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Rates for irreversible Gibbsian Ising models

Claude Godrèche

Institut de Physique Théorique, CEA Saclay and CNRS
91191 Gif-sur-Yvette cedex, France

Abstract. Dynamics under which a system of Ising spins relaxes to a stationary
state with Bolzmann-Gibbs measure and which do not fulfil the condition of
detailed balance are irreversible and asymmetric. We revisit the problem of the
determination of rates yielding such a stationary state for models with single-spin
flip dynamics. We add some supplementary material to this study and confirm
that Gibbsian irreversible Ising models exist for one and two-dimensional lattices
but not for the three-dimensional cubic lattice. We also analyze asymmetric
Gibbsian dynamics in the limit of infinite temperature. We finally revisit the case
of a linear chain of spins under asymmetric conserved dynamics.
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1. Introduction

The one-dimensional Glauber-Ising model was probably the first example of a
strongly interacting system with soluble dynamics showing how a system relaxes to
equilibrium [1]. The preliminary question to solve was the choice of rates ensuring
that a ferromagnetic chain of Ising spins relaxes towards equilibrium under single spin
flip dynamics. The question is settled by requiring the rates at which spins flip to
fulfil the condition of detailed balance with respect to the Hamiltonian defining the
model [1].

Conversely, one may ask whether it is still possible for the system to reach a
stationary state with the same Boltzmann-Gibbs measure by an appropriate choice of
rates if one relinquishes this constraint, i.e., if only global balance is imposed. The
dynamics now becomes generically irreversible and asymmetric: the flipping spin is not
equally influenced by its neighbours. This question was addressed some time ago by
Künsch [2], who exhibited examples of such a dynamics, in the particular case where
it is totally asymmetric, in one and two dimensions. The problem was thoroughly
revisited in ref. [3], with the following conclusions.

The study made in [3] shows that irreversible Gibbsian Ising models exist for
one and two-dimensional lattices but not for the three-dimensional cubic lattice.
More precisely, imposing the up-down spin symmetry, the rate function yielding an
irreversible Gibbsian stationary state for the linear chain depends on 3 arbitrary
parameters. In two dimensions, the number of arbitrary parameters is respectively
equal to 10 for the square lattice, and to 35 for the triangular lattice. Yet, for the
totally asymmetric dynamics where only half of the spins have an influence on the
flipping spin, the rate function is unique, up to a time scale, for these three geometries.
In contrast, for the cubic lattice no such rate function is found, i.e., global balance
enforces detailed balance (see Table 4).

The aim of the present work is to add some supplementary material to the same
study, making the method used more easy to grasp and illustrating its outcomes on
more examples. In particular we give a fuller account of the method, which relies on
linear algebra coupled to the properties of the system under translation invariance,
in order to make clearer its generality. We come back on the interplay between
coordination and dimension. We explain, on the example of the linear chain, the
constraints imposed by the positivity of the rates. We shall also be concerned in
restating the statement made in [3], that no such rates do exist for the case of the
three-dimensional cubic lattice, as recalled above. To this end we shall give some more
details on the analysis in order to substantiate its conclusion. We shall then give a
critical reading of a recent paper [4], where it is claimed that there exist irreversible
Gibbsian dynamics for the cubic lattice, in contradiction with the study made in [3],
and shall dismiss its conclusion on this issue. We shall finally consider the case of
Gibbsian asymmetric dynamics at infinite temperature. An appendix is devoted to
the study of conserved Gibbsian asymmetric dynamics for the linear chain.†
† The author of ref. [4] recently issued an Erratum [5] where he corrects the claims which lead him
to the incorrect prediction mentioned in the Introduction. We nevertheless kept the text of section 6
unchanged because the analysis presented there provides an interesting illustration, on the example
chosen in ref. [4], of the fact that global balance enforces detailed balance for the cubic lattice, and
explains the mechanism by which this occurs.
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2. Starting point

Let us consider N Ising spins on a regular lattice of coordination z, in D dimensions,
with periodic boundary conditions. The energy (Hamiltonian) of a configuration
C = {σ1, . . . , σn, . . . , σN} reads

E(C) = −J
∑
n,j

σnσj , (2.1)

where n and j are nearest neighbours.

2.1. Master equation

The dynamics consists in flipping a spin, chosen at random, say spin n, with a
rate w(Cn|C), corresponding to the transition between configurations C and Cn =
{σ1, . . . ,−σn, . . . , σN}. At stationarity, the master equation expresses that losses are
equal to gains, and reads

P (C)
∑
n

w(Cn|C) =
∑
n

w(C|Cn)P (Cn). (2.2)

We want to find the rate function w(Cn|C) satisfying this equation when P (C) is the
Boltzmann-Gibbs distribution associated to the Hamiltonian (2.1),

P (C) ∝ e−E(C)/T . (2.3)

After division of both sides by the weight P (C), eq. (2.2) can be rewritten as∑
n

(
w(Cn|C)− w(C|Cn)e−∆E/T

)
= 0, (2.4)

where the change in energy due to the flip reads

∆E = E(Cn)− E(C) = 2J σnhn, (2.5)

and hn is the local field hn =
∑
j σj , due to the z neighbours {σj}. We choose a rate

function only depending on the local configuration {σn; {σj}} of the central spin σn
and of its neighbours, and simplify the notation accordingly,

w(Cn|C) = w(σn; {σj}). (2.6)

Thus, denoting the balance term by

B(σn; {σj}) = w(σn; {σj})− w(−σn; {σj})e−2Kσnhn , (2.7)

where K = J/T , the balance equation (2.4) becomes∑
n

B(σn; {σj}) = 0. (2.8)

This equation can be satisfied either term by term, which gives the detailed balance
condition on the rate function,

w(σn; {σj}) = w(−σn; {σj})e−2Kσnhn . (2.9)

or as a whole, which is the global balance condition.
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2.2. Representation of the rate function on a basis of spin operators

The number of values taken by the rate function is equal to the number of local
configurations {σn; {σj})} of the central spin and of its neighbours. There are 2z+1

such configurations, i.e., 8 for the chain, 32 for the square lattice, and 128 for the
two-dimensional triangular lattice or for the cubic lattice. We hereafter consider the
simpler case where we have up-down spin symmetry:

w(σn; {σj}) = w(−σn; {−σj}). (2.10)

The number of possible values of the rate function is therefore halved and is equal
to the number of different environments of the central spin σn, i.e., of configurations
{σj} of its neighbours. There are 2z such configurations, labelled by the index α, i.e.,
4 for the chain, 16 for the square lattice, and 64 for the triangular lattice or for the
cubic lattice. We denote the 2z rates with σn = +1 by wα and the other 2z rates,
corresponding to σn = −1, by w̄α:

wα = w(σn = +1; {σj}α), w̄α = w(σn = −1; {σj}α). (2.11)

The latter are obtained from the former by the spin symmetry relation (2.10), yielding

w̄α = w2z+1−α, (2.12)

(see Tables 1 and 2). For instance, for the linear chain, the rates to be determined are

w1 = w(+; ++), w2 = w(+; +−),

w3 = w(+;−+), w4 = w(+;−−). (2.13)

Table 1. List of local configurations and corresponding values of the rate function
for the one-dimensional chain. There are 4 possible rates wα, with σn = +1,
corresponding to the 4 possible configurations {σj}, labelled by α, of the two
neighbours of the central spin, taken in the order: left, right. The 4 remaining
rates w̄α, with σn = −1, are deduced from the former, due to the spin symmetry
(see (2.12)).

