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QUANTUM Q SYSTEMS: FROM CLUSTER ALGEBRAS TO

QUANTUM CURRENT ALGEBRAS

PHILIPPE DI FRANCESCO AND RINAT KEDEM

Abstract. In this paper, we recall our renormalized quantum Q-system associated with
representations of the Lie algebra Ar, and show that it can be viewed as a quotient of the

quantum current algebra Uq(n[u, u
−1]) ⊂ Uq(ŝl2) in the Drinfeld presentation. Moreover,

we find the interpretation of the conserved quantities in terms of Cartan currents at level
0, and the rest of the current algebra, in a non-standard polarization in terms of generators
in the quantum cluster algebra.
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1. Introduction

The quantum Q-system can be regarded in two different ways, as an algebra and as a
discrete evolution. In our previous work [DFK11], we considered it as a discrete dynamical
system for a set of non-commuting variables, which forms a quantum integrable system.
As such, it has commuting integrals of motion (conserved quantities) and can be solved
combinatorially.

We also considered the quantum Q-system as a relation in the non-commutative algebra
generated by these dynamical variables [DFK14]. As such, it is a subalgebra of a quantum
cluster algebra, whose generators are non-commuting and invertible. The relations of the
cluster algebra are mutations, which can be interpreted as recursion relations, as well as
the commutation relations within “clusters” forming overlapping subsets of the generators.

In [DFK15], we showed that the generators of the quantum Q-system algebra act on the
space of symmetric polynomials with coefficients in Z[q, q−1] (q a central formal variable).
The resulting symmetric functions are interpreted as the graded characters [FL99] of the
Feigin-Loktev fusion product of KR-modules for the polynomial algebra sln[u]. The genera-
tors of the quantum Q-system act on these polynomials as difference operators, mapping the
graded character for a given tensor product to that with one extra tensored representation.
This gives an inductive rule for computing the characters.

This leaves open the question of the exact nature of the algebra of the quantum Q-
system, of the exact representation given by the action by difference operators on the
graded characters, and of the interpretation of conserved quantities within this algebra.

This paper is the first of a sequence of two. In the second paper [DFK16], we show that
there is a natural t-deformation of the above difference operators. These are similar to, but
simpler than the raising operators for Macdonald polynomials introduced by Kirillov and
Noumi [KN99], and they are part of a representation of the quantum toroidal algebra of
gl1 at level 0 [FJMM12], with quantum parameters q and t.

The quantum Q-system is the dual q-Whittaker limit of this algebra, in the sense of
Macdonald theory, namely corresponds to the limit t→ ∞. More precisely, when rephrased
in terms of current generators, the mutation and commutation relations of the quantum
Q-system are equivalent to the relations among currents in the nilpotent subalgebra of the
quantum enveloping algebra of sl2. This is the main result of this paper, which we prove
directly in the q-Whittaker limit. Moreover, we construct in this representation the other
generators of the quantized affine algebra of sl2.

The representation has certain non-standard features. In particular, the quantum Q-
system is associated with the rank r of the algebra (type Ar). This translates into an
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extra, rank-dependent relation satisfied by the current generators, which is not present in
the quantum affine algebra.

Because of the complexity of the formulas and the proofs, we will present the quan-
tum toroidal deformation in a separate publication. In this paper, we concentrate on the
structure of the quantum Q-system itself.

The paper is organized as follows. In Section 2, we define the graded algebra Ur associated
with the Ar quantum Q-system extended with coefficients and present the main results of
the paper, namely that Ur may be reformulated as a quotient of the nilpotent subalgebra
of the quantum affine algebra of sl2. Section 3 reformulates the conserved quantities of
this system and their properties as discrete Hamiltonians. These are used in Section 4,
which gathers the proofs of the main theorems of the paper, using in particular constant
term identities similar to those appearing in shuffle algebras. In Section 5, we introduce
furhter currents using automorphisms of Ur and obtain an embedding of Ur into a quotient
of the full quantized affine algebra of sl2 with non-standard vanishing conditions on the
Cartan currents. We gather discussions and concluding remarks in Section 6, in particular
we address the full (q, t)-deformation of the constructions of this paper.

Acknowledgments. We thank O.Babelon, F. Bergeron, J.-E. Bourgine, I. Cherednik,
A. Negut, V. Pasquier, and O. Schiffmann for discussions at various stages of this work.
R.K.’s research is supported by NSF grant DMS-1404988. P.D.F. is supported by the NSF
grant DMS-1301636 and the Morris and Gertrude Fine endowment. R.K. would like to
thank the Institut de Physique Théorique (IPhT) of Saclay, France, for hospitality during
various stages of this work. The authors also acknowledge hospitality and support from
Galileo Galilei Institute, Florence, Italy, as part of the scientific program on “Statistical Me-
chanics, Integrability and Combinatorics”, from the Centre de Recherche Mathématique de
l’Université de Montreal during the thematic semester: “AdS/CFT, Holography, Integra-
bility”, as well as of the Kavli Institute for Theoretical Physics, Santa Barbara, California,
during the program “New approaches to non-equilibrium and random systems”, supported
by the NSF grant PHY11-25915.

2. An extended quantum Q system

Let us first define the algebra Ur. The definition is via generators and relations, where
the relations are what we call the M-system, commutation relations and a rank condition.
We then state a new definition, using a restricted set of generators, and a different set of
relations. The main relation takes the familiar form of an exchange relation in a current
algebra. One of the main theorems in this paper is that the two definitions are equivalent.

The M-system is the mutation relation which appears in the quantum cluster algebra
defined by Q-system of type Ar [DFK11, DFK14], extended by a single central element
which is a coefficient of the cluster algebra, as well as a degree operator.
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The alternative definition given in this paper is as a rank-dependent quotient of a current
algebra. The current algebra algebra is identified with the Drinfeld quantization of the loop
algebra of the nilpotent subalgebra of sl2, a subalgebra of the quantum affine algebra [Dri87].
The generators of Ur are either components of the generating function of this subalgebra,
or polynomials in these generators, given by a quantum determinant formula.

2.1. The algebra Ur.

Definition 2.1. Let U′ be the algebra generated over the ring Zq = Z[q, q−1] by the non-
commuting generators

{Mα,n, α ∈ N, n ∈ Z},

subject to two sets of relations. The first is called the M-system1:

(2.1) qαMα,n+1Mα,n−1 =M2
α,n −Mα+1,nMα−1,n, α ∈ N, n ∈ Z,

with the convention that M0,n = 1 for all n. The second set of relations are commutation
relations among the generators:

(2.2) Mα,nMβ,n+ǫ = qmin(α,β)ǫMβ,n+ǫMα,n, ǫ ∈ {0, 1}, α, β ∈ N, n ∈ Z.

Finally, there is a rank-dependent relation.

Definition 2.2. Let r be a fixed positive integer. The algebra U′
r is the quotient of U′ by

the ideal generated by the relations

(2.3) Mr+2,n = 0, n ∈ Z.

Lemma 2.3. The algebras U′ and U′
r are Z-graded, with

degMα,n = αn.

Proof. We rewrite the relation (2.1) as

(2.4) Mα+1,nMα−1,n =M2
α,n − qαMα,n+1Mα,n−1.

This is a recursion relation on the index α, starting with the collectionM0,n = 1 which have
degree 0, and M1,n, which have degree n. The statement for U′ follows by induction, since
the commutation relations (2.2) and the rank restriction (2.3) are homogeneous relations.

�

We adjoin the invertible degree operator ∆ to U
′ and U

′
r, where

∆x = qnx∆, x ∈ U
′[n],

where U′[n] is the homogeneous graded component of U′, and similarly for U′
r. That is,

(2.5) ∆Mα,n = qαnMα,n∆.

The algebras extended by ∆±1 are denoted by U and Ur, respectively.

1Throughout this paper, we shall refer to equation (2.1) as the “M -system” relation, in analogy with
the Q-system relation (see below for a precise connection).
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Figure 1.

2.2. Relation to the quantum Q-system. The algebra Uloc
r is closely related to the

Ar quantum Q-system introduced in [DFK11, DFK14]. The quantum Q-system can be
considered in the language of quantum cluster algebras2. In the current paper we add a
single, central coefficient A to the cluster algebra of the quantum Q-system. The quantum
cluster algebra includes the inverses of all the generators, by definition. With the addition
of ∆, the solutions of the quantum Q-system generate an algebra which is the localization
of Ur.

The quantum Q-system is a subalgebra of a quantum cluster algebra with trivial coef-
ficients3. We add a frozen variable A as in the quiver illustrated in Figure 1. The ring
over which the algebra is defined is Zv = Z[v, v−1] where v = q−1/(r+1). We also adjoin the
(r + 1)-st root of the degree operator ∆.

