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One dimensional topological insulators are characterized by edge states with exponentially small energies.
According to one generalization of topological phase to non-Hermitian systems, a finite system in a non-trivial
topological phase displays surface states with exponentially long life times. In this work we explore the possi-
bility of exploiting such non-Hermitian topological phases to enhance the quantum coherence of a fiducial qubit
embedded in a dissipative environment. We first show that a network of qubits interacting with lossy cavities
can be represented, in a suitable super-one-particle sector, by a non-Hermitian “Hamiltonian” of the desired
form. We then study, both analytically and numerically, one-dimensional geometries with up to three sites per
unit cell, and up to a topological winding numberW = 2. For finite-size systems the number of edge modes is a
complicated function ofW and the system sizeN . However we find that there are preciselyW modes localized
at one end of the chain. In such topological phases the quibt’s coherence lifetime is exponentially large in the
system size. We verify that, for W > 1, at large times, the Lindbladian evolution is approximately a non-trivial
unitary. For W = 2 this results in Rabi-like oscillations of the qubit’s coherence measure.

I. INTRODUCTION

There is a growing interest in the study of non-Hermitian
generalizations of topological phases of matter [1–10] which
can be observed in dissipative systems. Topological features
are potentially useful, as they tend to be robust with respect
to small perturbations and local noise sources. In this work
we explore the possibility of exploiting such, non-trivial, non-
Hermitian topological phases to protect the coherence of a
preferential qubit in a network of dissipative cavities.

Since eigenvalues of non-Hermitian matrices are complex
there are at least two possible definitions of topological phases
in non-Hermitian systems [3, 9]. These definitions differ in
how one generalizes the Hermitian notion of gap: namely
one can consider either the real or the imaginary part of the
eigenvalues. According to the imaginary-part classification of
Ref. [9], as a consequence of a generalized bulk-edge corre-
spondence, a non-trivial topological dissipative phase is char-
acterized at finite size by the presence of quasi-dark states lo-
calized at the boundary of the system. By quasi-dark states
we mean eigenstates of the system that have a decay time ex-
ponentially large in the system size. It is natural to expect
that this feature may be useful to protect quantum coherence.
Indeed, as we will show, if a fiducial qubit is placed at one
end of a linear system, both these features, localization and
darkness, conspire to preserve its coherence in a well defined
way.

In recent experiments such non-Hermitian systems – in fact
essentially non-Hermitian quantum walks – can be observed
in classical waveguides using the analogy between Helmoltz
and Schrödinger equation [6]. In Ref. [1] it was proposed that
a non-Hermitian version of the Su-Schrieffer-Heeger (SSH)
model [11] could emerge from a single resonator described by
a Jaynes-Cummings model in the semi-classical, large-photon
number regime.

Here we consider a network of dissipative cavity resonators
interacting à-la Jaynes-Cummings. This model is known to
describe the physics of many experimental quantum plat-
forms, ranging from superconducting qubits to arrays of mi-

crocavities [12]. We show that, in an appropriate super-one-
particle sector, the Lindbladian is precisely given by a non-
Hermitian quantum walk determined by the network geome-
try. Moreover, the coherence of a preferential qubit in the net-
work is exactly described by the Schrödinger evolution with
such a “non-Hermitian Hamiltonian”.

Having in mind the goal of prolonging the coherence, we
analyze analytically, and confirm numerically, the behavior of
the coherence for various finite size networks. The simplest of
such a networks is a non-Hermitian single impurity, both di-
agonal and off-diagonal. We then consider topologically non-
trivial models, such as a non-Hermitian SSH model, that can
have topological charge zero or one. In finite size, there are al-
ways two dark modes for N odd while there is one quasi-dark
mode in the topologically non-trivial sector forN even. How-
ever there is always (irrespective of N ) a dark or quasi-dark
mode localized at one end of the chain. An analogous situa-
tion is found in models with three sites per unit cell, were the
topological winding number W can be zero, one or two. The
exact number of quasi-dark modes is not a simple function of
W alone. However we find precisely W dark or quasi-dark
modes localized at one end of the chain. In the case W = 2,
the long-time dynamics of the dissipative network becomes
unitary, spanning a two-dimensional space were the coherence
shows Rabi-like oscillations.

II. SETTING THE STAGE

Our model is a network of dissipative Jaynes-Cummings
cavities. To make it more general, we allow qubits to inter-
act with more than one cavity, although this may be exper-
imentally challenging to realize. We imagine a network of
M qubits interacting with K cavity modes. Excitations can
hop from mode to mode and also from qubit to mode. At this
stage we don’t include hopping from qubit to qubit, as this
is definitely harder to realize. Our goal will be to monitor,
and possibly enhance, the coherence of a fiducial qubit in this
network.
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We assume the standard rotating-wave approximation, such
that the coherent part of the evolution is given by the following
Hamiltonian:

H =

M∑
i=1

ω0
i σ

z
i +

K∑
l,m=1

Jl,m(a†l am + h.c.) (1)

+

K∑
l=1

ωla
†
l al +

M∑
i=1

K∑
l=1

κl,i(a
†
lσ
−
i + h.c.), (2)

where a†l and al are the creation and annihilation operators
for the cavity mode l and σ±i are the ladder operators for qubit
i. On top of this, cavities leak photons at rate Γl. A Lindblad
master equation for the system can be written as ρ̇ = L[ρ]
with L = K+D. The coherent term is K = −i [H, •] and the
dissipative part reads

