coherence time of .on = I'J;?d™(d~' — d)~2. The A_
eigenvalue corresponds to edge mode localized at the end of
the chain, with fastest decay time.

In order to compute the coherence we need the first
component of the edge mode |£, ). It turns out that (see [21])

4sinh®(Ny/2 Ay +il
(11E4) 17 = -hNSHIl /2 e )
[sms[iilh(-;)))’] _ (N + 1)] 2)\.+ +iC

Since Ay is exponentially small, the last fraction is expo-
nentially close to 1 and can be evaluated up to d~" using
Eq. (31). For the remaining terms we plug in the asymptotic
value y = In(d) and obtain

B (1 + ;—‘sz(x —x‘l)z)
S (1 =x) T —xN(N+ 1)
=1—x>4+xV1—=x%?

22
x <(N PRI xzx %) +ou). (34)

[((LIENI? +0(*)

In this case the state |£,) is not an exact dark state and it
will start decaying at a time around t.. As for the odd case,
the other states decay after a time Tx = r~'0(1). Hence,
whenever there is a separation of time scales Teon > Trelax, ONE
will observe a coherence of C() 2 |(1|£,)|? for times roughly
in the window ¢ € [Trelax, Teon]- Numerical experiments for the
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FIG. 7. Behavior of the coherence in the non-Hermitian SSH
model with an even number of sites. Continuous lines are results
in the topological phase (W = 1) with parameters J;, = 1, J, = 1.8,
and I' = 0.5. Increasing N has the effect of exponentially increasing
the (coherence) time scale 7., at which the approximate dark
state starts decaying. Dashed lines are for the topologically trivial
phase (W =0,J;, =1,J, =0.5T =0.5). For N = 10, 20 the plot
is indistinguishable from that of N = 8. The thin dashed line is the
asymptotic value given by Eq. (34). The intrinsic coherence lifetime of
the qubit (N = 2) is added for comparison. We observe that the lattice
of cavities with W = 1 vastly improves the lifetime of the coherence.

even case are shown in Fig. 7. In Table I we show comparisons
of the numerics with the analytic expressions. For comparison,
the W = 0O case is also shown in Fig. 7, where the coherence
is from bulk modes only, and the decay is given by the bulk
relaxation time '~

VII. THREE-SITE UNIT CELL

We now turn to a case where the unit cell consists of three
sites. According to the prescription of Ref. [9] for the existence
of a topological phase, we consider only one leaking site per
cell. We allow for nearest-neighbor hopping and also between
the first and third site in the cell (see Fig. 8). As we will see,
this geometry will allow us to have topological numbers of
0,1, and 2. The Hamiltonian is

H=Y (i 1) (x.2] + Jalx,20x,3] + J3lx.3) x + 11|

+ J|x,1){x,3| + H.c.)
+ Z(Gllx,l)(x,ll + €20x,2)(x,2] —il'|x,3)(x,3]).

(35)

TABLE I. Comparison of exact numerics with the approximate
theoretical formulas. Parameters are J; =1, J, = 1.8, and I" = 0.5.

N Teoh (641D
Exact Theory Exact Theory
6 6.9367 10.9813 0.5355 0.6638
8 31.8117 35.5794 0.6715 0.6915
10 111.1859 115.2774 0.6888 0.6941
20 4.1153 x 10* 4.1159 x 10* 0.6914 0.6914
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FIG. 8. Model (35) with a three-site unit cell.

For periodic boundary conditions the corresponding Bloch
Hamiltonian reads

€ Ji Bk 4+ g
H(k) = Ji € J2
Be k1 —il

Using Eq. (19) it can be shown that the winding number is
given by

W = O(Js] > |J + J»tan(¥/2)])
+O(J3] > |J = Jrcot(¥/2)]), (36)

where O(true) = 1, O(false) = 0, and ¥ = arccos[(e; —
€)/V 4Jl2 + (€1 — €2)]. The above quantity can assume the
values W = 0,1,2. The value W = 2 can be obtained, for
example, by taking J3 sufficiently large. When W =2 the
open, finite-size chain has two edge modes per end. This gives
the possibility to encode a qubit in the dark-state manifold
of the model. In the following we are restricted to the case
€, = €| = ¢ for which

W =05 > |J+ L)+06(5] > |J—-L).  @G7)

As we can see from the above, the presence of the two-site
hopping J is not necessary for having W = 2 but it allows us
to have W = 1.