α σn; {σj} wα σn; {σj} w̄α
1 +; ++ w1 −; ++ w̄1 = w4

2 +; +− w2 −; +− w̄2 = w3

3 +;−+ w3 −;−+ w̄3 = w2

4 +;−− w4 −;−− w̄4 = w1

When the spin symmetry is not imposed, the rate function depends on the values
taken by the z + 1 spins σn and {σj}, and can be decomposed on a basis of 2z+1

spin operators made of 0, 1, . . . , z + 1 spins. For instance, for the linear chain, these
operators are: {1, σn−1, σn, σn+1, σnσn+1, σn−1σn, σn−1σn+1, σn−1σnσn+1}. In the
present situation where spin symmetry holds, this decomposition can be restricted to
2z even spin operators Oi, i.e.,

w(σn; {σj}) =

2z−1∑
i=0

ciOi, (2.14)

with O0 = 1. The knowledge of the 2z coefficients ci is equivalent to the knowledge
of the 2z rates wα. The coefficient c0 fixes the scale of time.
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Table 2. List of local configurations and corresponding values of the rate function
for the 2D square lattice. There are 16 possible rates wα, with σn = +1,
corresponding to the 16 possible configurations {σj}, labelled by α, of the four
neighbours of the central spin, taken in the order: east, north, west, south. The
16 remaining rates w̄α, with σn = −1, are deduced from the former, due to the
spin symmetry (see (2.12)).

α σn; {σj} wα σn; {σj} w̄α
1 +; + + ++ w1 −; + + ++ w̄1 = w16

2 +; + + +− w2 −; + + +− w̄2 = w15

3 +; + +−+ w3 −; + +−+ w̄3 = w14

4 +; + +−− w4 −; + +−− w̄4 = w13

5 +; +−++ w5 −; +−++ w̄5 = w12

6 +; +−+− w6 −; +−+− w̄6 = w11

7 +; +−−+ w7 −; +−−+ w̄7 = w10

8 +; +−−− w8 −; +−−− w̄8 = w9

9 +;−+ ++ w9 −;−+ ++ w̄9 = w8

10 +;−+ +− w10 −;−+ +− w̄10 = w7

11 +;−+−+ w11 −;−+−+ w̄11 = w6

12 +;−+−− w12 −;−+−− w̄12 = w5

13 +;−−++ w13 −;−−++ w̄13 = w4

14 +;−−+− w14 −;−−+− w̄14 = w3

15 +;−−−+ w15 −;−−−+ w̄15 = w2

16 +;−−−− w16 −;−−−− w̄16 = w1

For instance, for the linear chain,

w(σn; {σj}) = c0 + c1 σnσn+1 + c2 σn−1σn + c3 σn−1σn+1, (2.15)

i.e.,

O1 = σnσn+1, O2 = σn−1σn, O3 = σn−1σn+1. (2.16)

For the square lattice, we use the following notations. The central spin σn being
located at xn, we denote by σja (resp. σja) the neighbouring spins located at xn + ea
(resp. xn − ea), where ea (a = 1, 2) are the unit vectors spanning the square lattice.
Thus σj1 , σj2 , σj1 and σj2 are the east, north, west and south spins, respectively. The
list of even operators is given in Table 3.

In order to determine the rate function satisfying the global balance
condition (2.8), or the detailed balance condition (2.9), we can proceed in either of
two ways. The first one consists in finding the constraints on the rates {wα}, from
which constraints on the coefficients {ci} ensue. The second one consists in finding the
constraints on the coefficients {ci}, from which constraints on the rates {wα} ensue.
These two ways are strictly equivalent because the rates {wα} are linear combinations
of the coefficients {ci}, and both are equivalent representations of the rate function
w(σn; {σj}).

We emphasize this equivalence as follows. Defining the indicator variables

Iα = I(σn = +1; {σj}α), Īα = I(σn = −1; {σj}α), (2.17)

we have, using the notation (2.11),

w(σn; {σj}) =

2z∑
α=1

(
Iα wα + Īα w̄α

)
. (2.18)
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Table 3. List of the even operators made of the five spins (σn; {σj}). The central
spin σn being located at xn, σja (resp. σja ) are the neighbouring spins located
at xn + ea (resp. xn − ea), where ea (a = 1, 2) are the unit vectors spanning the
square lattice.

i Oi
1 σnσj1σj2σj1
2 σnσj1σj2σj2
3 σnσj1σj1σj2
4 σnσj2σj1σj2
5 σj1σj2σj1σj2
6 σnσj1
7 σnσj2
8 σnσj2
9 σnσj1
10 σj1σj2
11 σj2σj1
12 σj1σj1
13 σj1σj2
14 σj1σj2
15 σj2σj2

Using the spin symmetry relation (2.12), we can rewrite the expression above as

w(σn; {σj}) =

2z∑
α=1

wα
(
Iα + Ī2z+1−α

)
, (2.19)

where the two indicator variables in the bracket correspond to two opposite
configurations. These indicator variables can be decomposed on the complete basis
of 2z+1 spin operators made of 0, 1, . . . , z + 1 spins, however their sum only contains
even operators Oi. For instance, for the linear chain,

Iα + Ī2z+1−α =
1 + σn

2

1 + sign(σn−1)α σn−1

2

1 + sign(σn+2)α σn+1

2

+
1− σn

2

1− sign(σn−1)α σn−1

2

1− sign(σn+2)α σn+1

2

=
1

4
(1 + sign(σn+1)α σnσn+1 + sign(σn−1)α σn−1σn

+ sign(σn−1σn+1)α σn−1σn+1)

=

2z−1∑
i=0

ai,αOi, (2.20)

where we have introduced the matrix of signs (up to the constant 1/2z)

A = (ai,α) =
1

2z
Oi(σn = +1; {σj}α). (2.21)

(The matrix (ai,α) for the linear chain is given in the Appendix.) One can thus rewrite
(2.19) as

w(σn; {σj}) =

2z∑
α=1

wα

2z−1∑
i=0

ai,αOi. (2.22)



Rates for irreversible Gibbsian Ising models 7

Identifying (2.19) with (2.14) we obtain

ci =

2z∑
α=1

ai,αwα. (2.23)

The inverse relation reads

wα =

2z−1∑
i=0

ciOi(σn = +1; {σj}α). (2.24)

In other words A2 = I/2z, where I is the unit matrix.

2.3. Balance term

Starting from (2.14), then using the identity e−a σ = cosh a − sinh aσ, we can
decompose the balance term on the basis of spin operators as

B(σn; {σj}) =

2z−1∑
i=0

Ei({ci})Oi, (2.25)

where the coefficients Ei({ci}) are linear combinations of the ci, with coefficients
depending on temperature through hyperbolic functions of 2K. (See the Appendix
for an illustration on the example of the linear chain.)

Let us now define

Bα = wα − w̄αe−β∆Eα , B̄α = w̄α − wαeβ∆Eα , (2.26)

where ∆Eα is the change of energy associated to the rate wα. Thanks to the symmetry
relation (2.12) we have

B̄α = B2z+1−α. (2.27)

For instance, for the linear chain, (2.27) reads

B̄1 = w̄1 − e4Kw1 = w4 − e4Kw̄4 = B4,

B̄2 = w̄2 − w2 = w3 − w̄3 = B3, (2.28)

and so on. Proceeding as for the rate function w(σn; {σj}), we can decompose the
balance term B(σn; {σj}) as

B(σn; {σj}) =

2z−1∑
i=0

Fi({Bα})Oi, (2.29)

where the coefficients Fi({Bα}) are linear combinations of the Bα,

Fi =

2z∑
α=1

ai,αBα. (2.30)

(See the Appendix for the example of the linear chain.) The sets Ei and Fi provide
two equivalent representations of the linear decomposition of the balance term on the
basis of spin operators, the former expressed in terms of the coefficients ci, the latter
in terms of the values Bα taken by the balance term.

3. Detailed balance

We start with the simple case of detailed balance, B(σn; {σj}) = 0, as a preparation
for the sequel. This equation is satisfied by imposing Ei = Fi = 0 for all i.
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3.1. Constraints on the rates or on the coefficients

The condition of detailed balance on the rate function (2.9) implies 2z relations
{Bα = 0}, or equivalently, 2z relations {Fi = 0}. However, thanks to the symmetry
relation (2.27) these relations are redundant and only half of them remain. We thus
get 2z−1 relations between pairs of rates:

wα = w̄αe−β∆Eα , (α = 1, . . . , 2z−1), (3.1)

In return, using the spin operator representation (2.14) in these relations, the
coefficients ci are found to obey 2z−1 linear constraints.