D[ρ] =

K∑
l=1

Γl[alρa
†
l −

1

2
{a†l al, ρ}], (3)

i.e., we assume sufficiently low temperatures such that no
photons are excited via interaction with the bath. An exam-
ple of such a dissipative network with M = 4 and K = 5
is schematically depicted in Fig. 1. Let i = 1 indicate the
fiducial qubit. In order to study the evolution of the qubit’s
coherence, we initialize it in a pure state α| ↑〉+ β| ↓〉, while
we require that all cavities be empty and all other qubits in
the | ↓〉 state. We denote with |0〉 the overall vacuum (cav-
ities with no photons and qubits in the | ↓〉 state) and |j〉,
j = 1, . . . , N ≡ M + K the state with an excitation, ei-
ther bosonic or spin-like, at position j, with j = 1 denoting
the fiducial qubit and j = 2, 3, . . . , N the remaining cav-
ities/qubits. With this initial condition the relevant Hilbert
space is H = Span {|0〉, |j〉, j = 1, . . . , N}, and the dynam-
ics are restricted to the space V = L(H). A density matrix in

FIG. 1. A general network of qubits interacting with lossy cavities.
Wavy lines indicate coherent hopping and straight arrows incoherent
decay.

V has the form

ρ = ρ0,0|0〉〈0|+

 N∑
j=1

ρ0,j |0〉〈j|+ h.c.

 (4)

+

N∑
i,j=1

ρi,j |i〉〈j|. (5)

After tracing out all but the qubit degrees of freedom, the re-
duced qubit density matrix reads

ρqubit =

(
ρ0,0 +

N∑
i=1

ρi,i

)
| ↓〉〈↓ |

+ (ρ0,1| ↓〉〈↑ |+ h.c.) + ρ1,1| ↑〉〈↑ |. (6)

A coherence measure of the qubit can be defined as [13]

C(t) =
∑

i,j(i 6=j)

∣∣∣ρqubit
i,j (t)

∣∣∣ . (7)

Using equation (6) we obtain C = 2 |ρ0,1|.

III. MAPPING TO A NON-HERMITIAN TIGHT-BINDING
MODEL

If we initialize the system with at most one excitation,
the Lindbladian generates states with at most one exci-
tation and the dynamics are contained in the sector V .
We are then led to consider the following linear spaces
V0,0 = Span (|0〉〈0|), V0,1 = Span ({|0〉〈j|, j = 1, . . . , N}),
V1,0 = Span ({|j〉〈0|, j = 1, . . . , N}) and V1,1 =
Span ({|i〉〈j|, i, j = 1, . . . , N}). The Hamiltonian conserves
the number of excitations so the coherent part K is block di-
agonal in the reduced space V = V0,0 ⊕ V0,1 ⊕ V1,0 ⊕ V1,1.
Moreover

D(|0〉〈0|) = 0 (8)

D(|0〉〈j|) = −Γj
2
|0〉〈j| (9)

D(|i〉〈j|) = Γiδi,j |0〉〈0| −
1

2
(Γi + Γj) |i〉〈j|. (10)

Note that Γi = 0 for i = qubit site, as we are ignoring the
spontaneous decay of the qubits (typically much smaller than
cavity loss rate). This implies that on V the Lindbladian has
the following block-structure (asterisks denote the only non-
zero elements) in V = V0,0 ⊕ V0,1 ⊕ V1,0 ⊕ V1,1

L|V =



0 ∗ ∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


. (11)
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We also call L̃ = L|V0,1 the restriction of L to V0,1 and,

in this basis, one has L|V1,0 = L̃ (overline indicates com-
plex conjugate). Clearly the vacuum |0〉〈0| is a steady state
(with eigenvalue zero). We use the following notation for the
Hilbert-Schmidt scalar product in V: 〈〈x|y〉〉 = Tr(x†y) and
use the identification |j〉〉 ↔ |0〉〈j| for j = 1, . . . , N which
defines a basis of V0,1.

According to Eq. (7) we need the matrix element
[ρ(t)]0,1 = 〈0|ρ(t)|1〉 = 〈〈1|ρ(t)〉〉. Because of the
block-structure of the Lindbladian one obtains [ρ(t)]0,1 =

〈〈1|etL|ρ(0)〉〉 = 〈〈1|etL̃|ρ̃(0)〉〉,where we indicated with ρ̃(0)
the projection of ρ(0) to V0,1 according to the above direct
sum decomposition of V . Note that if the qubit is initialized
in the state α| ↑〉+ β| ↓〉, we have ρ̃(0) = αβ|0〉〈1| or equiv-
alently |ρ̃(0)〉〉 = αβ|1〉〉. In the following we will always con-
sider αβ = 1/2, i.e. maximal initial coherence, such that

C(t) =
∣∣∣〈〈1|etL̃|1〉〉∣∣∣ . (12)

As usual we can identify V0,1 ' CN , and the Hilbert-Schmidt
scalar product carries over to the `2 scalar product. We also
use the the norm ‖x‖ =

√
〈〈x|x〉〉 for x ∈ V0,1 and the induced

norm for elements of L(V0,1). Since the basis |j〉〉 is orthonor-
mal, Hilbert-Schimdt adjoint simply corresponds to transpo-
sition and complex conjugation in this basis. With these iden-
tifications the setting resembles that of standard one-particle
quantum mechanics, with the important difference that oper-
ators are not Hermitian. For example, for the case of a single
qubit, M = 1, interacting with a single cavity and cavities
connected on a linear geometry Ji = Ji,i+1 (see Figure 2 for
a schematic picture), the matrix L̃ becomes

L̃ = −i


ω0

1 κ 0 · · · 0
κ ω1 − iΓ1

2 J1 · · · 0
0 J1 ω2 − iΓ2

2 · · · 0
...

...
...

. . . JK
0 0 0 JK ωK − iΓK

2

 ≡ −iH,
(13)

where we also defined the matrix H which is a non-Hermitian
generalization of a tight-binding chain.