Let C be the Cartan matrix of the Lie algebra slr+1, and define the integer matrix
Λ = (r + 1)C−1. Explicitly,

(2.6) Λα,β = min(α, β)(r + 1−max(α, β)).

Define the generators

(2.7) Qα,n = v−dαMα,n∆
− α

r+1 , α ∈ [0, r + 1], n ∈ Z

where

dα =
Λα,α

2
n +

∑

β

Λα,β =
Λα,α

2
(n + r + 1).

We use the convention Λ0,β = Λr+1,β = 0 for all β so that Q0,n = 1 and Qr+2,n = 0 for all n.

2In cluster algebras, all inverses of the generators are adjoined by definition, hence the localization.
3To be precise, to compare with the usual definition of [BZ05], the generators are renormalized cluster

variables
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Lemma 2.4. Relations (2.1), (2.2) and (2.3) imply that the generators Qα,n satisfy the
relations

v−Λα,αQα,n+1Qα,n−1 = Q
2
α,n − qQα+1,nQα−1,n, α ∈ [1, r], n ∈ Z(2.8)

Qα,nQβ,n+1 = vΛα,βQβ,n+1Qα,n, α, β ∈ [0, r + 1], n ∈ Z,

Qr+2,n = 0.

We identify the central element A as the frozen variable in the quantum cluster algebra
as in Figure 1. Noting that this quiver corresponds to the cluster variables

xn = (Q1,n, · · · ,Qr,n|Q1,n+1, · · · ,Qr,n+1|A),

we identify Qr+1,n = An in Equations (2.8), each of which is then identified (up to a
normalization of the cluster variables) with a mutation in the quantum cluster algebra.

Remark 2.5. The boundary condition Qr+1,n = An is a generalization of the boundary
condition Qr+1,n = 1 used in [DFK14]. Both are consistent with the less restrictive boundary
condition Qr+2,n = 0. The former corresponds to the choice Qr+1,0 = 1 and Qr+1,1 = A.
The introduction of a coefficient A is necessary in this paper in order for the algebra to
have a Z-grading.

Apart from the frozen variable A, this system was called the Ar quantum Q-system in
[DFK11, DFK14]. It is the quantum version of the Ar Q-system cluster algebra identified
in [Ked08].

The quantum cluster algebra structure allows to extend straightforwardly the commuta-
tion relations (2.2) to the following:

Lemma 2.6.

(2.9) Mα,nMβ,n+p = qpmin(α,β)Mβ,n+pMα,n, n, p ∈ Z, |p| ≤ |β − α|+ 1.

Proof. The proof of the Lemma for the variables Q is given in Lemma 3.2 of [DFK14]. Then
using the relation of M and Q variables gives (2.9) directly. The condition on p is that the
corresponding quantum cluster variables belong to a common cluster. The appearance of
the quantity min(α, β) is due to the relation Λα,β + αβ = (r + 1)min(α, β). �

The Z-grading of the algebra Ur is inherited by the quantum Q-system variables, with
degQα,n = αn. Since Qr+1,n = An, we have degA = r + 1, namely

(2.10) ∆A = qr+1A∆,

and

(2.11) Mr+1,n = An∆.

As a consequence of (2.5) and the fact that Qr+1,n commutes with all Qα,n,

(2.12) AMα,n = q−αMα,nA
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We will work with the generators Mα,n in this paper instead of Qα,n for convenience
(they generate the same algebra). In what follows, we will consider the localization of this
algebra obtained by adjoining inverses of the generators.

2.3. Generating functions. We want to present the relation of the algebra U to a loop
algebra, so we introduce generating functions, or currents. Denote the generating functions

(2.13) mα(z) :=
∑

n∈Z
Mα,nz

n.

The subset of generators {Mn := M1,n : n ∈ Z} plays a special role in the presentation
which follows, and we introduce the notation

(2.14) m(z) := m1(z).

Equations (2.1), (2.2) and (2.3) in terms of currents as follows. Let δ(z) denote the
distribution

(2.15) δ(z) :=
∑

n∈Z
zn =

z−1

1− z−1
+

1

1− z

where the first fraction is understood as a power series in z−1 and the second fraction is
expanded in powers of z4.

Define the “constant term” notation

(2.16) CTu1,...,un
(f(u1, ..., un)) =

∮
du1
2iπu1

· · ·

∮
dun
2iπun

f(u1, ..., un)

for the multiple constant term in variables u1, ..., un.
In terms of generating functions, the M-system equations (2.1) are equivalent to the

relations
(2.17)

CTu,v

(((
1− qα

v

u

)
mα(u)mα(v)−mα+1(u)mα−1(v)

)
δ(uv/z)

)
= 0, 1 ≤ α ≤ r + 1,

in that the coefficient of zn in this equation, for each n and α, gives one of the relations
(2.1).

Similarly, the commutation relations (2.2) are components of the relation

(2.18) CTu,v

((
1

vǫ
mα(u)mβ(v)− qǫMin(α,β) 1

uǫ
mβ(u)mα(v)

)
δ(uv/z)

)
= 0, |ǫ| ≤ 1.

The grading relation (2.5) is equivalent to

∆mα(z) = mα(q
αz)∆, (1 ≤ α ≤ r + 1).

4 This is a delta function in the sense that
∮

du
2iπu

f(u)δ(u/z) = f(z), where the contour integral picks

out the constant term of the current f(u)δ(u/z).
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2.4. Alternative formulation of Ur. The main claim of this paper is that there is an
alternative definition of the algebra Ur in terms of the subset of generators Mn :=M1,n or
the currents m(z) and relations on them. We present in this subsection some of the main
theorems to be proven.

Define the q-commutators

[x, y]q := xy − qyx, x, y ∈ U.

Theorem 2.7. If Mn are generators which satisfy both the M-system (2.1) and the com-
mutation relations (2.2), then they satisfy the following exchange relations:

(2.19) [Mn,Mn+p]q + [Mn+p−1,Mn+1]q = 0, n ∈ Z, 1 ≤ p.

Note that this is a relation for the subset of generators Mn = M1,n only and does not
involve Mα,n with α > 1.

For example, if p = 1, this relation reduces to the commutation relation between M1,n

and M1,n+1. If p = 2, this is a difference of (2.1) and its conjugate version (3.4), at shifted
n.

The term exchange relation is justified because in terms of currents, Equation (2.19)
takes on the more familiar form

(2.20) (z − qw)m(z)m(w) + (w − qz)m(w)m(z) = 0.

Each of the relations (2.19) is a coefficient of zn−1wn+p of the relation (2.20) for each
n, p ∈ Z.

Equation (2.20) is the relation satisfied by the Drinfeld generators [Dri87] of the nilpotent

subalgebra U√
q(n[u, u

−1]) of the quantum affine algebra U√
q(ŝl2). We note that this relation

also appears in the context of the spherical Hall algebra [Kap97].

2.5. Polynomiality of Mα,n in the generators. The second important result is that
all the generators which do not appear as part of the exchange relation (2.19) are in the
universal enveloping algebra generated by those that do. The generators Mα,n with α > 1,
which are a priori defined from (2.1) in terms of a localization of the algebra generated by
components of the current m(z), are, in fact, polynomials in these generators.

Theorem 2.8. If the elements Mα,n satisfy the M-system (2.1) and the commutation
relations (2.2), the following recursion relations are satisfied:

(2.21) (−1)α(q − 1)Mα,n = [Mn−α+1,Mα−1,n+1]qα, α > 1.

In terms of currents, these recursion relations can be expressed as
(2.22)

mα(z) = CTu1,u2

(
uα−1
1 u−1

2 m(u1)mα−1(u2)− qαu−1
1 uα−1

2 mα−1(u1)m(u2)

(−1)α(q − 1)
δ(u1u2/z)

)
.

Moreover, we have the following
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Corollary 2.9. Equation (2.21) implies a polynomial expression for Mα,n in terms of the
components of the current m(z):

(2.23) (q − 1)α−1Mα,n = (−1)α(α−1)/2[· · · [Mn−α+1,Mn−α+3]q2 ,Mn−α+5]q3 , · · · ,Mn+α−1]qα.

Therefore, the algebra U is generated by the components of the single current m(z), all
other generators being polynomials in these generators. The algebra Ur is a quotient of
this algebra.

It would seem that the polynomial expression for Mα,n of (2.23) in the Mn’s has coeffi-
cients in C(q), due to the denominators involving (q − 1). It turns out that Mα,n also has
a polynomial expression of the Mn’s, with coefficients in Z[q].