One can also proceed in reverse order, determining first the constraints on the
coefficients ci, then deducing those for the rates from the former. Expressing that
B(σn; {σj}) vanishes identically, and using (2.25) yields an homogeneous system of 2z

linear equations {Ei = 0}, which are not all independent. The rank of this system is
necessarily equal to the rank of the system {Fi = 0}, i.e., to the number of relations
between pairs of rates mentioned above, namely 2z−1.

3.2. Examples

We illustrate the previous considerations by the following examples.
For the linear chain, the relations (3.1) are B1 = B2 = 0, i.e.,

w(+; ++) = e−4Kw(−; ++),

w(+; +−) = w(−; +−). (3.2)

The constraints on the coefficients are either deduced from (3.2) or obtained from the
solution of the 4 equations {Ei = 0} (see Appendix A):

c1 + c2 + γ(c0 + c3) = 0, c1 = c2, (3.3)

where

γ = tanh 2K. (3.4)

The space of independent rates, or independent coefficients, has dimension 2. We thus
find the most general rate function obeying detailed balance

w(σn; {σj}) =
α

2

(
1 + δσn−1σn+1 −

γ

2
(1 + δ)σn(σn−1 + σn+1)

)
, (3.5)

where α and δ are the free parameters, recovering a result due to Glauber, written
here with his notations [1].

On the square lattice, there are 8 constraints B1 = B2 = · · · = B8 = 0, on the 16
rates wα:

w1 = e−8K w̄1,

wα = e−4K w̄α, (α = 2, 3, 5),

wα = w̄α. (α = 4, 6, 7),

w8 = e4K w̄8. (3.6)

We do not write down the corresponding 8 relations between the ci because we will
not use them in the sequel.
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3.3. Symmetric rates

Let us consider the simpler case where the rates only depend on the variation of
energy (2.5).

For the linear chain, the general form (3.5) automatically verifies this requirement.
The so-called Glauber rate is obtained by fixing the parameter δ = 0. It is the only
such rate yielding linear equations for the temporal evolution of the observables. For
instance, the Metropolis rate

w(σn; {σj}) = min(1, e−∆E/T )

=
2 + γ

2(1 + γ)

(
1− γ

2 + γ
(σn−1σn+1 + σn(σn−1 + σn+1))

)
(3.7)

does not share this property.
For the square lattice, the requirement that the rates only depend on the variation

of energy implies that the four neighbours of the central spin are equivalent, yielding
11 additional constraints

c4 = c3 = c2 = c1, c9 = c8 = c7 = c6,

c15 = c14 = c13 = c12 = c11 = c10. (3.8)

The remaining independent coefficients are c0, c1, c5, c6, c10. The system of 16
equations {Ei = 0} for these 5 coefficients only gives two constraints

c1 +
γ

2
(c5 − c0)− c6 = 0,

γ2

6
c0 − 2

1 + γ2

3γ
c1 −

2 + γ2

6
c5 − c10 = 0. (3.9)

From this general solution one can extract some simpler expressions for the rate
function. For instance, imposing c5 = c10 = 0 yields

w(σn; {σj}) =
α

2

(
1− γ(2 + γ2)

4(1 + γ2)
σn(σj1 + σj2 + σj1 + σj2)

+
γ3

4(1 + γ2)
σn(σj1σj2σj1 + σj2σj1σj2 + σj1σj2σj1 + σj2σj1σj2)

)
(3.10)

which is the Glauber rate, usually written as

w(σn; {σj}) =
α

2

(
1− σn tanhK(σj1 + σj2 + σj1 + σj2)

)
. (3.11)

Another simple form is obtained by setting c1 = c5 = 0:

w(σn; {σj}) =
α

2

(
1− γ

2
σn(σj1 + σj2 + σj1 + σj2)

+
γ2

6
(σj1σj2 + σj2σj1 + σj1σj2 + σj2σj1 + σj2σj2 + σj1σj1)

)
. (3.12)

Let us finally note that the general form of a rate function satisfying detailed
balance can be written as

w(σn; {σj}) = Q({σj})e−Kσnhn , (3.13)

where Q({σj}) is a linear combination with arbitrary coefficients of the operators Oi
not containing the central spin. This can be seen by multiplying both sides of (2.9)
by eKσnhn and observing that the product w(σn; {σj})eKσnhn is even in σn.
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For instance, for the linear chain,

Q({σj}) = a0 + a3O3, (3.14)

where a0 and a3 are arbitrary, and simply related to c0 and c1 of (3.3): a0 =
(c0 − c3 + (c0 + c3)/ cosh 2K)/2, a3 = (c3 − c0 + (c0 + c3)/ cosh 2K)/2.

For the square lattice,

Q({σj}) = a0 + a5O5 +

15∑
i=10

aiOi (3.15)

depends on 8 arbitrary parameters. If furthermore we ask that the rate function only
depends on the variation of energy, then one should take

Q({σj}) = a0 + a5O5 + a10

15∑
i=10

Oi, (3.16)

with arbitrary coefficients a0, a5, a10. These are linearly related to the three
independent parameters amongst c0, c1, c5, c6, c10 related by (3.9).

4. Global balance

We now want to satisfy (2.8), not term by term but as a whole. As above we can
solve the problem in either of two equivalent ways: by first finding the constraints on
the rates {wα}, from which those on the coefficients {ci} ensue; or by first finding the
constraints on the coefficients, from which those on the rates ensue. Both ways have
to be implemented by formal computations, which are of equal algorithmic difficulty.
We start with the second one, of easier presentation.

Table 4. Number of constraints (or rank) for dynamics on regular lattices. First
column: linear chain (z = 2), square lattice (z = 4), triangular lattice (z = 6),
cubic lattice (z = 6). The last line is for the hexagonal lattice (see text). Second
and third columns: number of equations and rank of the system of equations for
detailed balance (db). Fourth and fifth columns: same for global balance (gb).
Last column: number of free parameters for global balance.

Lattice 2z Rank (db) M Rank (gb) Free parameters (gb)
linear 4 2 3 1 3
square 16 8 12 6 10
triangular 64 32 49 29 35
cubic 64 32 55 32 32
hexagonal 8+8 8 12 8 8

4.1. Constraints on the coefficients

Remind that

B(σn; {σj}) =

2z−1∑
i=0

EiOi, (4.1)
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Table 5. Number of constraints (or rank) and number of free parameters (gb)
for dynamics on regular lattices at infinite temperature. Same examples as in
Table 4.

Lattice Rank (db) Rank (gb) Free parameters (gb)
linear 2 1 3
square 8 6 10
triangular 32 26 38
cubic 32 29 35
hexagonal 8 5 11

where the Ei are linear combinations of the ci. The detailed balance condition is just
{Ei = 0} (see section 3). The sum in (2.8) can be rewritten as∑

n

B(σn; {σj}) = N
∑
i

EiOi, (4.2)

defining the spatial averages of the spin operators as

Oi =
1

N

∑
n

Oi. (4.3)

Taking into account the identities between the Oi due to translation invariance (see
the examples below), the balance equation (2.8) finally reads∑

j

Ẽj Oj = 0, (4.4)

where the Oj are a subset of the Oi, and with Ẽ0 ≡ E0. The size of this subset, i.e.,
the number M of terms in this sum, is equal to the difference between 2z and the
number of identities due to translation invariance. The M equations {Ẽj = 0} on the
ci are no all independent a priori. The rank of this system of equations is given in
Table 4 for the various examples that we now present.