Remark. The `2 scalar product (and corresponding norm)
in V0,1 is natural in that, via Hilbert-Schmidt, allows to move
from Schrödinger to Heisenberg representation. However in
this setting, the `2 moduli square are not probabilities. Con-
servation of quantum-mechanical probabilities is enforced by
the complete positivity and trace preserving property of the
full map etL for t ≥ 0. Trace conservation in turn implies
〈〈1I|L = 0. This property, however, does not carry over to
the restricted generator L̃. What can still be said is that the
eigenvalues of L̃, since they are a subset of those of L, fulfill
Re(λ) ≤ 0.

In general C(t) will decay in time starting form its maxi-
mum value 1 at t = 0. From Eq. (12) we realize that our
goal is to make a particular matrix element of the restricted
evolution etL̃, have large absolute value for possibly large

FIG. 2. The “single impurity model”: a qubit in a cavity connected
to a linear array of cavities.

times. In fact, ideally we would like: i) L̃1〉〉 = λ1|1〉〉 and
ii) Re(−λ1) = 0. Both of these conditions can be trivially
achieved simply setting κl,1 = 0, ∀l. However this entirely
decouples the qubit from the rest of the network which means
one does not have a way to address the qubit anymore - in fact
experimenters generally try to increase the qubit-mode cou-
pling. In view of this we replace the two conditions above
with the more physical requirements, i’) L̃|1〉〉 ≈ λ1|1〉〉 and
ii’) Re(−λ1) as small as possible.

Condition ii’) (that there exist an eigenvalue of L̃ with al-
most zero real part) resembles the condition for having an ap-
proximate zero mode familiar in (Hermitian) topological in-
sulators. More generally, in a linear geometry, a way to fulfill
conditions i’) and ii’) is to find, approximate, non-Hermitian,
topological zero mode of L̃. Non-Hermitian generalization of
topological insulators have been studied to some extent (see
e.g., [1, 3, 6, 14]). In particular we will be concerned with
finite size systems which have not been discussed in the liter-
ature so-far. Before turning to topological models let us first
consider what seems to be the simplest geometry.

IV. SINGLE IMPURITY

The simplest case is that of linear geometry with a single
impurity (see Fig. (2)), i.e. we set Ji = J , Γi = Γ and also
ωi = ω0

i (no detuning) in Eq. (13):

H =


0 κ 0 · · · 0
κ iΓ

2 J · · · 0
0 J iΓ

2 · · · 0
...

...
...

. . . J
0 0 0 J iΓ

2

 . (14)

This is a non-Hermitian generalization of a single impurity
in a tight binding chain [15]. For N = 3 this model has
been investigated in [16, 17], where it was established that
adding one auxiliary cavity to a dissipative optical cavity
coupled to a qubit can significantly increase the coherence
time of the qubit. An equation for the eigenvalues can be
found using the techniques to diagonalize tridiagonal matri-
ces. The eigenvalues of the matrix (14) L̃ can be written as
λk = −i2J cos(k) − Γ/2, where k is a (possibly complex)
quasi-momentum that satisfies the following equation

[2 cos(k) + ia] sin(kN)− β2 sin(k(N − 1)) = 0, (15)

where a = Γ/(2J), β = κ/J . In order to look for a local-
ized state we look for a solution of the above equation with
complex k = x + iy. Essentially the localization length is
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FIG. 3. Behavior of the coherence for the single impurity model.
Continuous lines are numerical simulation and dashed lines are
Eqns. (18-19). Dissipation is fixed to Γ = 4J . The results forN = 4
are indistinguishable from those at N = 400.

given by ζ = y−1. More details are provided in Appendix A.
Neglecting terms of order O

(
e−N |y|

)
the eigenvalues of L̃ of

such localized modes are given by

λ± = − 4κ2

Γ±
√

16(J2 − κ2) + Γ2
+O

(
e−N |y|

)
. (16)

This formula is valid in regions where Re(λ±) < 0. In such
cases the localization length is given by

ζ = 1/ ln

∣∣∣∣∣ 4J

Γ±
√

16(J2 − κ2) + Γ2

∣∣∣∣∣ . (17)

For κ/Γ small (strong dissipative regime), using a perturba-
tive argument (more details in Appendix (B)), one can show
that the coherence has approximately the form of a single ex-
ponential decay e−t/τ0 , with τ−1

0 = 2κ2/Γ. Using Eq. (16)
the eigenvalue connected with τ−1

0 is λ+. By continuity, we
can now we can use the expression for the localized mode
outside from the strict perturbative region. In other words we
have

C(t) ≈ e−t/τ (18)

τ = Re
[Γ +

√
16(J2 − κ2) + Γ2

4κ2

]
. (19)

The above equations are extremely accurate in the region of
small κ but surprisingly are quite accurate also for large κ.
Increasing κ one starts observing non-Markovian oscillations
in the coherence also noted in [17] at an energy scale of the
order of J2 + Γ2/16 (when the square root term in Eq. (19)
becomes imaginary). In this regime Eq. (18) describes well
the envelope of the coherence. See Fig. 3 for comparisons
with numerics.

V. TOPOLOGICAL CLASSIFICATION OF DISSIPATIVE
SYSTEMS

We recall here for completeness the basics of the topolog-
ical classification of models of Ref. [9] (see also [3]). Since
eigenvalues are now complex, there are at least two ways to
generalize this notion to the non-Hermitian world. Namely
one may extend the role played by the Hermitian gap to ei-
ther the imaginary or the real part of the eigenvalues. Two
points in parameter space are defined to be in the same phase
if the corresponding (non-Hermitian) Hamiltonians can be
smoothly connected without closing the imaginary (resp. real)
part of the eigenvalues. For the “imaginary-gap” classifica-
tion of Ref. [9], according to a generalized bulk-edge corre-
spondence, a non-trivial phase at finite size would have edge
modes with infinite or exponentially large life-time. Clearly
this is the relevant classification in our context.