As we have seen in Sec. VI, at finite size the exact number of
edge modes can be a complicated function of N and the other
parameters of the models. For the model of Eq. (35), we have
verified numerically that for N mod 3 = 2 there are always
(irrespective of W) two edge modes with the imaginary part of
the eigenvalues exactly equal to zero. In other words, there are
always two exact dark states. However, we have also checked
that essentially only W of them are localized on the qubit site.
For N mod 3 # 2 our simulations suggest that there are W
edge modes with lifetime exponentially large in the system
size (see Fig. 9). Moreover, precisely W of them are localized
at the qubit site. This picture is consistent with what we have
found analytically in Sec. VI. In other words, there are always
(for all N) W dark or quasidark modes localized at the qubit
site. Since, as we have seen, the behavior of the coherence is
not only dictated by the number of localized modes but rather
by the modeslocalized at the qubit, the value of W has a strong
impact on the coherence.

From what we have said so far, the behavior of the coherence
of the first qubit is now clear. For W = 0 the coherence decays
to zero after a time Ty = I' "' O(1) or it saturates to an
exponentially small value in N if N =3p 4 2. For times
Trelax S 1 S Teon, for W =1 it saturates to an amount given
by C(t) ~ [(1]£)|%, where |&) is the dark state localized at
the left of the chain. For W = 2 the coherence will oscillate
between two values in a similar way as in Rabi oscillations,
C(t) = e |(11E)1> + e~ |(1]&) ’|, where |& ») are the
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FIG. 9. Scaling of the imaginary part of the eigenvalues of
the edge modes, for different topological sectors and different
values of N mod 3. For N =3p 42 we have observed always
two exact dark states [Im();) = 0] for all parameter values. These
simulations suggest that for N mod 3 # 2 there are W edge
modes with exponentially large lifetime. Parameters are €, = ¢; = 0,
Ji=14,1,=03,J =07, =1.5,and J5 =1 for W = 1, while
Jy; =3 for W =2.

two dark states localized at the left with (real) eigenvalues
wy . The time scale t.p is infinite for N =3p 4+ 2 and
exponentially large in N otherwise. A plot of the behavior
of the coherence in different topological sectors is shown in
Fig. 10.

Finally, let us comment on the long-time behavior of the
full Lindbladian evolution. For N = 3p + 2 there is an exact,
nontrivial dark space and so, for what we have said at the end of
Sec. V, the evolution inside this dark space is unitary. When N
mod 3 # 2 and W = 2 there are two modes with lifetime top
exponentially large in N. In this case an exact dark-space sector
cannot be defined; however, we have verified that the dynamics
are approximately unitary for times ¢ in the window Tyax <

~

t < Teon. In this sense the term Rabi oscillations is accurate.

m——
0.8 W=1
| W
06 {h
© 04 W“
|
oz | TR
‘ \‘K
00 20 40 60 80 100
tJy

FIG. 10. Behavior of the coherence in the linear chain with three
sites per cell, Eq. (35). We chose N = 8, but the numerical results are
not sensitive to N mod 3. The winding number can assume values
W =0,1,2. W also counts the number of edge modes localized near
the first qubit. For W = 2 the dark-state manifold is a physical qubit
and one sees Rabi oscillations in the coherence. Parameters are J; =
1l,e =0,I" =0.5,J, =0.3,J =0.7, and J; fixes the value of W:
S =02(W=0),J;=07(W=1),and J3 =2 (W =2).
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FIG. 11. The effect of noise on the coherence in the non-
Hermitian SSH model with (a) N = 3 and (b) N = 7, respectively.
We take the W = 1 phase, where J; = 1, J, = 1.§, ' = 0.5, and the
noise rate u is taken between 0 and 0.8J;. The final result is averaged
over 1000 runs of randomly generated systems with the respective
noise rates.

VIII. EFFECT OF NOISE ON COHERENCE DECAY

In this section we explore the effect of disorder on the coher-
ence time of our topologically protected systems. Specifically,
we consider random (real) detuning of the qubits with respect
to the cavity modes. This amounts to add a diagonal term to our
one-particle effective “Hamiltonians” with on-site “chemical
potentials” u;, where u; are independent and randomly dis-
tributed variables with zero mean and uniform distribution in
[—w, u]. We compute the corresponding coherence averaging
over many (1000 in numerical simulations) realizations.