4.2. Examples

For the linear chain, we have, with the notation (2.16),

O1 = O2, (4.5)

hence (4.4) reads

E0 + (E1 + E2)O1 + E3O3 = 0. (4.6)

The M = 3 equations {Ẽj = 0} yield only one condition: E0 = 0 (see Appendix A).
In other words, the rank of this system of 3 equations is equal to 1 (see Table 4). We
find:

c1 + c2 + γ(c0 + c3) = 0, (4.7)

which generalizes the result (3.3) found in the detailed balance case. Hence, setting
c2/c0 = ε, c3/c0 = δ and c0 = α/2, the most general rate function satisfying the
condition of global balance reads

w(σn; {σj}) =
α

2
(1− (γ(1 + δ) + ε)σnσn+1 + ε σn−1σn

+ δ σn−1σn+1), (4.8)
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which depends on the 3 arbitrary parameters α, ε, δ. The corresponding dynamics is
asymmetric and irreversible. Setting ε = −γ(1 + δ)(1− p), we can alternatively write:

w(σn; {σj}) =
α

2
(1− γ(1 + δ)σn(pσn−1 + (1− p)σn+1)

+ δ σn−1σn+1). (4.9)

The general Glauber form (3.5) is recovered by setting p = 1/2. At the other end, the
case of totally asymmetric dynamics where the central spin is only influenced by one
of its neighbours leads, once a choice of neighbour is done, to a unique expression up
to the time scale fixed by the coefficient α. For instance, if σn is only influenced by
its left neighbour, setting δ = 0 and p = 1 (ε = −γ), we obtain

w(σn; {σj}) =
α

2
(1− γ σn−1σn) . (4.10)

Fixing the scale of time by the choice α = 2 cosh 2K, we obtain the exponential form

w(σn; {σj}) = e−2Kσn−1σn . (4.11)

We shall comment further, in section 7, on the range of allowed parameters in (4.8)
or (4.9).

Remark Eq. (4.7) can also be interpreted as the equation fixing the temperature of the
model. Hence, for the linear chain, any generic rate depending on the 4 parameters
c0, c1, c2, c3 leads to a Gibbsian stationary measure.

On the square lattice we have 4 identities due to translation invariance, which
only involves two-spin operators,

O6 = O9, O7 = O8, O10 = O13, O11 = O14, (4.12)

with the notations of Table 3. The resulting system of M = 12 (16−4) linear equations

{Ẽj = 0}, has rank 6, yielding 6 equations of constraint on the ci. In other words,
6 coefficients are expressed as linear combinations of the other 10 coefficients, which
remain arbitrary. Totally asymmetric cases are obtained by asking the rate function
to depend only on two or three of the neighbouring spins instead of four. For example
keeping the east (σj1) and north (σj2) spins only, and cancelling the coefficients of the
operators containing the two other spins σj1 and σj2 , we obtain a unique rate function,
up to a scale of time,

w(σn; {σj}) =
α

2

(
1− γσn(σj1 + σj2) + γ2 σj1σj2

)
. (4.13)

Fixing this timescale by the choice α = 2 cosh2 2K, allows to write (4.13) into the
exponential form‡

w(σn; {σj}) = e−2Kσ(σj1+σj2 ). (4.14)

For the 3D cubic lattice, amongst the 2z = 64 operators Oi, 18 are related, two
by two, by translation invariance. They all belong to the group of

(
7
2

)
= 21 two-

spin operators. The three two-spin operators of this group not related by translation
invariance are

σjaσja , (4.15)

for a = 1, 2, 3, with notations analogous to those of Table 3. So we have M = 55
(64− 9) linear equations {Ẽj = 0} in the {ci} to solve. The rank of this system of M

‡ This form, as well as (4.11), appear in [2] without the factor 2. The corresponding stationary states
have their temperature halved.
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equations is equal to 32, as for the case of detailed balance. The constraints are indeed
found to be the same as when detailed balance holds (see also section 4.3 below). On
the cubic lattice there is no irreversible Gibbsian dynamics.

It is striking to compare the former case of the 3D cubic lattice to the case of
the 2D triangular lattice, for which the coordination is the same (z = 6). For the
triangular lattice, there are 15 identities due to translational invariance satisfied by
the spatial averages of a subset of the 64 operators Oi. These 15 identities correspond
to the translations of σnσja , for a = 1, 2, 3 (9 relations), to the translations of
σj1σj3 , σj2σj1 , σj3σj2 (3 relations), and to the translations of the four-spin operators,
e.g., σnσj3σj1σj2 (3 relations). Thus M = 49 (64− 15), and the rank of this system of
equations is found to be equal to 29. In this case, there do exist irreversible Gibbsian
dynamics.

The totally asymmetric case involving the three spins σj1 , σj2 , σj3 in the three
unit directions is, again, determined uniquely, up to a time scale as

w(σn; {σj}) =
α

2
(1− γσn(σj1 + σj2 + σj3)

+γ2(σj1σj2 + σj2σj3 + σj1σj3)− γ3σnσj1σj2σj3
)
. (4.16)

This rate function can also be written in exponential form as

w(σn; {σj}) = e−2Kσn(σj1+σj2+σj3 ), (4.17)

with the choice α = 2 cosh3 2K.

4.3. Constraints on the rates

One can, of course, deduce the constraints on the rates from the above. Alternatively
we can obtain these constraints directly by following the exact parallel of section 4.1.
Remind that

B(σn; {σj}) =

2z−1∑
i=0

FiOi, (4.18)

where the Fi are linear combinations of the Bα. The detailed balance condition is just
{Fi = 0} (see section 3). The sum in (2.8) can be rewritten as∑

n

B(σn; {σj}) = N
∑
i

FiOi. (4.19)

Taking into account the identities between the Oi due to translation invariance, the
balance equation (2.8) finally reads∑

j

F̃j Oj = 0, (4.20)

where the Oj are a subset of the Oi, and with F̃0 ≡ F0. The M equations {F̃j = 0}
on the Bα are equivalent to the equations {Ẽj = 0} on the ci. However they yield
constraints on the rates, instead of constraints on the coefficients.
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Remark

One can recover (4.19) following a slightly different path, as follows§. For a given fixed
configuration C, the sum in (2.8) can be rewritten as

2z∑
α=1

(
NαBα + N̄αB̄α

)
, (4.21)

where Nα (resp. N̄α) is the number of occurrences in C of the local configuration
{central spin up (resp. down) with the z neighbours in configuration α},

Nα =
∑
n

I(σn = +1; {σj}α), N̄α =
∑
n

I(σn = −1; {σj}α). (4.22)

Using the spin symmetry and regrouping terms, the sum can be rewritten as

2z∑
α=1

(Nα + N̄2z+1−α)Bα. (4.23)

The numbers Nα can be decomposed on the basis of spatial averages of all the spin
operators. However, only the even operators remain in the sum Nα + N̄2z+1−α
(see (2.20)). Finally the sum (4.23) yields (4.19).

4.4. Examples

We illustrate the method on the cases considered above, in one to three dimensions.
For the linear chain, (4.20) reads

F0 + (F1 + F2)O1 + F3O3 = 0. (4.24)

The 3 equations {F̃j = 0} yield only one condition: F0 = 0, hence the detailed balance
condition B1 = w1 − e−4Kw̄1 = 0, i.e.,

w(+; ++) = e−4Kw(−; ++), (4.25)

which is equivalent to (4.7). The rank of this system of 3 equations is equal to 1, as
already found above (see Appendix A).

On the square lattice, taking into account the identities (4.12) due to translation

invariance, the resulting system of M = 12 linear equations in the Bα, {F̃j = 0}, has
rank 6, yielding the following 6 equations of constraint:

w1 − e−8K w̄1 = 0,

w6 − w̄6 = 0,

w2 − e−4K w̄2 + w5 − e−4K w̄5 = 0,

e4K w3 − w̄3 − (w8 − e4K w̄8) = 0,

w2 − e−4K w̄2 − (w3 − e−4K w̄3) +
2

1 + e4K
(w7 − w̄7) = 0,

w2 − e−4K w̄2 + w3 − e−4K w̄3 −
2

1 + e4K
(w4 − w̄4) = 0. (4.26)

The space of independent parameters has dimension 10, in agreement with what was
found above.

§ This variant of the method was first introduced in [6].
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Figure 1. Two types of environments for the hexagonal lattice.

For the 2D triangular lattice, one recovers the results presented above: the 15
identities satisfied by the spatial averages of a subset of the 2z = 64 operators Oi yield
a system of M = 49 equations, the rank of which is equal to 29.