We assume a periodic linear chain with n sites per unit
cell such that, in the thermodynamic limit, the Hamiltonian
is given by H =

¸
dk/(2π)

∑
α,β Hα,β(k)|k, α〉〉〈〈k, β| and

we simply need to focus on the n × n Bloch matrix H(k).
The dissipation has the special form shown in Sec. III which
consists of imaginary terms on the diagonal (of negative imag-
inary part). Without constraint such models are topologically
trivial if the number of leaky sites per cell is greater than one
[9]. We then focus on the case where there is only one leaky
site per cell. As shown in [9], any such H(k) that does not
admit a dark state can be written in the following way

H(k) =

(
U(k) 0

0 1

)(
h̃(k) ṽk
ṽ†k ∆(k)− iΓ

)(
U(k)† 0

0 1

)
,

(20)
where h̃(k) is an (n − 1) × (n − 1) diagonal matrix with
real eigenvalues, U(k) is an (n − 1) × (n − 1) unitary such
that the (n − 1) dimensional vector ṽk has real and positive
components. In Ref. [9] it is further shown that the winding
number of H reduces than to the winding number of U(k)
which is given by

W =

˛
dk

2πi
∂k ln det(U(k)). (21)

From what we have said, in a non-trivial topological phase,
at finite size one expects to observe dark states localized
at the edges. Such a dark (or quasi-dark) state |ξ〉〉 fulfills
L̃|ξ〉〉 = λ|ξ〉〉 with Re(λ) ' 0. However, given the structure
of the space V0,1 all such states are e.g. traceless. Hence these
are not strictly quantum states, they are in fact off-diagonal
elements of a quantum state. In the quantum-chemistry com-
munity these are sometimes called coherences.

We would like to conclude this section by reminding a gen-
eral result for completely positive maps/semigroups. We as-
sume here finite dimensionality. Let the Jordan decomposition
of L be L =

∑
k λkPk+D whereD is the nilpotent part. De-

fine the projector onto the dark states sector as

Pds =
∑

k,Re(λk)=0

Pk. (22)



5

Decomposing the Liouville space as 1I = Pds ⊕ (1I − Pds)
one has etL =Wt ⊕Rt whereWt is the part of the evolution
inside the dark-state sector: Wt = PdsWt = WtPds and the
remaining term Rt can be made as small as one wishes in
norm, by taking larger t. It can be shown (see Theorem 6.16 of
[18]) thatWt is a unitary evolution, more preciselyWt[ρ0] =

Utρ̃0U
†
t where the state ρ̃0 is partly determined by the initial

state ρ0. In other words, the time evolution inside the dark
state sector is unitary.

VI. NON-HERMITIAN SSH MODEL

To start we consider the model given by the following non-
Hermitian generalization of the SSH Hamiltonian (for sim-
plicity we rename all hopping constants Ji both for qubit-
mode and mode-mode hopping)

H =


0 J1 0 0 0
J1 −iΓ J2 0 0
0 J2 0 J1 0

0 0 J1 −iΓ
. . .

0 0 0
. . . . . .

 . (23)

One may obtain an intuitive understanding of the model by
considering the periodic boundary conditions version of the
above. In that case it suffices to consider the 2 × 2 Bloch
Hamiltonian

H(k) =

(
0 vk
vk −iΓ

)
, (24)

with vk = J1 + J2e
ik. Model (24) is, up to a constant term,

pseudo-anti-Hermitian, in that H̃(k) := H(k)+ i(Γ/2)1I satis-

fies σz
[
H̃(k)

]†
σz = −H̃(k). Moreover H̃(k) is a linear com-

bination of the matrices {−σx,−σy, iσz} which span the Lie
algebra of SU(1, 1) (S(1, 1) in turn is the group of 2×2 com-
plex matrices U satisfying U†σzU = σz and det(U) = 1).
Model (24) is then also referred to as SU(1, 1) model [3]. The
more familiar, Hermitian, SSH model being a SU(2) model.

The eigenvalues of Eq. (24) are simply

λk,± = −iΓ
2
±
√
|vk|2 −

Γ2

4
(25)

= −iΓ
2
±
√
J2

1 + J2
2 + 2J1J2 cos(k)− Γ2

4
, (26)

with momenta given by k = 4πn/N (N even). For example,
if Γ2/4 < v2

min ≡ (J2
1 + J2

2 − 2 |J1J2|), the square root
term above is real and all the modes decay at a rate Γ/2. This
model admits a topological phase characterized by a winding
number according to the “imaginary gap” classification of [9].
The winding number W Eq. ((21)) turns out to be analogous
to that of the Hermitian SSH model, and it simply counts the
number of times the vector J1+J2e

ik winds around the origin
as k moves around the Brillouin zone [0, 2π). Consequently
W = 1 for |J2| > |J1| while W = 0 for |J2| < |J1| [19].

FIG. 4. Non-Hermitian SSH model Eq. (23) for N odd.

This picture gets modified for an open chain. Most impor-
tantly, as a consequence of the topological character of the
model and the so-called bulk-edge correspondence, there will
appear edge state(s) localized at the boundary of the chain.
The calculations are different depending on whetherN is even
or odd. We fix the geometry by fixing the dissipation to act
only on the even sites as in Eq. (23).