Indeed, modulo the exchange relations (2.19), the nested commutator expression (2.23)
is equivalent to the following. In terms of the currents mα(z), and the slightly non-standard
definition of q-vandermonde product:

(2.24) ∆q(u1, ..., uα) =
∏

1≤a<b≤α

(
1− q

ub
ua

)
,

we have:

Theorem 2.10. The current mα(z) is expressed in terms of the current m(z) via the
following “quantum determinant” constant term identity:

(2.25) mα(z) = CTu1,··· ,uα

(
∆q(u1, ..., uα)

α∏

i=1

m(ui) δ(u1...uα/z)

)
.

Section 4 of this paper is devoted to the proof of the equivalence of the two presentations
of the algebra Ur.

Theorem 2.11. The algebra Ur generated by {Mα,n, α ∈ 1, r + 1, n ∈ Z} subject to the
M-system relations (2.1), the commutation relations (2.2) and the rank restriction (2.3),
is isomorphic to the algebra generated by {Mn, n ∈ Z} subject to the exchange relations
(2.20) and the rank restriction (2.3), expressed by using (2.25) as definition of the Mα,n’s.

That is, Ur is isomorphic to the quotient of U√
q(n+[u, u

−1]) by the two-sided ideal gen-
erated by the relation (2.3).

The proof relies on the existence of commuting Hamiltonians of theM-system (conserved
quantities of the Q-system). We have previously derived these in the quotient Ur only
and they are used in the derivation of the result. However, the resulting relations are
independent of r and hold in the algebra U as well.

3. Conserved quantities

In this section, all relations are considered in the localization Uloc
r .
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We recall that the quantum Q-system can be regarded as a discrete integrable equation
with conserved quantities which are Laurent polynomials in the generators [DFK11].

Thus, the relations (2.1), regarded as relations in U
loc
r , can be considered to be a discrete

evolution of the variables Mα,n in the discrete “time” variable n. When regarded in this
way, the equation is a discrete integrable system, and there are r algebraically independent
elements of U loc

r , Laurent polynomials in any initial data, which are independent of n. Here,
we reformulate the discrete integrable structure first established for the classical Q-system
in [DFK10] and then extended to the quantum case in [DFK11].

3.1. Miura operator and quantum conserved quantities. Let D denote the auto-
morphism of Ur acting as single time step shift operator,

(3.1) D(Mα,n) =Mα,n+1, α ∈ [1, r + 1],

extended to an action on Uloc
r . Define the monomials

ξα,n =Mα,nM
−1
α,n+1, xα,n = ξ−1

α,nξα−1,n.

In particular, ξ0,n = 1 and ξr+1,n = A−1. Consider the following element, acting on Uloc
r :

(3.2) µn = (D − xr+1,n)(D − xr,n) · · · (D − x1,n).

We call this the Miura operator. We claim that µn = µn−1 and hence is independent of n.
This proved using the following Lemma, which uses M-system (2.1) and the commutation
relations (2.2) (but not the rank restrictions (2.3)):

Lemma 3.1. For all α ∈ [1, r] and n ∈ Z,

(3.3) (D − xα+1,n)(D − ξ−1
α,nξα−1,n−1) = (D − ξ−1

α+1,nξα,n−1)(D − xα,n−1).

Proof. This is a quadratic equation in D. The coefficients of D2 on both sides of (3.3) are
1, and the coefficients of D0 are equal to ξ−1

α+1,nξα,n−1 on both sides by definition of xα,n.
Identifying the coefficients of D is equivalent to the following equation:

ξ−1
α+1,n (ξα,n − ξα,n−1) =

(
ξ−1
α,n − ξ−1

α,n+1

)
ξα−1,n.

This follows from (2.1), which implies the “left” M-system:

(3.4) q−αMα,n−1Mα,n+1 =M2
α,n − q−1Mα+1,nMα−1,n.

obtained by multiplying (2.1) from the left by Mα,n−1 and from the right by M−1
α,n−1, and

further simplifying by use of the commutation relations (2.2). Multiplying (3.4) from the
left by M−1

α,n and from the right by M−1
α,n+1, using the commutation relations (2.2) and

rearranging terms, this is equivalent to:

(3.5) ξα,n − ξα,n−1 = q−1Mα+1,nM
−1
α,nMα−1,nM

−1
α,n+1.

On the other hand, the equation (2.1) can be written as

M2
α,n+1 − qαMα,n+2Mα,n =Mα+1,n+1Mα−1,n+1.
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Multiplying from the left byM−1
α,n+1 and from the right byM−1

α,n, and using the commutation
relations, this is:

(3.6) ξ−1
α,n − ξ−1

α,n+1 =M−1
α,n+1Mα+1,n+1Mα−1,nM

−1
α,n.

Finally, the desired equality is obtained by multiplying (3.5) from the left by ξ−1
α+1,n =

Mα+1,n+1M
−1
α+1,n, and (3.6) from the right by ξα−1,n = Mα−1,nM

−1
α−1,n+1, and using the

commutation relations to see that they are equal. �

Theorem 3.2. The operator µn is independent of n. That is, µn = µn−1 = µ.

Proof. Using Lemma 3.1, we have a “zipper argument” as follows. Start with

(D − x2,n)(D − x1,n) = (D − x2,n)(D − ξ−1
1,nξ0,n)

= (D − x2,n)(D − ξ−1
1,nξ0,n−1)

= (D − ξ−1
2,nξ1,n−1)(D − x1,n−1).

Here, we made use of the fact that ξ0,n = ξ0,n−1 = 1 and applied Lemma 3.1. We then use
Lemma 3.1 iteratively to update each of the subsequent terms, and for any fixed positive
r, this ends with the updated term:

(D − ξ−1
r+1,nξr,n−1) = (D − ξ−1

r+1,n−1ξr,n−1) = (D − xr,n−1),

because ξr+1,n = A−1 = ξr+1,n−1. Therefore, µn = µn−1. �

Example 3.3. In the case of A1, r = 1, we have ξn := ξ1,n =MnM
−1
n+1, ξ2,n =M2,nM

−1
2,n+1 =

A−1, x1,n = ξ−1
n , x2,n = Aξn, hence:

µ = (D − Aξn)(D − ξ−1
n ) = D2 − C1D + A

where C1 = Aξn + ξ−1
n+1.

Note the following simple commutation relations.

Lemma 3.4. We have the commutation relations:

ξα,n ξβ,n+p = ξβ,n+p ξα,n (|p| ≤ |α− β|)(3.7)

xα,n xβ,n+p = xβ,n+p xα,n (|p| ≤ Max(|α− β| − 1, 0))(3.8)

Mn ξβ,n+p = q−1ξβ,n+pMn (−β ≤ p ≤ β − 1)(3.9)

Proof. Using (2.9), we deduce easily that for α < β and |p| ≤ β − α:

ξα,n ξβ,n+p = Mα,nM
−1
α,n+1Mβ,n+pM

−1
β,n+p+1

= qα(p−(p+1)−(p−1)+p)Mβ,n+pM
−1
β,n+p+1Mα,nM

−1
α,n+1 = ξβ,n+p ξα,n

which implies (3.7). The relation for xα,n = ξ−1
α,nξα−1,n follows immediately. Finally (3.9)

follows from (2.9), while the range of validity corresponds to both |p| ≤ β and |p + 1| ≤
β. �
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The conservation of the Miura operator µn = µ is best expressed via the expansion

(3.10) µn = µ =

r+1∑

m=0

(−1)mCmD
r+1−m =

1∏

α=r+1

(D − xα,n)

The conserved quantities Cm are expressed as homogeneous polynomials of the x’s of total
degree m. Since the Miura operator (3.2) is independent of n, we can write it in terms of
the variables in the limit when n tends to infinity. In [DFK14] (Lemma 5.14), we showed
that the limit Qα,nQ

−1
α,n+1 exists when n→ ∞. Therefore, so do the limits

ξα := lim
n→∞

ξα,n, xα := lim
n→∞

xα,n .

Moreover, in the limit, the variables {x1, ..., xr} commute among themselves as a con-
sequence of Lemma 3.4 and commute with D as well. On the other hand, since µn is
independent of n, we have

µ = lim
n→∞

µn = (D − xr+1) · · · (D − x1).

Comparing this with the expansion µ =
∑r+1

m=0(−1)mCmD
r+1−m, we can identify Cm with

the elementary symmetric functions in the commuting variables {xα}:

(3.11) Cm = em(x1, ..., xr+1).

In particular, we have

Lemma 3.5. The conserved quantities commute among themselves:

(3.12) CmCp = CpCm (m, p = 0, 1, ..., r + 1).

Finally, note that Cm has degree m with respect to the Z-grading of Ur, as ξα,n all have
degree −α and xα,n, hence xα, all have degree 1. That is,

(3.13) ∆Cm = qmCm∆ (m = 0, 1, ..., r + 1).