For the 3D cubic lattice, we have M = 55 (64 − 9) linear equations in the Bα,
(α = 1, . . . , 64), to solve. The constraints found are the 32 detailed balance conditions
Bα = 0, in agreement with what was found above.

4.5. Special case of the hexagonal lattice

On the hexagonal lattice one has to distinguish two kinds of spins, named respectively
σ and τ , corresponding to two types of environments (figure 1). Spin σn, located at
xn, is surrounded by τj1 , τj2 and τj3 with notations analogous to those of Table 3,
where e1, e2 and e3 are the unit vectors spanning the hexagonal lattice. Spin τn ≡ τj1 ,
located at yn, distant from xn by one unit, is surrounded by σk1 (which is σn), σk2
and σk3 in the respective directions −e1, −e2 and −e3. To these two spins correspond
two rates wσ(σ; {τ}) and wτ (τ ; {σ}), skipping the indices. The balance equation (4.4)
now reads

Ẽσ0 + Ẽτ0 +
∑
j

(
Ẽσj O

σ
j + Ẽτj O

τ
j

)
= 0, (4.27)

where the operators Oσ are the three σnτja , the three τjaτjb and σnτj1τj2τj3 . The
operators Oτ are defined analogously. In (4.27) the identities due to translation
invariance have been taken into account:

σnτj2 = τnσk2 , σnτj3 = τnσk3 . (4.28)

Moreover σnτj1 and τnσk1 represent the same operator and Ẽσ0 + Ẽτ0 = 0 counts
for one equation only. The system of 12 resulting equations yield 8 constraints,
identical to the detailed balance constraints. Thus, on the hexagonal lattice, there
is no irreversible Gibbsian dynamics, i.e., global balance enforces detailed balance, as
long as temperature is finite (see below).
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4.6. Infinite temperature

When temperature is infinite, the balance term takes the simpler form

B(σn; {σj}) = w(σn; {σj})− w(−σn; {σj}), (4.29)

which only involves the operators containing the central spin. Likewise, the only
identities between operators due to translation invariance to be considered are those
involving the central spin.

For instance, for the linear chain, B(σn; {σj}) only involves the two operators O1

and O2. The identity O1 = O2 still holds, thus the balance equation (c1 + c2)O1 = 0
yields the constraint c1 + c2 = 0, which is the limit of (4.7) for γ = 0. The rate
function reads

w(σn; {σj}) = c0 + c3O3 + c1(O1 −O2). (4.30)

The sum of the first two terms represent the infinite-temperature reversible rate
function Q({σj}) (see (3.13)). If furthermore the dynamics is totally asymmetric,
then one should impose c1 = c3 = 0, i.e., w(σn; {σj}) = c0, in agreement with the
infinite-temperature limit of (4.10). In this limit the dynamics is reversible.

For the square lattice, B(σn; {σj}) only involves the 8 operators O1 to O4, and
O6 to O9. The identities to be considered are (see (4.12))

O6 = O9, O7 = O8. (4.31)

The balance equation thus imposes the 6 constraints

c1 = c2 = c3 = c4 = 0, c6 + c9 = 0, c7 + c8 = 0. (4.32)

This number of constraints is the same as at finite temperature. The rate function
reads

w(σn; {σj}) = c0 + c5O5 +

15∑
i=10

ciOi

+ c6(O6 −O9) + c7(O7 −O8). (4.33)

As above, the first line can be identified with the infinite-temperature reversible rate
function Q({σj}) defined in (3.13). The second line is a linear combination of the
operators σn(σja −σja) (a = 1, 2). If the dynamics is totally asymmetric, for instance
keeping only the east and north spins, then one should impose the vanishing of the
coefficients corresponding to operators containing the west or south spins, i.e., c5, c6, c7
as well as c11 to c15. Thus

w(σn; {σj}) = c0 + c10O10, (4.34)

which corresponds to a reversible dynamics, as can be seen by comparing to the first
line of (4.33). This should be contrasted with the infinite-temperature limit of (4.13)
which yields w(σn; {σj}) = c0. There is no continuity of the finite-temperature result
in this situation, when T →∞.

For the triangular lattice, the balance term involves 32 operators containing the
central spin. Only 6 symmetry relations remain, thus finally there are 26 constraints
to satisfy. In other words there are more arbitrary parameters in the definition
of the rate function satisfying global balance at infinite temperature than at finite
temperature. As for the square lattice, the rate is equal to the sum of Q({σj})
(32 free parameters), of a linear combination of operator differences σn(σja − σja)
(a = 1, 2, 3) (3 free parameters), and of a linear combination of operator differences
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of the type σn(σ1σ2σ3 − σ3σ1σ2) (3 free parameters). If the dynamics is totally
asymmetric, for instance keeping only the spins in the direction e1, e2, e3, and taking
into account the identities due to translation invariance, the resulting rate depends
on 4 arbitrary coefficients, namely c0 and the 3 coefficients corresponding to the 3
operators σj1σj2 , σj1σj3 , σj2σj3 . Again this dynamics is reversible but is different from
the limit obtained from the finite-temperature result (4.16) at T → ∞, which yields
w(σn; {σj}) = c0.

For the cubic lattice, again the balance term involves 32 operators containing the
central spin. Only 3 symmetry relations remain, thus there are finally 29 constraints
to satisfy. Detailed balance is no longer enforced by global balance at infinite
temperature. The rate has the same form as for the triangular lattice, except that
the four-spin operators do not enter the expression. The case of totally asymmetric
dynamics is identical to that found for the triangular lattice.

For the hexagonal lattice, as for the case of the cubic lattice, detailed balance is
no longer enforced by global balance at infinite temperature.

Table 5 summarizes the results for the various examples that we considered.

5. Special forms of the rate function

5.1. Totally asymmetric dynamics

For the totally asymmetric dynamics satisfying global balance encountered so far, the
rate function could always be written in exponential form as

w(σn; {σj}) = e−2Kσnh
+
n , (5.1)

where hn = h+
n +h−n is decomposed into two components related by inversion through

the central spin see (4.11), (4.14) and (4.17). For instance on the square lattice,
h+
n = σj1 + σj2 , h−n = σj1 + σj2 .

Reciprocally, assume that the rate function has the form (5.1) [3]. Then the
balance term reads

B(σn; {σj}) = e−2Kσnh
+
n − e−2Kσnh

−
n . (5.2)

Expanding the two exponential terms in the right side, the analysis confirms the fact
that on 1D and 2D lattices such rates satisfy the balance equation (2.8), but shows
that this is not the case for the 3D cubic lattice, or more generally for lattices of
coordination z ≥ 8 [3].

5.2. A restricted representation of the rate function

In preparation of the discussion of section 6, we now want to investigate whether there
are representations of the rate function that generalize both the form (5.1) and the
form encountered when detailed balance holds, namely (3.13). Let us consider, along
the lines of Ref. [4], the following a priori representation of the rate function, instead
of the general expression (2.14):

w(σn; {σj}) = Q({σj})e−σnHn , (5.3)

where Q({σj}) is a linear combination of the operators Oi not involving the central
spin, and where

Hn =

D∑
a=1

(Aaσja +Aaσja), (5.4)
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and Aa +Aa = 2K. We remind that σja is the spin located at xn + ea, and σja is the
spin located at xn − ea. Setting

Aa = K + La, Aa = K − La, (5.5)

we can rewrite the rate function as

w(σn; {σj}) = Q({σj})e−Kσnhne−σn
∑
a La(σja−σja ). (5.6)

If the La vanish, one recovers the detailed balance form (3.13), made of the two first
factors in the right side of this equation. At the other end, if La = ±K, and if Q({σj})
is reduced to a constant, then one recovers (5.1). However thus far this form is only
an a priori representation of the rate function, on which one should now impose the
global balance condition. In so doing, we find the following:

1D The form (5.3) is faithful and equivalent to the previous result (4.8). The
constraint of global balance is automatically encoded in this form, where the
prefactor Q({σj}) = a0 + a3O3, with arbitrary coefficients a0 and a3.