A. N odd

For N odd the configuration of the bonds is given in Fig. 4.
For N odd there is always one edge state irrespective of the
values of J1, J2. In this case the edge-mode has exactly zero
eigenvalue i.e., is a dark state. The edge mode is localized at
the site where the weak link is (whether it is J1 or J2). Clearly
the transition is at J1 = J2. If J1 is the weak link we can write
such an edge mode as

|ξL〉〉 = A



eik

0
e3ik

0
e5ik

...
eNik


(27)

where A is a normalization factor. One finds that H|ξL〉〉 = 0
provided J1 +J2e

2ik = 0. Under this condition |ξL〉〉 is a dark
state. From this equation we see that

|〈〈n|ξL〉〉|2 = A2e−nδ

for n odd, where δ ≡ ln(J2/J1) > 0 was assumed to be
positive. Hence we call ` ≡ 1/ ln(J2/J1) the localization
length of the edge modes. Fixing the normalization one finds

A2 =
1− x2

x− xN+2
, (28)

with x = |J1/J2| < 1.
The case |J2| < |J1| can be reduced to the previous one by

a left-right symmetry transformation. Under this transforma-
tion the dark state is mapped onto |ξR〉〉 which is localized at
the opposite end of the chain.

Recalling the result for the periodic case one sees that, in
general, the other, non-localized, modes decay on a relaxation
time-scale given by τrelax ≈ Γ−1O(1). Coming to the be-
havior of the coherence we see that, after a time τrelax all but
the mode |ξL〉〉 will have decayed. Hence the coherence, for
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t > τrelax, is approximately given by

C(t) =

∣∣∣∣∣∑
k

eλkt〈〈1|Pk1〉〉

∣∣∣∣∣
≈ |〈〈1|ξL〉〉〈〈ξL|1〉〉| = |〈〈ξL|1〉〉|2

=
1− x2

1− xN+1
. (29)

Note that, since x < 1, this is a decreasing function ofN . The
largest value with N > 1, odd, is obtained for N = 3.

For |J2| < |J1| the role of |ξL〉〉 and |ξR〉〉 are reversed.
Hence now the dark state is localized at the end of the chain.
After a time τrelax the coherence drops to a value C(t) '
|〈〈ξR|1〉〉|2 = |〈〈ξL|N〉〉|2 = zN−1(1−z2)(1−zN+1)−1, where
z is now z = |J2/J1|, i.e. an exponentially small value. The
two asymptotic expressions are in fact the same and can be
combined in a single expression valid for all J1, J2

C(t) '

{
JN−1

2
J2
2−J

2
1

JN+1
2 −JN+1

1

J1 6= J2

2
N+1 J1 = J2

. (30)

To summarize, for N odd there is always an exact localized
dark state for all values of parameters and consequently an in-
finite lifetime of the coherence’s qubit. However, in the topo-
logically trivial phase W = 0 (|J1| > |J2|) the edge mode is
localized at the opposite end of the chain, and the asymptotic
value of the coherence is exponentially small. The numeri-
cal simulations confirm that a non-trivial topological winding
number has a strong effect on the coherence time of the qubit,
as illustrated on Fig. 5.

To connect with the previous discussion we see that, in gen-
eral we satisfy the requirement ii’) (there is an eigenmode with
Re(λ) = 0), but not necessarily i’) . In other words, in gen-
eral |ξL〉〉〈〈ξL| is not close to |1〉〉〈〈1|. We progressively enter
this regime when the localization length becomes very short
(or δ very large). Clearly this happens when |J2| � |J1|.

B. N even

For N is even the configuration of the links is depicted
in Fig. 6. When N is even, |ξL〉〉 of Eq. ((27)) does not sat-
isfy the last row of the eigenvalue equation but rather one has
H|ξL〉〉 = J1e

ik(N−1)|N〉〉. This is consistent with our expecta-
tion of an exponentially small eigenvalue. The exact diagonal-
ization of the model can be found in [20] (see also [21, 22]).
For N even edge modes appear for d ≡ J2/J1 > 1 + 2/N .
This is an interesting effect as one can in principle enter the
topologically non-trivial phase for fixed values of the parame-
ters by only changing N . The eigenvalues of the edge modes
are given by [20]

λ± = −iΓ
2
±
√
J2

1 + J2
2 + 2J1J2 cosh(y)− Γ2

4
(31)

where y satisfies

sinh(
N

2
y) = x sinh

[
(
N

2
+ 1)y

]
. (32)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

FIG. 5. Behavior of the coherence in the non-Hermitian SSH model
with an odd number of sites. Continuous lines are results in the topo-
logical phase (W = 1) with parameters J1 = 1, J2 = 1.8 and
Γ = 0.5. Dashed lines are for the topologically trivial phase (W = 0
, J1 = 1, J2 = 0.5 Γ = 0.5). The thin dashed lines are the asymp-
totic values given by Eq. (30). The qubit has infinite lifetime for all
values of parameters, but the asymptotic coherence is exponentially
small in the topologically trivial region.

FIG. 6. Non-Hermitian SSH model Eq. (23) for N even.

For N large the solution of Eq. (32) approaches ey = d. Up
to first order in d−N one obtains that the solution of Eq. (32)
is

ey = d+ d−N
(
d−1 − d

)
+O(d−2N ). (33)

Plugging the above into Eq. (32) one finds

λ+ = −iJ
2
1

Γ
d−N

(
d−1 − d

)2
(34)

λ− = −iΓ + i
J2

1

Γ
d−N

(
d−1 − d

)2
. (35)

The λ+ eigenvalue corresponds to the mode localized at the
first site of the chain. Moreover, even if there are two localized
modes, only one of them has exponentially large life-time in
the system size. So for N even the the left edge mode has
a coherence time of τcoh = ΓJ−2

1 dN (d−1 − d)−2. The λ−
eigenvalue corresponds to edge mode localized at the end of
the chain, with fastest decay time.