3.2. A linear recursion relation. When the Miura operator acts on Ur by left-multiplication,
it gives rise to a linear recursion relation among the generators, which is a characteristic of
integrability.

Lemma 3.6. The generatorsMn :=M1,n satisfy a linear recursion relation with coefficients
which are independent of n:

(3.14)
r+1∑

j=0

(−1)jCj Mm−j = 0.

Proof. Consider µ(Mn) = µn(Mn). Noting that the rightmost factor of µn is (D − x1,n) =
D − ξ−1

1,n = D −Mn+1M
−1
n , we conclude that µ(Mn) = 0. �
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j−1
~

C1
~

(2,n)

j
~

C

b

a
(2,n−r)

(r+1,n−r)

(r+2−j,n+j−r−1)

(r+3−j,n+j−r−2)

(j+1,n−1)(2,n−1)

C

(r+1,n+j−r−1)

(r+1,n+j−r−2)

Figure 2. The domains C̃j and C̃j−1 of indices ot the x’s that contribute to

C̃j,n+j−r−1 and C̃j−1,n+j−r−1 respectively. The larger wedge corresponds to indices
a = α, b = n+ p such that xa,b commutes with Mn, and contains the former.

Remark 3.7. The construction of our Miura operator is very similar to the so-called Miura
transformation allowing for defining generators of the q-deformed W-algebra in terms of
quantum group generators [FR96] (See e.g. Eq. (10.9).) .

3.3. Conserved quantities as Hamiltonians. We now consider commutations relations
in the algebra which we interpret as the integrable structure. The conserved quantities
{Cm} play the role of Hamiltonians in Ur, in the sense that they act by time translation
on the generators {Mn =M1,n, n ∈ Z}.

Theorem 3.8. Let m ∈ [1, r]. Then

(3.15) [Cm,Mn] = (q − 1)
m∑

j=1

(−1)jCm−jMn+j.

Proof. Recall the Miura operator, µn =
∏1

r+1(D − xα,n) and define µ̃n =
∏2

r+1(D − xα,n).

We define the coefficients C̃j,n by expanding µ̃n,

µ̃n =
r∑

j=0

(−1)jC̃j,nD
r−j, C̃0,n = 1.
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Multiplying this formula for µ̃n by (D − ξ−1
1,n) and identifying coefficients of Dr+1−j,

(3.16) Cj = C̃j,n + C̃j−1,nξ
−1
1,n+r+1−j = C̃j,n+j−r−1 + C̃j−1,n+j−r−1ξ

−1
1,n

where the last equality follows from the fact that Cj is independent of n. We use the
following commutation relations, easily derived from (2.9):

Mnξα,n+p = q−1ξα,n+pMn, −α ≤ p ≤ α− 1;

Mnxα,n+p = xα,n+pMn, α > 1 and − α + 1 ≤ p ≤ α− 2,

to show that [Mn, C̃j,n+j−r−1] = [Mn, C̃j−1,n+j−r−1] = 0. Indeed, by definition, both

C̃j,n+j−r−1 and C̃j−1,n+j−r−1 are sums of products of xα,n+p’s, with −α + 1 ≤ p ≤ α − 2.

We have represented in Fig. 2 the actual domains C̃j and C̃j−1 of the integer plane

(a, b) ∈ Z2 such that xa,b appears in C̃j,n+j−r−1 and C̃j−1,n+j−r−1 respectively. The do-
main −α + 1 ≤ p ≤ α − 2, for a = α, b = n + p corresponds to the larger wedge, that
contains both domains.

Finally, as Mnx1,n =Mnξ
−1
1,n = qξ−1

1,nMn = qx1,nMn, we deduce that:

[Cj ,Mn] = [Cj,n+j−r−1,Mn] = [C̃j−1,n+j−r−1 ξ
−1
1,n,Mn]

= (1− q)C̃j−1,n+j−r−1 ξ
−1
1,nMn = (1− q)C̃j−1,n+j−r−1Mn+1

Next, we use (3.16) to express C̃j−1,n+j−r−1 in terms of the ξ’s and the C’s, by rewriting
iteratively:

C̃j−1,n+j−r−1 = Cj−1 − C̃j−2,n+j−r−1 ξ
−1
1,n+1 = · · · =

j∑

k=1

(−1)k−1Cj−kξ
−1
1,n+k · · · ξ

−1
1,n+1

Noting that ξ−1
1,n+k · · · ξ

−1
1,n+1 =Mn+kM

−1
n+1 yields (3.15). �

The result of Theorem 3.8 may be easily recast in terms of currents Introduce the gen-
erating polynomial for the conserved quantities:

(3.17) C(z) =

r+1∑

j=0

(−z)mCm =

r+1∏

α=1

(1− zxα),

where the last equality comes from the identification with the elementary symmetric func-
tions (3.11).

Equation (3.15) is rewritten as

(3.18) C(z)m(w) =
z − w

qz − w
m(w)C(z).

We recover the linear recursion relation (3.14) by taking z = w, so that

(3.19) C(z)m(z) = 0.



QUANTUM Q SYSTEMS: FROM CLUSTER ALGEBRAS TO QUANTUM CURRENT ALGEBRAS 15

Note the right recursion relation obtained by taking w = qz, which reads m(qz)C(z) = 0,
or in components:

(3.20)
r+1∑

j=0

(−q)−jMm−j Cj = 0.

Corollary 3.9. The conserved quantities C1 and A−1Cr act as discrete “time” shifts on
Mn, namely for all n ∈ Z:

[C1,Mn] = (1− q)Mn+1(3.21)

[A−1Cr,Mn] = (1− q−1)Mn−1(3.22)

Proof. The first equality (3.21) is simply (3.15) for m = 1. Rewriting (3.15) for m = r by
using the linear recursion relation (3.14) leads to [Cr,Mn] = (1 − q)(CrMn − AMn−1), as
Cr+1 = A. We deduce (3.22) by multiplying this by A−1 and using A−1Mn = qMnA

−1. �

In the expression (3.17) for C(z), the coefficients are the elementary symmetric functions
in {xα}. There is a natural transformation between the elementary symmetric functions
and power sum symmetric functions:

exp

(
−
∑

k≥1

zk

k
Pk

)
= C(z),

where, expressed as a function of xα, Pk = pk(x) =
∑r+1

α=1 x
k
α for k > 0. The elements

Pk ∈ Ur are polynomial in the conserved quantities.

Theorem 3.10. The elements Pk are the k-step time-translation Hamiltonians,

(3.23) [Pk,Mn] = (1− qk)Mn+k, k ∈ N.

Proof. By definition, we have −C(z)−1C ′(z) = − d
dz
LogC(z) =

∑
k≥1 z

k−1 Pk =: P (z). We
wish to study the commutation of this function with the current m(w). Rewriting (3.18)
as:

C(z)−1 m(w)C(z) =
w − qz

w − z
m(w),

we may write in two ways:

d

dz

(
C(z)−1 m(w)C(z)

)
= −C(z)−2C ′(z)m(w)C(z) + C(z)−1m(w)C ′(z)

= [P (z), C(z)−1m(w)C(z)] =
w − qz

w − z
([P (z),m(w)])

=
d

dz

(
w − qz

w − z

)
m(w) =

(1− q)w

(w − z)2
m(w)
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We deduce that

[P (z),m(w)] =
(1− q)w

(w − z)(w − qz)
m(w) =

(
1

w − z
−

q

w − qz

)
m(w).

Eqn. (3.23) is the coefficient of zk−1wn in this current identity. �

3.4. Conserved quantities as quantum determinants. In Ref. [DFK10], it was shown
that the conserved quantities of the classical Q-system (with q = 1, A = ∆ = 1, Qα,n =
Mα,n) can be expressed as discrete Wronskian determinants with a defect, of the form:

Cm = det
1≤a<b≤r+2
b6=r+2−m

(Mn+a+b−r−2) (m = 0, 1, ..., r + 1)

Note the “defect” between the two consecutive columns b = r + 1−m and b = r + 3−m.
In this section we present the quantum counterpart of this result, which we may view as a
quantum determinant.

The explicit expression for conserved quantities coming from the expansion of the Miura
operator µn is Laurent polynomial in the Mα,n’s. However, using (2.1), (2.2) and (2.3), it
is possible to rewrite Cm, up to some factor ∆−1, as a polynomial of the Mn’s:

Theorem 3.11. There is a constant term expression for the conserved quantities Cm, in
terms of the currents m(u), as a quantum determinant:

(3.24) Cm = CTu1,...,ur+1

(
∆q(u1, ..., ur+1)

u1u2 · · ·um

r+1∏

a=1

m(ua)

)
∆−1.