2D Let us take the example of the square lattice. The constraints of global balance
fixes 4 linear relations on the {aj} defining Q({σj}) (see (3.15)). Thus the
form (5.3) provides examples of rate functions satisfying global balance [4]. The
reciprocal is not true, i.e., any rate function satisfying global balance is not of the
form (5.3). For instance (5.3) implies the following relation amongst the rates:

w̄2

w2
= e8K w5

w̄5
, (5.7)

which does not hold in general.
One could also have argued differently by noting that the form (5.3), which
depends on 10 arbitrary parameters a priori, actually depends on 6 parameters
once the 4 constraints on the {aj} are imposed, namely the four remaining
arbitrary {aj} and the two parameters L1 and L2, while the general rate function
obeying global balance depends on 10 arbitrary parameters (see section 4.2). This
form therefore only represents a subset of the most general rate functions obeying
global balance.

3D Since we already stated that there is no Gibbsian irreversible dynamics for the
cubic lattice, the form (5.3) cannot represent a rate function satisfying global
balance. Since the constraint of global balance enforces detailed balance, it must
necessarily suppress the dependence of w(σn; {σj}) in the parameters La. In
other words, Q({σj}) must vanish for any configuration of the neighbours {σj}
such that σja 6= σja for a = 1, 2, 3. For the configurations such that the equality
holds, i.e., σja = σja for all a = 1, 2, 3, detailed balance automatically holds, as
it should. This is illustrated by an explicit example in section 6.

5.3. Interpolating schemes

For the linear chain, (4.9) gives an interpolation between the totally asymmetric cases
and the symmetric one.

In similar fashion there are forms of the rate function in 2D, which interpolate
between the totally asymmetric expression (4.13) and one of the forms valid under
detailed balance. For instance, for the square lattice,

w(σn; {σj}) =
α

2

(
1− γ p σn(σj1 + σj2)− γ (1− p)σn(σj1 + σj2)

+ γ2 p σj1σj2 + γ2 (1− p)σj1σj2
)
. (5.8)
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The totally asymmetric forms are obtained for p = 1 or 0. For p = 1/2, the rate
function satisfies detailed balance, without being of the form (3.16). This expression
is convenient when investigating the physical consequences of irreversibility for the
two-dimensional Ising model with asymmetric dynamics [7].

6. Review of Ref. [4] and the question of the rates for the cubic lattice

Reference [4] is chiefly concerned with the computation of the entropy production
rate for irreversible Ising models with Gibbsian stationary states. The rate function
considered in this reference is of the form (5.3), which is well adapted to the
computation of the entropy production rate. As said above, this choice is not
restrictive in 1D, but does not account for the most general rate function satisfying
global balance for the square lattice. The expression obtained in [4] for the entropy
production rate of the linear chain generalizes a result of [8]; the computation of
the entropy production rate of the square lattice is done for the totally asymmetric
case (4.14).

We now turn to the treatment of the 3D case given in [4]. Ref. [4] claims that
there exist irreversible Ising models on the cubic lattice, with Gibbsian stationary
measure with respect to the Hamiltonian (2.1), contradicting the results found in
Ref. [3] and recalled in the present work. This statement is actually untrue and relies
on an incomplete analysis, as we now demonstrate. (See also [5].)

The rate function chosen in [4] for the 3D case is of the form (5.3) with the
particular choice L1 = L2 = L3 = L, and where Q({σj}) is a linear combinations
of operators, not involving the central spin and satisfying some additional symmetry
requirements, with coefficients named b0, b1, . . . , b5 (see eq. (67) in [4]). It is an easy
task to solve the problem of determining these unknown coefficients if one imposes the
global balance condition, using the general methods described in section 4. We find
the following constraints on the coefficients b0, b1, . . . , b5,

b5 = b0, b4 = b2 =
3b1 − b0

2
, b3 = b1, (6.1)

independently of the value of the parameter L‖. One can then check that, taking
into account the constraints (6.1), the rate function thus obtained either satisfies the
detailed balance condition, when σj1 + σj2 + σj3 = σj1 + σj2 + σj3 , or vanishes when
this condition does not hold, because the prefactor Q({σj}) vanishes itself. This is
equivalent to saying that, for this choice of rate function, the condition of global
balance enforces the condition of detailed balance.

These results are in agreement with the general statement, made in [3] and in
section 4, that there are no Gibbsian irreversible models for the cubic lattice, and
therefore no entropy production for dynamics of the form (5.3) in this case.

7. Positivity of the rates

The rate functions found by the method above must satisfy the additional constraint
of positivity for the various possible configurations.

‖ We also checked that the equations of constraint on b0, b1, . . . , b5 written in [4] lead to the
result (6.1). In [4] the determination of these equations of constraint is done by identification of
two forms of the balance term, the first one deduced from the choice made for the rate w, the other
one is a linear combination of a subset of the operators Oi chosen according to some symmetry
requirements.
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We illustrate the issue on the 1D case, using (4.8). The allowed region in the
plane of the two parameters (δ, ε) yielding positive rates is the triangle depicted
in figure 2. The sides of the triangle correspond to the vanishing of one of the
rates wα. The segment joining the two points (−1,−1) and (1,−γ) corresponds
to w2 ≡ w(+; +−) = 0. The segment joining the two points (−1, 1) and (1,−γ)
corresponds to w3 ≡ w(+;−+) = 0. Finally the vertical segment at δ = −1
corresponds to w1 = w4 = 0, i.e., w(+; ++) = w(+;−−) = 0.

All rates on the line joining (−1, 0) to (1,−γ) satisfy detailed balance. For
example, the point marked M corresponds to the Metropolis rate (3.7). All rates
with δ = 0 lead to linear equations for the temporal evolution of the observables [9].
The point G, located at (0,−γ/2) and corresponding to the Glauber rate, is the only
point where both detailed balance and linearity hold.

The two ends of the green segment are the totally asymmetric points (0,−γ) and
(0, 0), corresponding respectively to values of the interpolating parameter p = 0 and
p = 1 in (4.9). The range of allowed values with δ = 0 goes beyond this segment.
It is comprised between the two extreme points (0,−(1 + γ)/2) and (0, (1 − γ)/2)
which correspond respectively to the values p = (γ − 1)/(2γ), which is negative, and
p = (γ + 1)/(2γ), which is larger than 1. For those points and more generally for
the range of values depicted in red in figure 2 the magnetization of the linear chain
exhibits an oscillating relaxation [10]. For instance, for the point (0,−(1 + γ)/2), the
rate function (4.8) becomes

w(σn; {σj}) =
α

2

(
1 + σn

(1− γ
2

σn+1 −
1 + γ

2
σn−1

))
. (7.1)

8. Discussion

Let us come back on the interplay between irreversibility and asymmetry of the
dynamics in the present context. We recall that the dynamics is symmetric if the
rates are given by a symmetric function of the neighbouring spins {σj} of the flipping
spin σn. In other words under symmetric dynamics the neigbhouring spins have equal
influence on the flipping spin. We ask:

(i) Can a dynamics be both irreversible and symmetric?

(ii) Can a dynamics be both reversible and asymmetric?

A negative answer to the first question means that irreversibility necessarily
implies asymmetry. A negative answer to the second question means that reversibility
necessarily implies symmetry, which is the reciprocal of (i). We illustrate the issue on
the examples of the linear chain and of the square lattice.

For the linear chain the answer to the two questions is negative. Reversibility
and symmetry are equivalent. Symmetry of the dynamics for the linear chain requires
c1 = c2 (see (3.3)), which appears also as a constraint imposed by the condition of
detailed balance.

For the square lattice, the answer to the two questions is positive.