A. Noise effect on the non-Hermitian SSH model

We first consider the topological model of Eq. (21). For
odd system size N, the topologically protected W = 1 phase
has a true dark state, and the coherence of the qubit saturates
to a finite value (Fig. 5). We observe that the system is
quite robust against disorder (see Fig. 11). Even for a noise
strength ; comparable to the tunneling strength J;, the qubit’s
coherence remains significant over a long period of time. In
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FIG. 12. The effect of noise on the coherence in the non-
Hermitian SSH model with (a) N = 8 and (b) N = 20, respectively.
We take the W = 1 phase, where J; = 1, J, = 1.§, ' = 0.5, and the
noise rate u is taken between 0 and 0.8J;. The final result is averaged
over 1000 runs of randomly generated systems with the respective
noise rates.

addition, a shorter chain of cavities better protects the system
against noise.

For even system size N, the imaginary part of the dark state
in the W = 1 phase is not exactly 0, but for a large enough
N, the qubit’s coherence still saturates to a finite value for
times in an exponentially large (in N) window (Fig. 7). We
observe that for N = § [Fig. 12(a)], where the coherence of the
clean system itself decays to 0, noise does not change the time
evolution much. On the other hand, for N = 20 [Fig. 12(b)],
where the coherence saturates, the effect of noise is similar to
odd N, and again, when the chain of cavities gets longer, the
disruptive effect of noise gets more pronounced.

B. Noise effect on the three-site unit-cell system

Here we consider the topological model of Eq. (35) where
we set € = €p = 0. For this model (Fig. 8) there are three
distinct topological phases, W =0, W =1, and W = 2, and
the latter two protect the qubit’s coherence from decaying.

For the W = 1 phase [Fig. 13(b)], the effect of noise is
similar to that of the W = 1 phase of the non-Hermitian SSH
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FIG. 13. The effect of noise on the coherence in the three-site
unit-cell model with N = 8. (a) Phase W =2 with J; = 1, J, = 0.3,
J3=2,J=07,and ' =0.5. (b) Phase W =1 with J; =1, J, =
0.3,J3=0.7,J =0.7, and I" = 0.5. The noise rate p is taken to
be 0,0.5J;, and J,. The final result is averaged over 1000 runs of
randomly generated systems with the respective noise rates.

model. The coherence of the qubit no longer saturates to a finite
value but decays to 0. We again note that the topologically pro-
tected system is quite robust against the introduction of noise.
A noise strength comparable to the first tunneling rate (© = J))
does not decrease the coherence much even over a long time.

For the W = 2 phase [Fig. 13(a)], adding detuning noise
vastly alters the oscillatory behavior of the clean system. In this
case the time evolution of the coherence under noise resembles
that of the W = 1 case; in other words, the coherence saturates
to a finite value. Yet larger noise strength seems to be able to
eventually drive the system to a W = 0-like phase where the
coherence decays to zero [see Fig. 13(a), u = 5J;]. Further
investigations are needed to clarify the nature of this noise-
induced, dissipative, topological phase transition.

IX. CONCLUSIONS

Non-Hermitian topological phases in a finite system permit
the construction of states whose decay time is either infinite or
exponentially large in the system size. This feature is extremely
appealing from the point of view of creating long-lived
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quantum bits. In this work we have shown that networks of
qubits interacting with lossy cavities may be configured to
possess nontrivial topological structure. For networks with a
simple linear geometry, we have found that localization and
long-livedness of the topological edge modes both concur
to dramatically increase the coherence of a qubit sitting at
the end of the chain. Specifically, a nonzero topological
winding number W results in an exponentially long-lived
qubit. Although at finite size the exact number of edge modes
is a complicated function of W and N, there are always W
edge modes localized at one end of the chain. For W =2
we find that the long-time dissipative, Lindbladian evolution
becomes approximately unitary, and the coherence of the
qubit displays long-lived Rabi oscillations. In general, such
long-lived, topological edge modes are not legitimate quantum
states but rather they are off-diagonal elements of quantum
states, or coherences. The possibility of using such long-lived
coherences for quantum computation is an interesting and
challenging task for future studies.
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APPENDIX A: “SINGLE IMPURITY” CASE