In order to compute the coherence we need the first compo-
nent of the edge mode |ξ+〉〉. It turns out that (see [20])

|〈〈1|ξ+〉〉|2 =
4 sinh2(Ny/2)[

sinh[(N+1)y]
sinh(y) − (N + 1)

] λ+ + iΓ

2λ+ + iΓ
. (36)

Since λ+ is exponentially small, the last fraction is expo-
nentially close to 1 and can be evaluated up to d−N using
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0 10 20 30 40
tJ1

0

0.2

0.4

0.6
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1
C(

t)
N = 6; W = 1
N = 8; W = 1
N = 10; W = 1
N = 20; W = 1
N = 6; W = 0
N = 8; W = 0

FIG. 7. Behavior of the coherence in the non-Hermitian SSH model
with an even number of sites. Continuous lines are results in the
topological phase (W = 1) with parameters J1 = 1, J2 = 1.8 and
Γ = 0.5. Increasing N has the effect of exponentially increasing
the (coherence) time-scale τcoh at which the approximate dark state
starts decaying. Dashed lines are for the topologically trivial phase
(W = 0 , J1 = 1, J2 = 0.5 Γ = 0.5). For N = 10, 20 the plot is
indistinguishable from that of N = 8. The thin dashed lines is the
asymptotic value given by Eq. (37).

N τcoh |〈〈ξ+|1〉〉|2

Exact Theory Exact Theory

6 6.9367 10.9813 0.5355 0.6638
8 31.8117 35.5794 0.6715 0.6915
10 111.1859 115.2774 0.6888 0.6941
20 4.1153× 104 4.1159× 104 0.6914 0.6914

TABLE I. Comparison of exact numerics with the approximate the-
oretical formulae. Parameters are J1 = 1, J2 = 1.8 and Γ = 0.5.

Eq. (34). For the remaining terms we plug in the asymptotic
value y = ln(d) and obtain

|〈〈1|ξ+〉〉|2 =

(
1 +

J2
1

Γ2 x
N
(
x− x−1

)2)
(1− x2)−1 − xN (N + 1)

+O(x2N )

= 1− x2 + xN
(
1− x2

)2×
×
(

(N + 1)− 1− x2

x2

J2
1

Γ2

)
+O(x2N ) (37)

In this case the state |ξ+〉〉 is not an exact dark state and it
will start decaying at a time around τcoh. As for the odd case,
the other states decay after a time τrelax = Γ−1O(1). Hence,
whenever there is a separation of time-scales τcoh > τrelax,
one will observe a coherence of C(t) ≈ |〈〈1|ξ+〉〉|2 for times
roughly in the window t ∈ [τrelax, τcoh]. Numerical exper-
iments for the even case are shown in Fig. 7. In table I we
show comparisons of the numerics with the analytic expres-
sions.

FIG. 8. Model (38) with a three-site unit cell.

VII. THREE-SITE UNIT CELL

We now turn to a case where the unit cell consists of three
sites. According to the prescription of Ref. [9] we consider
only one leaking site per cell. We allow for nearest neighbor
hopping and also between the first and third site in the cell
(see Fig. (8)). As we will see, this geometry will allow us to
have topological number of 0, 1 and 2. The Hamiltonian is

H =
∑
x

(
J1|x, 1〉〉〈〈x, 2|+ J2|x, 2〉〉〈〈x, 3|+ J3|x, 3〉〉〈〈x+ 1, 1|

+ J |x, 1〉〉〈〈x, 3|+ h.c.
)

+∑
x

(
ε1|x, 1〉〉〈〈x, 1|+ ε2|x, 2〉〉〈〈x, 2| − iΓ|x, 3〉〉〈〈x, 3|

)
.

(38)

For periodic boundary conditions the corresponding Bloch
Hamiltonian reads

H(k) =

 ε1 J1 J3e
ik + J

J1 ε2 J2

J3e
−ik + J J2 −iΓ

 .

Using Eq. (21) it can be shown that the winding number is
given by

W = Θ(|J3| > |J + J2 tan(ϑ/2)|)
+ Θ(|J3| > |J − J2 cot(ϑ/2)|), (39)

where Θ(true) = 1, Θ(false) = 0 and ϑ = arccos[(ε1 −
ε2)/

√
4J2

1 + (ε1 − ε2)]. The above quantity can assume the
values W = 0, 1, 2. The value W = 2 can be obtained, for
example, by taking J3 sufficiently large. When W = 2 the
open, finite size chain has two edge modes per end. This gives
the possibility to encode a qubit in the dark state manifold of
the model. In the following we restrict to the case ε2 = ε1 = ε
for which

W = Θ(|J3| > |J + J2|) + Θ(|J3| > |J − J2|). (40)

As we can see from the above the presence of the two-sites
hopping J is not necessary for having W = 2 but it allows to
have W = 1.

As we have seen in section VI, at finite size the exact num-
ber of edge modes can be a complicated function of N and
the other parameters of the models. For the model of Eq. (38),
we have verified numerically that for N = 3p + 2 there are
always (irrespective of W ) two edge modes with imaginary
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part of the eigenvalues exactly equal to zero. In other words
there are always two exact dark states. However, we have also
checked that essentially only W of them are localized on the
qubit site. For N mod 3 6= 2 our simulations suggest that
there are W edge modes with life-time exponentially large in
the system size (see Fig. 9). Moreover, precisely W of them
are localized at the qubit site. This picture is consistent with
what we have found analytically in sec. VI. In other words,
there are always (for all N ) W dark or quasi-dark modes lo-
calized at the qubit site. Since, as we have seen, the behavior
of the coherence is not only dictated by the number of local-
ized modes, but rather by the modes localized at the qubit, the
value of W has a strong impact on the coherence.