Example 3.12. In the case of A1, r = 1, we get

C0 = CTu1,u2

(
(1− q

u2
u1

)m(u1)m(u2)

)
∆−1 = (M2

0 − qM1M−1)∆
−1 =M2,0∆

−1 = 1

C1 = CTu1,u2

(
(
1

u1
− q

u2
u21

)m(u1)m(u2)

)
= (M1M0 − qM2M−1)∆

−1

C2 = CTu1,u2

(
(

1

u1u2
− q

1

u21
)m(u1)m(u2)

)
= (M2

1 − qM2M0)∆
−1 =M2,1∆

−1 = A

The proof of Theorem 3.11 is given in Section 4.5 below.

4. Proofs

In this section, we prove the main Theorems of the paper. In the first two sections, we
prove Eqs. (2.19) and (2.21) directly in components, as relations between the Mα,n,s and
Mn’s. The technique is by induction, and uses crucially the interpretation of conserved
quantities as time translation “Hamiltonians”, from Theorem 3.8 and Corollary 3.9.
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The three subsequent sections are devoted to the proofs of Theorem 2.10, Theorem 2.11,
and Theorem 3.11, all in current/constant term form. The method of proof is radically
different, and uses constant term manipulations.

4.1. Quadratic relations in Ur: proof of eq. (2.19). The quadratic relation (2.1) and
the commutation relations (2.2) imply the existence of the following infinite sequence of
quadratic relations (an exchange algebra) in Ur.

Theorem 4.1. Let Mn =M1,n denote generators in Ur. Given n ∈ Z, 1 ≤ p,

[Mn,Mn+p]q + [Mn+p−1,Mn+1]q = 0.

Proof. Let φn,ℓ = [Mn,Mn+ℓ]q + [Mn+ℓ−1,Mn+1]q for ℓ ≥ 1. We prove that φn,ℓ = 0 by
induction on ℓ. First note that φn,1 = 2[Mn,Mn+1]q = 0 due to the commutation relations
(2.2), and φn,2 = q(q−1MnMn+2 −M2

n+1 + q−1M2,n+1)− (qMn+2Mn −M2
n+1 +M2,n+1) = 0

as a linear combination of the quadratic relations (3.4) and (2.1) for α = 1 and n→ n+1.
Using Eq. (3.21) of Corollary 3.9, we compute for all n, ℓ:

[C1, [Mn,Mn+ℓ]q] = (1− q) ([Mn+1,Mn+ℓ]q + [Mn,Mn+ℓ+1]q) ,

This implies the inductive step:

[
C1

1− q
, φn,ℓ]− φn+1,ℓ−1 = φn,ℓ+1.

Suppose φn,ℓ′ = 0 for all n and ℓ′ ≤ ℓ, then the left hand side of this equation is zero, hence
φn,ℓ+1 = 0, and the Theorem follows by induction on ℓ. �

Remark 4.2. As mentioned before, in addition to the quadratic relation (2.19), we have
a cubic relation which follows automatically in Ur. It is instructive to re-derive it directly
from eqns. (2.1) and (2.2). We have the following.

Theorem 4.3. Let n, p, k ∈ Z. Then the generators Mn satisfy

(4.1) Sym [Mn, [Mp−1,Mk+1]] = 0,

where by Sym we mean the symmetrization over the letters n, p, k.

Proof. Let φn,k,p denote the left hand side of (4.1). Let δ = max(n, k, p)−min(n, k, p), and
the proof will follow by induction on δ.

If δ = 0, then the commutators [Mn,Mn−1Mn+1] = 0 = [Mn,Mn+1Mn−1] due to the
commutation among Mn and Mn±1.

The function φn,k,p is symmetric with respect to n, k, p so we assume n ≤ k ≤ p = n+ δ.
Using

(4.2) (1− q)−1[C1, φn,k,p] = φn+1,k,p + φn,k+1,p + φn,k,p+1,

will provide an inductive step. If φn,k,p = 0 for all n ≤ k ≤ p = n + δ, then the left hand
side is zero. The right hand side will contain one or more terms with δ′ > δ.
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• If n ≤ k < p, then all terms on the right side have δ′ ≤ δ except for φn,k,p+1, which
therefore vanishes.

• If n < k = p then two terms on the right hand side are equal to each other by the
symmetry of φn,k,p, and both have δ′ = δ + 1. Thus, φn,k,k+1 = 0 for n < k.

• If n = k = p, the three terms on the right are equal to each other by symmetry,
and therefore φk,k,k+1 = 0 since the left side vanishes.

This argument does not show that φn,k+1,k+1 = 0. To see this, use Equation (3.22)
instead:

(4.3) (1− q−1)−1[A−1Cr, φn+1,k+1,k+1]− φn+1,k,k+1 − φn+1,k+1,k = φn,k+1,k+1

which allows to conclude that φn,k+1,k+1 = 0, as all the terms on the left have width
δ = k − n. The Theorem follows by induction on δ. �

4.2. Recursion relation for Mα,n: proof of eq. (2.21). We consider the subset of
generators Mn := M1,n, n ∈ Z. The next result shows that the elements (1 − q)α−1Mα,m,
with α > 1, are polynomials in these generators with coefficients in Z[q].

Theorem 4.4. Let r + 2 ≥ α > 1, n ∈ Z, and Mα,n defined in Ur via (2.1) and (2.2). We
have the relations:

(−1)α(q − 1)Mα,n = [Mα−1,n−1,Mn+α−1]qα(4.4)

= [Mn−α+1,Mα−1,n+1]qα(4.5)

Proof. The proof is by induction on α. Define

φα,n = (−1)α(q − 1)Mα,n − [Mα−1,n−1,Mn+α−1]qα .

If α = 1 this is zero due to the q-commutation relation

φ1,n = (1− q)M1,n −M0,n−1M1,n + qM1,nM0,n−1 = 0

because M0,m = 1 for all m.
The inductive step is as follows. Assume φα−1,m = 0 for all m ∈ Z. We will show that

the quantity Mα−1,n+1φα,n + φα−1,n+1Mα,n = 0 for all n ∈ Z. This implies φα,n = 0. To
show this, write:

Mα−1,n+1φα,n + φα−1,n+1Mα,n = (−1)α(q − 1) (Mα−1,n+1Mα,n −Mα−1,n+1Mα,n)

−Mα−1,n+1[Mα−1,n−1,Mn+α−1]qα − [Mα−2,n,Mn+α−1]qα−1Mα,n.

The first line vanishes, and we expand the second line, denoting m = n+ α− 1:

Mα−1,n+1Mα−1,n−1Mm − qαMα−1,n+1MmMα−1,n−1 +Mα−2,nMmMα,n − qα−1MmMα−2,nMα,n.

In the second term we use Mα−1,n+1M1,n+α−1 = qα−2M1,n+α−1Mα−1,n+1. Then we use (2.1)
to replaceMα−1,n+1Mα−1,n−1 by q

−α+1(M2
α−1,n−Mα−2,nMα,n) in the first and second terms.
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Expanding, and regrouping the six terms, we have

q−α+1M2
α−1,nMm − qα−1MmM

2
α−1,n

+ qα−1MmMα−2,nMα,n − qα−1MmMα−2,nMα,n

− q−α+1Mα−2,nMα,nMm +Mα−2,nMmMα,n.

The first line is q−α+1[M2
α−1,n,M1,n+α−1]q2α−2 , which vanishes because of the q-commutation

(2.9), which can be used with α → α − 1, p = α − 1 and β = 1. The second line is zero,
and the third line is −q−α+1Mα−2,n[Mα,n,M1,n+α−1]qα−1 , which again vanishes using the q-
commutator (2.9). This completes the proof of (4.4). The second relation (4.5) is obtained
by acting on (4.4) with the “time-reversal” anti-automorphism τ of the algebra Ur defined
as follows.

Definition 4.5. The time-reversal anti-automorphism τ is defined on Ur via:

τ(XY ) = τ(Y )τ(X) (X, Y ∈ Ur)

τ(Mα,n) = q−αnMα,−n , τ(A) = A−1 , τ(∆) = ∆ , τ(q) = q

It is a straightforward to check that τ preserves the relations (2.1-2.2), as well as (2.3)
and (2.10). We finally get:

τ ([Mα−1,n−1,Mn+α−1]qα) = [q−n−α+1M−n−α+1, q
(α−1)(−n+1)Mα−1,−n+1]qα

= q−αn[M−n−α+1,Mα−1,−n+1]qα = (−1)α(q − 1)q−nαMα,−n

which boils down to (4.5) upon changing n→ −n. Theorem 4.4 follows. �

We note that both expressions in Theorem 4.4 are equivalent. By iteration, they lead to
the nested commutator expression (2.23) for Mα,n.