Through shift and rescaling £ = i JH' — (I'/2) I we are led
to consider the following matrix:

—ia B 0 0
g0 1 0

w—| 0 10 0 (Al)
0 0 0 1

We write the eigenvalues as 2 cos(k). It can be shown that k
satisfies the following equation (both for N even and odd):

[2cos(k) + ia]sin(kN) — B2 sin[k(N — 1)] = 0, (A2)

and one can restrict oneself to 0 < Re(k) < 7. In order to look
for localized states we look for a complex root of Eq. (A2).
Hence we set k = x + iy. Plugging this in the above and
forgetting terms eV’ we obtain

.o aSin[k(N =2)] s feFe™ y >0
(2eosth) +ial =~ G =1 = {eiw y<0"
(A3)

We also set ik = q.
Case y > 0. The equation is

2cosh(q) + ia = B*e’.

Setting z = ¢? one finds

( ==
g =In|(=i)

a® +4(1 — B2
2(1 - B%) ’

PHYSICAL REVIEW A 96, 053858 (2017)

and the corresponding eigenvalues
2
i
2(1 - %)
We need to make sure that y = —Re(g) > 0. From this we

obtain Re(In(z)) =In|z] < Oor|z| < 1.
Case y < 0. Now the equation is

(@a£Va2+4(1 — ) —ia. (Ad)

2cosh(q) + ia = pe7?.

Setting z = e~ one finds the same equation as for y > 0. This
means that the eigenvalues have the same value from (A4), but
now y < 0 implies |z| > 1. 3
Going back to the eigenvalues of £ =iJH — (I'/2)1,
remembering a = I'/(2J) and 8 = k/J, we get finally
4x?
I+ /16(J2 — k%) + T2

as shown in the main text.

he = + 0,

(AS5)

APPENDIX B: A NOTE ON TIME SCALES

Here we would like to define a time scale associated to
the coherence decay. This time scale should measure the time
after which the coherence has degraded to an unacceptable
value. Several definitions of such (de-)coherence times are
possible. For example, one may take the smallest T such that
C(t) = C(0) — €. According to Eq. (10), C(z) has the form
CHy=1Y. ic je*/” |, where A; are (a subset of) Lindbladian
eigenvalues satisfying Re(A;) < 0. Let us say that one is
interested in very small €. In this limit the coherence time
T becomes proportional to €. A meaningful definition then
would be 7j;, = €/Re(— Zj c¢j)j) (the name stemming from
the fact that C(¢) is approximately linear for ¢ < 7j;,). A more
conservative definition is given by the shortest time scale
associated with the set {Re(—2 )}, i.e., the time scale defined
as T,;h = max; Re(—A;). If Tmin is large one is guaranteed that
the coherence will be close to maximal for all 0 < ¢ < 1y, for
any initial state. This is a very pleasant feature which makes
Tmin quite attractive. Let us also define the slowest decay time
of C(t) by tr;alx = min; Re(—A;). Clearly Tn, can be much
larger than any meaningful definition of coherence time [24].
Obviously all these time scales agree if the coherence decays as
a single exponential. Quite surprisingly, in all the situation we
considered in the text, we verified that indeed C(¢) can be well
approximated with a single exponential over a wide range of
J/ ' (I dissipation scale and J coherent energy scale, see main
text). Some arguments why this is so will be given in the next
section. In all the cases considered the coherence time scale
Teoh defined in the main text coincides with what is commonly
called the Purcell rate in the cavity QED community. Through
topological protection we are able to exponentially increase
the Purcell rate.