From what we have said so far, the behavior of the coher-
ence of the first qubit is now clear. For W = 0 the coherence
decays to zero after a time τrelax = Γ−1O(1) or it saturates to
an exponentially small value in N if N = 3p + 2. For times
τrelax . t . τcoh, for W = 1 it saturates to an amount given
by C(t) ' |〈〈1|ξ1〉〉|2 where |ξ1〉〉 is the dark state localized at
the left of the chain. For W = 2 the coherence will oscillate
between two values in a similar way as in Rabi oscillations,
C(t) '

∣∣∣e−iω1t |〈〈1|ξ1〉〉|2 + e−iω2t |〈〈1|ξ2〉〉|2
∣∣∣ where |ξ1,2〉〉 are

the two dark states localized at the left with (real) eigenvalues
ω1,2. The time-scale τcoh is infinite for N = 3p+2 and expo-
nentially large in N otherwise. A plot of the behavior of the
coherence in different topological sectors is shown in Fig. 10.

10 20 30 40 50

-12

-10

-8

-6

-4

-2

FIG. 9. Scaling of the imaginary part of the eigenvalues of the edge
modes, for different topological sectors and different values of N
mod 3. For N = 3p + 2 we have observed always two exact
dark states(Im(λk) = 0) for all parameters values. This simula-
tions suggest that, for N mod 3 6= 2 there are W edge modes
with exponentially large life-time. Parameters are ε1 = ε2 = 0,
J1 = 1.4, J2 = 0.3, J = 0.7, Γ = 1.5 and J3 = 1 for W = 1
while J3 = 3 for W = 2.

Finally, let us comment on the long-time behavior of the
full Lindbladian evolution. For N = 3p+ 2 there is an exact,
non-trivial dark space and so, for what we have said at the end
of section V, the evolution inside this dark space is unitary.
When N mod 3 6= 2 and W = 2 there are two modes with
life-time τcoh exponentially large in N . In this case an exact
dark space sector cannot be defined, however we have veri-

0 20 40 60 80 100
tJ1

0

0.2

0.4

0.6

0.8

1

C(
t)

W = 0
W = 1
W = 2

FIG. 10. Behavior of the coherence in the linear chain with three sites
per cell Eq. (38). In this case the winding number can assume values
W = 0, 1, 2. W also counts the number of edge modes localized
near the first qubit. For W = 2 the dark state manifold is a qubit and
one sees Rabi oscillations in the coherence. Parameters are J1 =
1, ε = 0, Γ = 0.5, J2 = 0.3, J = 0.7 and J3 fixes the value of W :
J3 = 0.2 (W = 0), J3 = 0.7, (W = 1), and J3 = 2, (W = 2).

fied that the dynamics are approximately unitary for times t
in the window τrelax . t . τcoh. In this sense the term Rabi
oscillations is accurate.

VIII. CONCLUSIONS

Non-Hermitian topological phases in a finite system per-
mit the construction of states whose decay time is either infi-
nite or exponentially large in the system size. This feature is
extremely appealing from the point of view of creating long-
lived quantum bits. In this work we have shown that networks
of qubits interacting with lossy cavities may be configured to
possess non-trivial topological structure. For networks with a
simple linear geometry, we have found that localization and
long-livedness of the topological edge modes both concur to
increase dramatically the coherence of a qubit sitting at the
end of the chain. Specifically, a non-zero topological wind-
ing number W results in an exponentially long lived qubit.
Although at finite size the exact number of edge modes is a
complicated function of W and N , there are always W edge
modes localized at one end of the chain. For W = 2 we
find that the long-time dissipative, Lindbladian evolution be-
comes approximately unitary, and the coherence of the qubit
displays long-lived Rabi-oscillations. In general, such long-
lived, topological edge modes, are not legitimate quantum
states, but rather they are off-diagonal elements of quantum
a states or, coherences. The possibility of using such long-
lived coherences for quantum computation is an interesting
and challenging task for future studies.
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Appendix A: “Single impurity” case

Through shift and rescaling L̃ = iJH′− (Γ/2)1I we are led
to consider the following matrix

H′ =


−ia β 0 · · · 0

β 0 1 · · · 0

0 1 0 · · · 0
...

...
...

. . . 1

0 0 0 1 0

 . (A1)

We write the eigenvalues as 2 cos(k). It can be shown that k
satisfies the following equation (both for N even and odd)

[2 cos(k) + ia] sin(kN)− β2 sin(k(N − 1)) = 0, (A2)

and one can restrict oneself to 0 < Re(k) < π. In order
to look for localized states we look for a complex root of
Eq. ((A2)). Hence we set k = x + iy. Plugging this in the
above and forgetting terms e−L|y| we obtain

(2 cos(k) + ia) = β2 sin(k(L− 1))

sin(kL)
' β2

{
eixe−y y > 0

e−ixey y < 0

(A3)
We also set ik = q.
Case y > 0. The equation is

2 cosh(q) + ia = β2eq

setting z = eq one finds

q = ln

(
(−i)

a±
√
a2 + 4(1− β2)

2(1− β2)

)
and the corresponding eigenvalues

λ = −i β2

2 (1− β2)

(
a±

√
a2 + 4(1− β2)

)
− ia. (A4)

We need to make sure that y = −Re(q) > 0. From this we
obtain Re(ln(z)) = ln |z| < 0 or |z| < 1.

Case y < 0. Now the equation is

2 cosh(q) + ia = β2e−q

setting z = e−q one finds the same equation as for y > 0.
This means that the eigenvalues have the same from (A4), but
now y < 0 implies |z| > 1.

Going back to the eigenvalues of L̃ = iJH′ − (Γ/2)1I, re-
membering a = Γ/(2J) and β = κ/J we get finally

λ± = − 4κ2

Γ±
√

16(J2 − κ2) + Γ2
+O

(
e−N |y|

)
, (A5)

as shown in the main text.
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Appendix B: Conditions to optimize the coherence decay

In the following we will identify sufficient conditions for
the requirements i’) and ii’). For simplicity we assume that
L̃ can be diagonalized [23] with spectral resolution L̃ =∑
j λjPj . We start analyzing the following consequence of

i’):
Fact 1. Assume i’), i.e. L̃|1〉〉 = λ1|1〉〉 + ε|e〉〉 with ‖e‖ =

O(1). Then, up to an error ε, the evolution of the coherence is
governed by a single exponential, in particular

C(t) =
∣∣etλ1

∣∣+O(ε). (B1)

Proof. We start with the identity

etL̃|1〉〉 = etλ1 |1〉〉+ ε
etL̃ − etλ1

L̃ − λ1

|e〉〉.