(i) Firstly, symmetry of the dynamics does not imply reversibility. Indeed, starting
from the generic rate function depending on 16 parameters, if one imposes
symmetry, then only 5 independent parameters remains, which are the coefficients
c0, c1, c5, c6, c10 (see (3.8)). If no further condition is imposed, the dynamics is
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Figure 2. Constraints due to positivity for the linear chain: allowed values of
the parameters yielding positive rates and satisfying global balance are inside the
triangle.

generically irreversible. The voter model [12] and the broader class of models
defined by the rate function [13, 14]

w(σn; {σj}) =
α

2
(1− σn tanh [β(hn)hn]), (8.1)

where hn =
∑
j σj (choosing J = 1), provide examples of such a situation. The

inverse temperature takes three values, according to the value of the local field hn:
β(0), β(2) = β(−2) and β(4) = β(−4). This rate function is clearly symmetric in
the neighbouring spins. It can be rewritten as

w(σn; {σj}) =
α

2

(
1 +

1

4

(
γ2 −

γ4

1 + γ2
4

)
(O1 +O2 +O3 +O4)

− 1

4

(
γ2 +

γ4

1 + γ2
4

)
(O6 +O7 +O8 +O9)

)
, (8.2)

where γ2 = tanh 2β(2), γ4 = tanh 2β(4). Note that we have c5 = c10 = 0. These
models correspond to genuinely irreversible dynamics since the rates do not even
satisfy the constraints of global balance (4.26), hence their stationary measure
is unknown. The voter model corresponds to the choice γ2 = 1/2, γ4 = 1. The
noisy voter model corresponds to the choice γ2 = γ4/(1 + γ2

4). The Glauber rate
function (3.10) or (3.11) is recovered by fixing γ2 = γ4 = γ.
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Let us finally mention that imposing global balance on a generic symmetric rate
function yields the two constraints (3.9), i.e., reversibility is recovered. In other
words, irreversible Gibbsian dynamics are necessarily asymmetric.

(ii) Secondly, reversibility does not imply symmetry of the dynamics. Indeed any
generic reversible rate function depends on 8 parameters (see for example (3.15)).
On the other hand the number of independent parameters corresponding to
reversible symmetric dynamics is equal to 3 (see (3.16)). Thus generically any
rate function satisfying detailed balance is asymmetric. For instance the rate
function

w(σn; {σj}) =
α

2

(
1− γ

2
σn(σj1 + σj2 + σj1 + σj2)

+
γ2

2
(σj1σj1 + σj2σj2)

)
(8.3)

provides an example of a reversible asymmetric process. In particular w4 is not
equal to w6, as would be the case for a fully symmetric dynamics. Eq. (5.8) is
another example where, when p = 1/2, the dynamics is reversible but not fully
symmetric. Yet another example is

w(σn; {σj}) =
α

2

(
1− γ

2− γ2
σn(σj1 + σj2 + σj1)

+
γ2

2− γ2
(σj1σj2 + σj1σj1 + σj2σj1)

− γ3

2− γ2
σnσj1σj2σj1 −

1− γ2

2− γ2
σnσj2

)
, (8.4)

which illustrates the fact that, even for reversible dynamics, one of the
neighbouring spins (here σj2) can play a role different from the other ones.
It is however easy to convince oneself, using (3.13), that reversibility and total
asymmetry are incompatible, except at infinite temperature, as demonstrated
by (4.34).

9. Conclusion

The present work is a completion of [3]. One of the questions raised and solved in
this reference concerned the possible existence of irreversible single-spin flip dynamics
with Gibbsian stationary states for ferromagnetic Ising systems. The motivation was
twofold.

On the one hand, a natural question raised by the examples given in the past by
Künsch [2] for totally asymmetric dynamics in one and two dimensions, is to what
extent are these examples unique, and can they be extended to higher dimensions
than two. The result of [3], completed here, is that, as long as the dynamics is
not totally asymmetric, the space of parameters defining the rate function allowing
irreversible Gibbsian Ising models is large (see Table 4). However, imposing total
asymmetry of the dynamics yields a unique solution, up to a time scale, for the
examples considered (linear chain, square and triangular lattices). The answer to
the second part of the question is presumably negative. Indeed, firstly, there is no
such Gibbsian irreversible dynamics for the cubic lattice; secondly, one can argue that
there are neither totally asymmetric Gibbsian dynamics for lattices of coordination
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z ≥ 8 [3]. A novel outcome of the present work is that the situation can be different
at infinite temperature (see Table 5).

On the other hand, the models thus defined are interesting laboratories for the
study of the physical consequences of irreversibility, in particular of the properties
of the resulting nonequilibrium stationary state. For instance, for the linear chain,
though the stationary measure is Boltzmann-Gibbs, the dynamical properties of the
relaxing system are changed [9]. Irreversibility also implies a non-vanishing entropy
production rate in the stationary state which can be exactly computed for irreversible
Gibbsian models since the stationary measure is known [4, 8].

The method used in [3] and in the present work for the solution of the question
raised above relies on linear algebra and properties of the system under translations.
This implies solving the system of linear equations of constraint on the rates by a
formal computation. It would be desirable to answer the same question by other
means which would in some sense generalize the argument recalled above for lattices
with coordination number z ≥ 8.
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Appendix A. Linear chain

Hereafter we give some details on the case of the linear chain.
We use the identity

e−2Kσnhn =
1

1− γ2
(1− γO1)(1− γO2) (A.1)

(γ = tanh 2K) to obtain the decomposition (2.25) of the balance term B(σn; {σj})
on the basis of operators Oi. The coefficients Ei thus obtained are, up to a global
constant equal to 1/(1− γ2),

E0 = −γ(c1 + c2 + γ(c0 + c3)),

E1 = 2c1 − γ2(c1 − c2) + γ(c0 + c3),

E2 = 2c2 + γ2(c1 − c2) + γ(c0 + c3),

E3 = E0, (A.2)

from which the relation E0/γ + (E1 + E2)/2 = 0 is seen to hold. Hence the rank of
the system {Ei = 0} is equal to 2.

The matrix A = (ai,α) with 0 ≤ i ≤ 3, and 1 ≤ α ≤ 4, which relates the
coefficients ci to the rates wα, reads

A =
1

4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (A.3)

Hence, using (2.30), we have, for the coefficients Fi defined in (2.29),

F0 = (B1 +B2 +B3 +B4)/4,
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F1 = (B1 −B2 +B3 −B4)/4,

F2 = (B1 +B2 −B3 −B4)/4,

F3 = (B1 −B2 −B3 +B4)/4. (A.4)

Noting that B2 +B3 = 0, we obtain, up to a global constant equal to 1/4,

F0 = (1− e4K)(w1 − e−4Kw̄1),

F1 = (1 + e4K)(w1 − e−4Kw̄1)− 2(w2 − w̄2),

F2 = (1 + e4K)(w1 − e−4Kw̄1) + 2(w2 − w̄2),

F3 = F0, (A.5)

thus we have the relation F0/γ + (F1 + F2)/2 = 0. Hence the rank of the system
{Fi = 0} is equal to 2.

The two writings (A.2) and (A.5) can be identified by using (2.15), i.e.,

w(σn; {σj}) = c0 + c1 σnσn+1 + c2 σn−1σn + c3 σn−1σn+1. (A.6)

Appendix B. Asymmetric Gibbsian conserved dynamics for the linear
chain

In this appendix we use the methods of the present paper to determine the rate
function when the dynamics is conserved and satisfies global balance. So doing we
recover the results of a previous work, which were established by a variant of the
present method, and written differently [6].

Appendix B.1. Basic facts

The dynamics of the chain consists in flipping a bond chosen at random, say bond
(σn, σn+1), if the two spins σn and σn+1 are anti-aligned: either +− flips into −+, or
−+ flips into +−. The change in energy is equal to

∆E = 2J(σn−1σn + σn+1σn+2). (B.1)

This is done with a rate w(σn, σn+1; {σj}), where {σj} is a notation for the two
neighbours σn−1 and σn+2. The number of values taken by the rate function is
therefore equal to 8. We denote the 4 rates with (σn = +1, σn+1 = −1) by wα
and the other 4 rates, corresponding to (σn = −1, σn+1 = +1), by w̄α:

wα = w(+−; {σj}α), w̄α = w(−+; {σj}α), (B.2)

(see Table B1).
Let us introduce the basis of 16 spin operators O1, . . . , O15, made of the 4 spins

σn−1, . . . , σn+2, with O0 = 1 (see Table B2). We define the indicator variables

Iα = I(+−; {σj}α) =
1 + σn

2

1− σn+1

2
Jα,

Īα = I(−+; {σj}α) =
1− σn

2

1 + σn+1

2
Jα, (B.3)

where Jα denotes the indicator variable of the event {{σj} in configuration α}. We
thus have, using the notation (B.2),

w(+−; {σj}) =

4∑
α=1

Jα wα, w(−+; {σj}) =

4∑
α=1

Jα w̄α. (B.4)
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Table B1. List of local configurations and corresponding values of the rate
function for the one-dimensional chain with conserved dynamics. There are
4 possible rates wα, with (σn = +1, σn+1 = −1), corresponding to the 4
possible configurations {σj}, labelled by α, of the two neighbours of the flipping
bond, taken in the order: left, right. The 4 remaining rates w̄α correspond to
(σn = −1, σn+1 = +1).