APPENDIX C: CONDITIONS TO OPTIMIZE THE
COHERENCE DECAY

In the following we will identify sufficient conditions for the
requirements (i) and (ii). For simplicity we assume that £ can
be diagonalized [25] with spectral resolution £ = Y j AP
We start analyzing the following consequence of (i):
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Fact 1. Assume (i), i.e., £|1) = 1;|1) + €|e) with |le] =
O(1). Then, up to an error €, the evolution of the coherence is
governed by a single exponential, in particular,

C(t) = ™| + O(e). (CI)

Proof. We start with the identity

- L th
Ly = M1y + S5 ey,
1) =M1+ e —le)
We then obtain (1Je’£1) =e™ +en, and taking

the modulus  [(1]e’“1)| = |e™| +en’ + O(€?)  with
£

7’| < |(1|et£7)\':' e)| = O(1). Moreover, assuming that

L can be diagonalized, |n'| does not diverge with 7,
rather,

'] < el =AM I D le™ 1Pl + ™|
J

= (c+ DllelllI(€ — )7, (C2)

having set ¢ = Zj [IP;ll, since Re(A;) < Oandz > 0.

The same conclusion holds, not surprisingly, using a
slightly relaxed assumption P; = |1){1]| + €¢X. Using the
normalization of the projectors P;P; =§; ;P;, one ob-
tains (1|P;|1) = Tr(P;|1){1]) = Tr[P;(P; — €X)]. The lat-
ter expression equals 1 for j =1 and O(e) otherwise.
Hence,

(1e'f1) =" ™ Tr(P;1)(1])

J

= e[ TP+ Y T X)) ()
J#1

and the result holds with |n/| < Zj | Tr(P; X)|. As can be seen
from the absence of the resolvent term, in this case the error
can be made significantly smaller.

Note that if Re(A) = 0, the leading term of the coherence
does not decay. This fact will be important when discussing
dark or quasidark states in topological models. To gain
further insight, we analyze the weak and strong dissipative
limits.

Fact 2 (Strong dissipative limit). Assume a linear geometry
and a hopping to dissipation ratio |J;/I';| = € sufficiently
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small. Then conditions (i) and (ii) are satisfied and in particular
C(t) = e7"/™n 4 O(e) with rC;}ll =2J2/ T2+ J10(e?).

Proof. We consider the off-diagonal terms of Eq. (11) as
a perturbation. The spectrum of the unperturbed system is
{0, —T;/2,i =2,...,N}, and the zero eigenvalue has eigen-
projector |1)(1]. Using (non-Hermitian) perturbation theory,
the first correction to the zero eigenvalue occurs at second
order and is given by A(lz) = —2.]12 /2. The corresponding
eigenprojector is given by P; = [1)(1]| + O(¢), so that we are
in the condition for fact 1 and the result follows. Note that
since eigenvalues are continuous in their parameters, as long
as there is no level crossing, A is the eigenvalue with the real
part closest to zero. In other words the coherence time is given
by the slowest time scale of L.

We define H = Hy + D, where Hy (D) is the Hermitian
(anti-Hermitian) part of H. Note that the matrix D is diagonal
in the “position” basis |j). Since Hy is Hermitian, it can
be written as Hy =), e,(co)|k) {k|, where |k) are the unper-
turbed eigenvectors. Up to first order, the eigenvalues of £
become

M = —ie) —i(k|Dl|k)
1 N
) 12
=—ig) — > ;:2: T 1(kLj) . (C4)

In the isotropic case where all the cavities are equal, I'; =T
and the above becomes

. r
A= —ie) — 5(1 — [(k[1)1?).

Moreover, assume now that the Hamiltonian Hy has a
state localized at the first site: kg : |ko) ~ |1). This means
that |1){1| is an approximate eigenprojector of Hy: Py, =
|ko) {ko| = |1}{1| + €Y with a small €. Surprisingly, |1} (1]
is also an eigenprojector of H up to the same order. In
fact, the first correction to the eigenprojectors of H is
PL = —P,DS — SDP,, where S is the reduce resolvent
[26]. Plugging in D = —i(I"/2)(I — |1){1]) we obtain PV =
i(T/2)e[Y (I — [1)(1])S + S(I — |1)(1])Y]. Then |1){1]| is a
projector of £ up to an error O(T¢). In other words, we have
the following:

Fact 3 (Weak dissipative limit). Assume that the Hamilto-
nian Hy has a state localized at the first site: Py, = [1){1| + €'Y
with a small €. For small I" both hypothesis (i) and (ii)
hold. Moreover, Fact 1 holds with € = I'e’: C(¢) = e~/%on +
O(€'T"). The coherence time is given in this case by Tcglll =
(T/2)(1 = [{kol1)]*) + O(T?).
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