We then obtain 〈〈1|etL̃1〉〉 = etλ1 + εη, and taking the
modulus

∣∣∣〈〈1|etL̃1〉〉
∣∣∣ =

∣∣etλ1
∣∣ + εη′ + O(ε2) with |η′| ≤∣∣∣〈〈1| etL̃−etλ1L̃−λ1

e〉〉
∣∣∣ = O(1). Moreover, assuming that L̃ can be

diagonalized, |η′| does not blows up with t, rather

|η′| ≤ ‖e‖
∥∥∥(L̃ − λ1)−1

∥∥∥
∑

j

∣∣etλj ∣∣ ‖Pj‖+
∣∣etλ1

∣∣
= (c+ 1) ‖e‖

∥∥∥(L̃ − λ1)−1
∥∥∥ , (B2)

having set c =
∑
j ‖Pj‖, since Re(λj) ≤ 0 and t ≥ 0.

The same conclusion holds, not surprisingly, using a
slightly relaxed assumption P1 = |1〉〉〈〈1| + εX . Using the
normalization of the projectors PiPj = δi,jPj one obtains
〈〈1|Pj |1〉〉 = Tr(Pj |1〉〉〈〈1|) = Tr[Pj(P1 − εX)]. The latter
expression equals 1 for j = 1 and O(ε) otherwise. Hence

〈〈1|etL̃1〉〉 =
∑
j

etλj Tr(Pj |1〉〉〈〈1|) (B3)

= etλ1 − ε
[

Tr(P1X) +
∑
j 6=1

etλj Tr(PjX)
]
,

(B4)

and the result holds with |η′| ≤
∑
j |Tr(PjX)|. As can be

seen from the absence of the resolvent term, in this case the
error can be made significantly smaller.

Note that if Re(λ) = 0 the leading term of the coherence
does not decay. This fact will be important when discussing
dark or quasi-dark states in topological models.

To gain further insight we analyze the weak and strong dis-
sipative limits.

Fact 2 (strong dissipative limit). Assume a linear geome-
try and a hopping to dissipation ratio |J1/Γ2| = ε sufficiently
small. Then conditions i’) and ii’) are satisfied and in particu-
lar C(t) = e−t/τcoh +O (ε) with τ−1

coh = 2J2
1/Γ2 + J1O(ε2).

Proof. We consider the off-diagonal terms of Eq. (13) as
a perturbation. The spectrum of the unperturbed system is
{0,−Γi/2, i = 2, . . . , N}, and the zero eigenvalue has eigen-
projector |1〉〉〈〈1|. Using (non-Hermitian) perturbation theory,
the first correction to the zero eigenvalue occurs at second or-
der and is given by λ

(2)
1 = −2J2

1/Γ2. The corresponding
eigenprojector is given by P1 = |1〉〉〈〈1|+O (ε) so that we are
in the condition for fact 1 and the result follows. Note that,
since eigenvalues are continuous in their parameters, as long
as there is no level crossing, λ1 is the eigenvalue with real part
closest to zero. In other words the coherence time is given by
the slowest time-scale of L̃.

We define H = H0 + D where H0 (D) is the Hermitian
(anti-Hermitian) part of H. Note that the matrix D is diagonal
in the “position” basis |j〉〉. Since H0 is Hermitian it can be
written as H0 =

∑
k ε

(0)
k |k〉〉〈〈k|, where |k〉〉 are the unperturbed

eigenvectors. Up to first order, the eigenvalues of L̃ become

λk = −iε(0)
k − i〈〈k|D|k〉〉 (B5)

= −iε(0)
k −

1

2

N∑
j=2

Γj |〈〈k|j〉〉|2 . (B6)

In the isotropic case where all the cavities are equal Γj = Γ
and the above becomes

λk = −iε(0)
k −

Γ

2

(
1− |〈〈k|1〉〉|2

)
.

Moreover, assume now that the Hamiltonian H0 has a
state localized at the first site: ∃k0 : |k0〉〉 ≈ |1〉〉. This
means that |1〉〉〈〈1| is an approximate eigenprojector of H0:
Pk0 ≡ |k0〉〉〈〈k0| = |1〉〉〈〈1| + εY with a small ε. Surpris-
ingly |1〉〉〈〈1| is also an eigenprojector of H up to the same
order. In fact the first correction to the eigenprojectors of H
is P (1) = −Pk0DS − SDPk0 where S is the reduce resol-
vent [24]. Plugging in D = −i(Γ/2) (1I− |1〉〉〈〈1|) we ob-
tain P (1) = i(Γ/2)ε [Y ((1I− |1〉〉〈〈1|)S + S (1I− |1〉〉〈〈1|)Y ].
Then |1〉〉〈〈1| is a projector of L̃ up to an error O(Γε). In other
words we have the following

Fact 3 (weak dissipative limit). Assume that the Hamil-
tonian H0 has a state localized at the first site: Pk0 =
|1〉〉〈〈1| + ε′Y with a small ε′. For small Γ both hypothe-
sis i’) and ii’) hold. Moreover Fact 1 holds with ε = Γε′:
C(t) = e−t/τcoh +O(ε′Γ). The coherence time is given in this
case by τ−1

coh = (Γ/2)(1− |〈〈k0|1〉〉|2) +O(Γ2).
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