α σn, σn+1; {σj} wα σn, σn+1; {σj} w̄α
1 +−; ++ w1 −+; ++ w̄1

2 +−; +− w2 −+; +− w̄2

3 +−;−+ w3 −+;−+ w̄3

4 +−;−− w4 −+;−− w̄4

Table B2. List of operators made of the 4 spins σn−1, . . . , σn+2.

i Oi
1 σn−1σnσn+1σn+2

2 σn−1σnσn+1

3 σn−1σnσn+2

4 σn−1σn+1σn+2

5 σnσn+1σn+2

6 σn−1σn
7 σn−1σn+1

8 σn−1σn+2

9 σnσn+1

10 σnσn+2

11 σn+1σn+2

12 σn−1

13 σn
14 σn+1

15 σn+2

Alternatively, we have

w(+−; {σj}) = c0 + c8O8 + c12O12 + c15O15,

w(−+; {σj}) = d0 + d8O8 + d12O12 + d15O15. (B.5)

Finally we can write the rate function as

w(σn, σn+1; {σj}) =
1 + σn

2

1− σn+1

2
w(+−; {σj})

+
1− σn

2

1 + σn+1

2
w(−+; {σj}). (B.6)

The balance term reads

B(σn, σn+1; {σj}) = w(σn, σn+1; {σj})
− w(−σn,−σn+1; {σj})e−∆E/T , (B.7)

with

e−∆E/T =
1

1− γ2
(1− γ O6)(1− γ O11), (B.8)



Rates for irreversible Gibbsian Ising models 26

(γ = tanh 2K). Using (B.5), (B.6) and (B.8), we obtain a decomposition of the balance
term (B.7) on the basis of operators of Table B2:

B(σn, σn+1; {σj}) = E0 +

15∑
i=1

EiOi. (B.9)

Appendix B.2. Symmetries

We analyze the constraints induced on the rate function by the two following
symmetries.

Symmetry under P , the spatial left-right parity

The constraint induced by this symmetry reads

w(+−;σn−1, σn+2) = w(−+;σn+2, σn−1), (B.10)

which imposes

d0 = c0, d8 = c8, d12 = c15, d15 = c12, (B.11)

or

w1 = w̄1, w2 = w̄3, w3 = w̄2, w4 = w̄4. (B.12)

Symmetry under CP

This symmetry is the product of C and P , where the charge conjugation C changes
the spins into their opposites. In other words, the rates are the same for + going to
the right or for − going to the left, with the environment of the latter conjugated to
the environment of the former. The constraints induced by this symmetry read

w(+−;σn−1, σn+2) = w(+−;−σn+2,−σn−1),

w(−+;σn−1, σn+2) = w(−+;−σn+2,−σn−1). (B.13)

This fixes

c12 + c15 = 0, d12 + d15 = 0, (B.14)

or

w1 = w4, w̄1 = w̄4. (B.15)

Appendix B.3. Detailed balance

The detailed balance condition imposes B(σn, σn+1; {σj}) = 0, i.e., Ei = 0 for all i.
We thus obtain the 4 constraints

d0 =
1

1− γ2
(c0 − γ(γc8 − c12 + c15)),

d8 =
1

1− γ2
(c8 − γ(γc0 + c12 − c15)),

d12 =
1

1− γ2
(c12 − γ(γc15 − c0 + c8)),

d15 =
1

1− γ2
(c15 − γ(γc12 + c0 − c8)), (B.16)

which express the equalities

w1 = w̄1, w2 = w̄2 e−4K , w3 = w̄3 e4K , w4 = w̄4. (B.17)

We now restrict the rate function furthermore by symmetry requirements.
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Symmetry under P , the spatial left-right parity

The additional constraint induced by this symmetry is

γ(c0 − c8) + c12 − c15 = 0, (B.18)

which expresses the equality w2 = e−4Kw3. The resulting rate function can be read
off from (B.5) and (B.6):

w(+−; {σj}) = c0 + c8σn−1σn+2 + c12σn−1 + (γ(c0 − c8) + c12)σn+2,

w(−+; {σj}) = c0 + c8σn−1σn+2 + c12σn+2 + (γ(c0 − c8) + c12)σn−1.

(B.19)

It depends on 3 arbitrary coefficients.

Symmetry under CP

The constraints on the rate function are the three first lines of (B.16) with c12+c15 = 0
and d15 is fixed equal to −d12. Again the resulting rate function depends on 3 free
coefficients.

Appendix B.4. Global balance

We now turn to the global balance condition. Translation invariance imposes

O2 = O5, O6 = O9 = O11, O7 = O10,

O12 = O13 = O14 = O15. (B.20)

Solving the system of equations Ẽj = 0 (see (4.4)) yields 2 constraints:

d8 =
1

1− γ2
(c8 − γ(γc0 + c12 − c15)),

γd0 − d12 + d15 =
1

1− γ2
(−c12 + c15 − γ(c0 − (2− γ2)c8)), (B.21)

which express the relations between rates

w2 − w̄2e−4K + w̄3 − w3e−4K = 0

w1 − w̄1 + w4 − w̄4 + w̄2(1 + e−4K)− w2(1 + e4K) = 0. (B.22)

The number of free coefficients is equal to 6.

Symmetry under P , the spatial left-right parity

This again imposes γ(c0 − c8) + c12 − c15 = 0, and the resulting rate function is the
same as for the case of detailed balance with P symmetry (see (B.19)).

Symmetry under CP

This imposes the two additional constraints (B.14) on (B.21), or (B.15) on (B.22).
The resulting rate function depends on 4 free parameters.
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Appendix B.5. Totally asymmetric dynamics

For instance, only the flipping of +− into −+ is allowed. Hence w(−+; {σj}) = 0, or
w̄α = 0. We thus set the two left sides of (B.21) to zero, since d0 = d8 = d12 = d15 = 0,
from which it results that

c8 = 0, γc0 + c12 − c15 = 0, (B.23)

or equivalently

w1 + w4 − w2 − w3 = 0, w2 = w3e−4K . (B.24)

The resulting rate function reads

w(+−; {σj}) = c0 + c12σn−1 + (γc0 + c12)σn+2, (B.25)

which depends on 2 free coefficients. Imposing the CP symmetry fixes c12 = −γc0/2.
The solution found is therefore unique, up to the global time scale c0:

w(+−; {σj}) = c0

(
1− γ

2
(σn−1 − σn+2)

)
. (B.26)

Partially asymmetric dynamics

A partial asymmetry with uniform bias [11] translates into the condition

w(−+;σn−1, σn+2)

w(+−;σn+2, σn−1)
=

1− V
1 + V

, (B.27)

where 0 ≤ V ≤ 1. This condition yields

w(+−; {σj}) = c0 + c12σn−1 + (γc0 + c12)σn+2,

w(−+; {σj}) =
1− V
1 + V

(c0 + (γc0 + c12)σn−1 + c12σn+2), (B.28)

which depend on 3 parameters: c0, c12 and V . Eqs. (B.24) still hold. The limiting
case V = 0 is included in the solution (B.19) of the fully symmetric case. The totally
asymmetric limit V = 1 reproduces the result (B.25). Imposing the CP invariance on
the rate function again fixes c12 = −γc0/2.

References

[1] Glauber R G, 1963 J. Math. Phys. 4 297
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