Example 4.6. We have:

(q − 1)M2,n = Mn−1Mn+1 − q2Mn+1Mn−1

−(q − 1)2M3,n = Mn−2MnMn+2 − q2Mn−2Mn+2Mn − q3MnMn+2Mn−2 + q5Mn+2MnMn−2

−(q − 1)3M4,n = Mn−3Mn−1Mn+1Mn+3 − q2Mn−3Mn−1Mn+3Mn+1 − q3Mn−3Mn+1Mn+3Mn−1

+q5Mn−3Mn+3Mn+1Mn−1 − q4Mn−1Mn+1Mn+3Mn−3 + q6Mn−1Mn+3Mn+1Mn−3

−q7Mn+1Mn+3Mn−1Mn−3 + q9Mn+3Mn+1Mn−1Mn−3

The current formulation (2.22) of eq. (4.5) allows to write an explicit constant term
expression for the current mα(z) in terms of solely m(z) as follows.

Theorem 4.7. We have the expression:

(−1)
α(α−1)

2 (1− q)α−1mα(z) = CTu1,...,uα

(
Pα(u1, ..., uα)

α∏

i=1

m(ui) δ(u1 · · ·uα/z)

)
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with CT as in (2.16), and where the Laurent polynomials Pα(u1, ..., uα) are defined recur-
sively via:

P1(u1) = 1

Pα+1(u1, ..., uα+1) =
(u1)

α

u2 · · ·uα+1
Pα(u2, ..., uα+1)− qα+1 (uα+1)

α

u1 · · ·uα
Pα(u1, ..., uα) (α ≥ 0)

Proof. By induction, using (2.22). �

Example 4.8. The first few P ’s read:

P1(u1) = 1

P2(u1, u2) =
u1
u2

− q2
u2
u1

P3(u1, u2, u3) =
u21
u23

− q2
u21
u22

− q3
u23
u22

+ q5
u23
u21

P4(u1, u2, u3, u4) =
u31u2
u3u34

− q2
u31u2
u33u4

− q3
u31u4
u2u33

+ q5
u31u4
u32u3

− q4
u34u1
u2u33

+ q6
u34u1
u32u3

+ q7
u34u3
u1u32

− q9
u34u3
u31u2

These lead immediately to the expressions of Example 4.6.

4.3. A quantum determinant expression for Mα,n: proof of Theorem 2.10. In
this section, we derive an alternative polynomial expression of Mα,n in terms of the Mn’s.
The disadvantage of the expression (2.23) for Mα,n is that it only displays Mα,n as a
polynomial of the Mn’s with coefficients rational in q. This can be greatly improved by
applying manipulations to the constant term identity of Theorem 4.7. These manipulations
simply amount to rewritings of the constant term identities modulo the exchange relation
(2.19), which states in current form that (z − qw)m(z)m(w) is skew-symmetric under the
interchange z ↔ w. The main result is an expression forMα,n as a polynomial of the Mn’s,
with coefficients in Z[q]. The latter is equivalent to (2.23) modulo the quadratic relations
(2.19).

Theorem 2.10 is rephrased as follows.

Theorem 4.9. For α = 1, 2, ..., r + 1 defining:

(4.6) rα(z) := CTu1,··· ,uα

(
∆q(u1, ..., uα)

α∏

i=1

m(ui) δ(u1...uα/z)

)
,

with ∆q as in (2.24), then we have

(4.7) mα(z) = rα(z) (α = 1, 2, ..., r + 1)

This immediately implies the following.

Corollary 4.10. The constant term formula of Theorem 4.9 translates into an explicit
expression for Mα,n in Z[q][Mn−α+1,Mn−α+2, ...,Mn+α−1].
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Proof. By taking the coefficient of zn in (4.6), and using the explicit expansion of ∆q(u1, ..., uα)
into a Z[q] sum of Laurent monomials in the variables u1, u2, ..., uα, whose constant term
in (4.6) yields monomials in the variables Mn−α+1,Mn−α+2, ...,Mn+α−1. �

Example 4.11. Expanding the coefficient of zn in (4.6) for the first few values of α = 2, 3
gives:

M2,n = M2
n − qMn+1Mn−1(4.8)

M3,n = M3
n − qMn+1Mn−1Mn − q(1− q)Mn+1MnMn−1 − qMnMn+1Mn−1(4.9)

+q2Mn+2M
2
n−1 + q2M2

n+1Mn−2 − q3Mn+2MnMn−2

corresponding to the following expansions of the q-Vandermonde products:

∆q(u1, u2) = 1− q
u2
u1

∆q(u1, u2, u3) = 1− q
u2
u1

− q(1− q)
u3
u1

− q
u3
u2

+ q2
u2u3
u21

+ q2
u23
u1u2

− q3
u23
u21

These expressions agree with those of Example 4.6 modulo the quadratic relations (2.19).
For instance, starting with the first line of Example 4.6, we recover (4.8) by computing:

(q − 1)M2,n = (q − 1)M2,n − ([Mn−1,Mn+1]q + [Mn,Mn]q)

= Mn−1Mn+1 − q2Mn+1Mn−1 − (Mn−1Mn+1 − qMn+1Mn−1 − (q − 1)M2
n)

= (q − 1)(M2
n − qMn+1Mn−1)

where we have used the quadratic relation (2.19) for (n, p) → (n− 1, 2).

Remark 4.12. Theorem 4.9 is the quantum generalization of the discrete Wronskian de-
terminant of the classical case (when q = 1, A = 1 and ∆ = 1 and Qα,n =Mα,n) for which
[DFK10]:

Mα,n = det
1≤a,b≤α

(Mn+b−a)

leading to the classical generating function:

mα(z) =
∑

n∈Z
znMα,n =

∑

n∈Z
znCTu1,··· ,uα

{
det

1≤a,b≤α

(
1

un+b−a
a

∑

ma∈Z
(ua)

maMma

)}

= CTu1,··· ,uα

{
det

1≤a,b≤α

(
(ua)

a−bm(ua)
)
δ(u1...uα/z)

}

= CTu1,··· ,uα

{
∏

1≤a<b≤α

(
1−

ub
ua

) α∏

i=1

m(ui)δ(u1...uα/z)

}

where we have used the multi-linearity of the determinant.
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The remainder of this section is devoted to the proof of Theorem 4.9.
Our main tool for constant term manipulations is the following.

Lemma 4.13. For any Laurent polynomial P (u, v) symmetric in (u, v), we have

CTu,v {(u− qv)P (u, v)m(u)m(v)δ(uv/z)} = 0

for all z.

Proof. By the exchange relation (2.20), (u−qv)P (u, v)m(u)m(v)δ(uv/z) is skew-symmetric
under the interchange u ↔ v. However the constant term is invariant under the change of
variables (u, v) 7→ (v, u), it must therefore vanish. �

Definition 4.14. For short, we use the notation

〈f(u1, ..., uα)〉α(u) := CTu1,...uα
(∆q(u1, ..., uα) f(u1, ..., uα)m(u1) · · ·m(uα)δ(u1 · · ·uα/u))

In the following, we’ll make successive applications of Lemma 4.13. As an example, we
have the following.

Lemma 4.15. For any Laurent series f(x) ∈ C((x)), any symmetric Laurent polynomial
g of the variables u1, ..., uα, and 1 ≤ i ≤ α, we have the following constant term identities.

〈f(ui) g〉α(u) = (−1)k
〈 (ui−k)

k

uiui−1 · · ·ui−k+1
f(ui−k) g

〉
α
(u) (0 ≤ k ≤ i− 1)(4.10)

= (−1)p
〈uiui+1 · · ·ui+p−1

(ui+p)p
f(ui+p) g

〉
α
(u) (0 ≤ p ≤ α− i+ 1)(4.11)

Proof. To prove (4.10), we apply Lemma 4.13 successively to pairs (ui−1, ui), (ui−2, ui−1),
..., (ui−k, ui−k+1). Note that only finitely many terms in the series for f contribute, so that
only a truncated Laurent polynomial part of f contributes. The first application, with the
Laurent polynomial P (ui−1, ui) = g(u−1

i−1f(ui−1) + u−1
i f(ui))∆q(u1, ..., uα)/(1 − qui/ui−1),

symmetric in (ui−1, ui), allows to substitute:
(
1− q

ui
ui−1

)
f(ui)m(ui−1)m(ui) → −

ui−1

ui

(
1− q

ui
ui−1

)
f(ui−1)m(ui−1)m(ui)

into the constant term, so that 〈f(ui)〉α(u) = −〈ui−1

ui
f(ui−1)〉α(u). The second application,

with the Laurent polynomial P (ui−2, ui−1) = gu−1
i (ui−2

ui−1
f(ui−2)+

ui−1

ui−2
f(ui−1))∆q(u1, ..., uα)/(1−

qui−1/ui−2), symmetric in (ui−2, ui−1), allows to substitute:

−
ui−1

ui

(
1− q

ui−1

ui−2

)
f(ui−1)m(ui−2)m(ui−1) →

(−ui−2)
2

ui−1ui

(
1− q

ui−1

ui−2

)
f(ui−2)m(ui−2)m(ui−1)

Iterating this k times results in (4.10). The proof of (4.11) is similar, and proceeds by
applying successively Lemma 4.13 to the pairs (ui, ui+1), (ui+1, ui+2), ..., (ui+k−1, ui+k). �

Most of the uses of Lemma 4.13 are summed up in the following.
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Corollary 4.16. For any Laurent polynomial g symmetric in the variables u1, u2, ..., uα,
we have:

(4.12) 〈(ui)
m g〉α(u) = 0 for m = −i+ 1,−i+ 2, ...,−i+ α

while for m = −i:

(4.13) 〈(ui)
−i g〉α(u) =

〈
(−1)i−1

u1u2 · · ·ui
g

〉

α

(u)

and for m = α− i+ 1:

(4.14) 〈(ui)
α−i+1 g〉α(u) =

〈
(−1)α−i uiui+1 · · ·uα g

〉
α
(u)

Proof. By direct application of Lemma 4.15, for f(x) = xm. For m ≤ 0, starting from
(4.10) with k = −m− 1, we have:

〈(ui)
mg 〉α(u) = (−1)m−1

〈
1

uiui−1 · · ·ui+m+1
g

〉

α

(u)

For m + i = 0 this gives (4.13), while for m + i > 0, applying Lemma 4.13 to the pair
(ui+m, ui+m+1) gives a zero answer, and (4.12) follows for m = −i + 1,−i + 2, ..., 0. For
m > 0, starting from (4.11) with p = m− 1, we have:

〈(ui)
mg 〉α(u) = (−1)m−1 〈uiui+1 · · ·ui+m−1 g〉α (u)

For m+ i = α+ 1 this gives (4.14), while for m+ i ≤ α, applying Lemma 4.13 to the pair
(ui+m−1, ui+m) gives a zero answer, and (4.12) follows for m = 1, 2, ..., α− i. �

Lemma 4.17. The defining relation (4.6) implies the following:

(4.15) rα(z) = CTu1,··· ,uα

(
(−u1)

α−1

u2u3 · · ·uα
∆q(u1, u2, ..., uα)

(
α∏

i=1

m(ui)

)
δ(u1...uα/z)

)

Proof. Direct application of (4.10), with f(x) = g = 1, i = α and k = α− 1. �

We will now prove Theorem 4.9, by induction on α. For short, denote for 1 ≤ a < b ≤ α
by:

∆q[a, b] := ∆q(ua, ua+1, ..., ub) =
∏

a≤i<j≤b

(
1− q

uj
ui

)

The theorem holds clearly for α = 1. Assume the result holds for α − 1. We use the
recursion relation (2.22) and the recursion hypothesis to write:

(1− q)mα(z) = CTu,v

((
(−u)α−1

v
m(u)mα−1(v)− qα

(−v)α−1

u
mα−1(u)m(v)

)
δ(uv/z)

)

= CTu1,...,uα

{(
(−u1)

α−1

u2u3 · · ·uα
∆q[2, α]− q

(−quα)
α−1

u1...uα−1
∆q[1, α− 1]

) α∏

a=1

m(ua)δ(u1u2 · · ·uα/z)

}
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On the other hand, let us write (1 − q)rα(z) = rα(z) − qrα(z) by using (4.15) for the first
term and (4.6) for the second, and compute:

(1− q)(rα(z)−mα(z)) = CTu1,...,uα

{(
(−u1)

α−1

u2u3 · · ·uα
∆q[2, α]

(
α∏

a=2

(
1− q

ua
u1

)
− 1

)

−q∆q[1, α− 1]

(
α−1∏

a=1

(
1− q

uα
ua

)
−

(−quα)
α−1

u1...uα−1

))
α∏

a=1

m(ua)δ(u1u2 · · ·uα/z)

}

Let us expand the first factor as:

(−u1)
α−1

u2u3 · · ·uα

(
α∏

a=2

(
1− q

ua
u1

)
− 1

)
=

α∏

i=2

(
q −

u1
ui

)
−

(−u1)
α−1

u2u3 · · ·uα

= q
α−2∑

k=0

(−u1)
k

uαuα−1 · · ·uα−k+1

α−k−1∏

i=2

(
q −

u1
ui

)
(4.16)

and consider the contribution corresponding to some k > 0 in the summation, as a function
of uα+1−k, uα−k: it is the product of ∆q[2, α] = (1−quα+1−k/uα−k)× a symmetric expression
in (uα+1−k, uα−k), by a Laurent polynomial of the form Pk/uα+1−k where Pk is independent
of uα+1−k and uα−k. We may apply Lemma 4.13 to (u, v) = (uα−k, uα+1−k) to conclude
that this contribution to the constant term vanishes, as it reads (uα−k − quα−k+1) times a
symmetric expression in (uα−k, uα+1−k). We are therefore left with the single contribution
corresponding to k = 0:

q∆q[2, α]
α−1∏

a=2

(
q −

u1
ua

)
= q

(−u1)
α−2

u2 · · ·uα−1

∆[1, α]

1− q uα

u1

Analogously, the second factor in (4.16) is expanded as:

(
1− q

uα
ua

)
−

(−quα)
α−1

u1 · · ·uα−1
=

α−2∑

k=0

(−quα)
k

uα−1uα−2 · · ·uα−k

α−2−k∏

a=1

(
1− q

uα
ua

)

Again, the contribution corresponding to some k > 0 in the summation, viewed as a
function of (uα−k−1, uα−k) is the product of ∆q[1, α − 1] by a Laurent polynomial of the
form Qk/uα−k, where Qk is independent of uα−k−1 and uα−k. Again, this contribution to
the constant term vanishes by applying Lemma 4.13 to (u, v) = (uα−k−1, uα−k), and we are
left with the k = 0 contribution:

q∆q[1, α− 1]

α−2∏

a=1

(
1− q

uα
ua

)
= q

∆q[1, α]

1− q uα

uα−1
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We arrive at:

(1− q)(rα(z)−mα(z)) = q
〈 (−u1)

α−2

u2 · · ·uα−1

1

1− q uα

u1

−
1

1− q uα

uα−1

〉
α
(z)

We finally apply the result of Lemma 4.15, (4.10) for f(x) = 1
1−q uα

x

, g = 1 and i = α − 1,

k = α− 2, to compute:
〈 1

1− q uα

uα−1

−
(−u1)

α−2

u2 · · ·uα−1

1

1− q uα

u1

〉
α
(z) = 0

We conclude that rα(z)−mα(z) = 0, thus completing the proof of Theorem 4.9.

4.4. Proof of Theorem 2.11. This section is devoted to the proof of Theorem 2.11. We
have already shown that the generators of Ur obey the quadratic relation (2.19). Con-
versely, let us assume we have a set of generators Mn obeying the quadratic relations
(2.19). Moreover, let us define the quantities Mα,n via the quantum determinant expres-
sion of Theorem 2.10. As mentioned before, this definition is equivalent to (2.23), but is
much more convenient for current manipulations and proofs. Theorem 2.11 follows from
the following:

Theorem 4.18. We consider generators Mn obeying the quadratic relations (2.19), and
their associated current m(z). For α ≥ 0, we furthermore define a family of degree α
polynomials Mα,n ∈ Z[q][Mn−α+1, ...,Mn+α−1] via the formula of Theorem 2.10, namely:

Mα,n := CTu1,··· ,uα

(
∆q(u1, ..., uα)

α∏

i=1

m(ui) (u1...uα)
−n

)

with M0,n := 1. Then the following statements hold true, independently of r:
(i) The polynomialsMα,n obey the renormalized quantum Q-system relations (2.1), namely
we have the following identity:

CTu1,...,u2α

{(
∆q[1, α + 1]∆q[α + 2, 2α](4.17)

−

(
1− qα

uα+1uα+2 · · ·u2α
u1u2 · · ·uα

)
∆q[1, α]∆q[α+ 1, 2α]

) 2α∏

i=1

m(ui)δ(u1 · · ·u2α/z)

}
= 0

(ii) The polynomials Mα,n obey the quantum commutation relations (2.2), namely for all
α, β ≥ 0 and ǫ = 0, 1:

CTu1,...,uα+β

{(∆q[1, α]∆q[α + 1, α+ β]

(uα+1uα+2 · · ·uα+β)ǫ
(4.18)

− qMin(α,β)ǫ∆q[1, β]∆q[β + 1, α+ β]

(u1u2 · · ·uβ)ǫ

) α+β∏

i=1

m(ui)δ(u1 · · ·u2α/z)

}
= 0
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4.4.1. Proof of statement (i). The proof of statement (i) (4.17) goes by rewriting the con-
tribution of ∆q[1, α + 1]∆q[α + 1, 2α] in two different ways, both using only Lemma 4.13.

Let us first rewrite

∆q[1, α+ 1]∆q[α + 1, 2α] = ∆q[1, α + 1]∆q[α + 2, 2α]

2α∏

j=α+2

(
1− q

uj
uα+1

)

= ∆q[1, α+ 1]∆q[α + 2, 2α]

α−1∑

k=0

(−q)k
∑

α+2≤j1<···<jk≤2α

uj1 · · ·ujk
(uα+1)k

All the contributions with k > 0 are readily seen to vanish, by use of Corollary 4.16 for
α→ α+ 1, m = −k and i = α + 1. We are left with the contribution of k = 0, namely

(4.19) ∆q[1, α + 1]∆q[α + 2, 2α]

Similarly, we write:

∆q[1, α + 1]∆q[α + 1, 2α] = ∆q[1, α]∆q[α + 1, 2α]

α∏

i=1

(
1− q

uα+1

ui

)

= ∆q[1, α]∆q[α+ 1, 2α]
α∑

k=0

∑

1≤i1<···<ik≤α

(−quα+1)
k

ui1ui2 · · ·uik

Again, using Corollary 4.16 for m = k, i = 1 (and renaming variables ui → ui+α), we see
that all the terms with 0 < k < α in the sum contribute zero to the constant term, and we
are left with the two contributions k = 0 and k = α:

∆q[1, α]∆q[α + 1, 2α]

{
1 +

(−quα+1)
α

uαuα−1 · · ·u1

}

The second term is rewritten using (4.14) for i = 1, together with a renaming of variables
ui → ui+α , to finally get:

(4.20) ∆q[1, α]∆q[α + 1, 2α]

{
1− qα

uα+1uα+2 · · ·u2α
u1u2 · · ·uα

}

We conclude that both (4.19) and (4.20) have identical contributions to the constant term,
which amounts to (4.17). This completes the proof of statement (i) of Theorem 4.18.

4.4.2. Proof of statement (ii). We first prove the statement (ii) (4.18) for ǫ = 0. In this
case, we may assume 0 < α < β without loss of generality. Let us compute in two different
ways the contribution of the l.c.m. of the two products ∆q[1, α]∆q[α + 1, α + β] and
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∆q[1, β]∆q[β + 1, α+ β], to the constant term. We define

K(z) := CTu1,...,uα+β




∆q[1, α+ β]
∏

i∈[1,α]
j∈[β+1,β+α]

(
1− q

uj

ui

)
α+β∏

i=1

m(ui)δ(u1 · · ·uα+β/z)




The l.c.m. can be written in the two following ways:

∆q[1, α+ β]
∏

i∈[1,α]
j∈[β+1,β+α]

(
1− q

uj

ui

) = ∆q[1, α]∆q[α + 1, α+ β]
∏

i∈[1,α]
j∈[α+1,β]

(
1− q

uj
ui

)
(4.21)

= ∆q[1, β]∆q[β + 1, α+ β]
∏

i∈[α+1,β]
j∈[β+1,β+α]

(
1− q

uj
ui

)
(4.22)

Let us expand both products on the r.h.s. as sums of Laurent monomials, respectively:

∏

i∈[1,α]
j∈[α+1,β]

(
1− q

uj
ui

)
=

α(β−α)∑

k=0

∑

1≤i1≤···ik≤α

α+1≤j1≤···≤jk≤β

(−q)k
uj1 · · ·ujk
ui1 · · ·uik

(4.23)

∏

i∈[α+1,β]
j∈[β+1,β+α]

(
1− q

uj
ui

)
=

α(β−α)∑

k=0

∑

α+1≤i1≤···ik≤β

β+1≤j1≤···≤jk≤β+α

(−q)k
uj1 · · ·ujk
ui1 · · ·uik

(4.24)

Let us pick an arbitrary Laurent monomial in the first sum (4.23), with k > 0. Let j := jk
be the largest index appearing in the numerator, then the monomial may be written as
(uj)

aµ where the monomial µ depends only on variables with indices iℓ, jℓ < j, while
0 < a ≤ α, j ≤ β. Applying Corollary 4.16 for m = a, and noting that j + a ≤ α + β, we
find that only the term k = 0 of the sum, with value 1, contributes to the constant term.

Similarly, pick an arbitrary Laurent monomial in the second sum (4.24), with k > 0. Let
i := i1 be the smallest index appearing in the denominator, then the monomial may be
written as u−a

i λ, where the monomial λ depends only on variables with indices iℓ, jℓ > i,
while 0 < a ≤ α, i ≥ α+1. Applying Corollary 4.16 for m = −a, and noting that i−a ≥ 1,
we find that only the term k = 0 of the sum, with value 1, contributes to the constant
term.

We conclude that

CTu1,...,uα+β

(
{∆q[1, α]∆q[α + 1, α+ β]−∆q[1, β]∆q[β + 1, α+ β]}

×

α+β∏

i=1

m(ui)δ(u1 · · ·uα+β/z)
)
= K(z)−K(z) = 0

which amounts to the statement (ii) of Theorem 4.18 for ǫ = 0.
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We finally turn to the proof of the statement (ii) (4.18) for ǫ = 1. We must distinguish
three cases: α = β, α < β and α > β.

Imitating the proof for (i), let us compute

L(z) := CTu1,...,u2α

{
∆q[1, α + 1]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α

2α∏

i=1

m(ui)δ(u1 · · ·u2α/z)

}

in two different ways. First, we write:

∆q[1, α + 1]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α
=

∆q[1, α]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α

α∏

i=1

(
1− q

uα+1

ui

)

=
∆q[1, α]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α

α∑

k=0

∑

1≤i1<···<ik≤α

(−quα+1)
k

ui1 · · ·uik

By Corollary 4.16 for m = k we find that only the terms k = 0 and k = α contribute:

∆q[1, α]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α

(
1 +

(−quα+1)
α

u1u2 · · ·uα

)

The second term is rewritten using (4.14) for i = 1, together with a renaming of variables
ui → ui+α , to finally get:

∆q[1, α]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α

(
1− qα

uα+1uα+2 · · ·u2α
u1u2 · · ·uα

)

Next we write:

∆q[1, α + 1]∆q[α + 1, 2α]

uα+1uα+2 · · ·u2α
=

∆q[1, α+ 1]∆q[α + 2, 2α]

uα+1uα+2 · · ·u2α

2α∏

j=α+2

(
1− q

uj
uα+2

)

=
∆q[1, α+ 1]∆q[α + 2, 2α]

uα+1uα+2 · · ·u2α

α−1∑

k=0

(−q)k
∑

α+1≤j1<···<jk≤2α

uj1 · · ·ujk
(uα+1)k

By Corollary 4.16 with α→ α+ 1, m = −k − 1, i = α+ 1, m+ i = α− k ≥ 1, we see that
all the terms in the sum have a vanishing contribution, hence L(z) = 0. We conclude that

CTu1,...,u2α

{
∆q[1, α]∆q[α + 1, 2α]

(
1

uα+1uα+2 · · ·u2α
−

qα

u1u2 · · ·uα

) 2α∏

i=1

m(ui)δ(u1 · · ·u2α/z)

}
= 0

which is nothing but (4.18) for α = β and ǫ = 1.
We now turn to the case α < β, and ǫ = 1. Imitating the proof for ǫ = 0, let us introduce

M(z) := CTu1,...,uα+β

( ∆q[1, α+ β]
∏

i∈[1,α]
j∈[β+1,β+α]

(
1− q

uj

ui

)
∏α+β

i=1 m(ui)δ(u1 · · ·uα+β/z)

uα+1uα+2 · · ·uα+β

)
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We now write M(z) in two ways, using (4.21-4.22), and the associated expansions (4.23-
4.24), now with an extra prefactor of 1/(uα+1uα+2 · · ·uα+β). The prefactor does not affect
the argument for the first sum (4.23), whose only contribution is still k = 0, hence:

(4.25) M(z) = CTu1,...,uα+β

(
∆q[1, α]∆q[α + 1, α+ β]

uα+1uα+2 · · ·uα+β

α+β∏

i=1

m(ui)δ(u1 · · ·uα+β/z)

)

To each term of the second sum (4.24), we apply Corollary 4.16 for α → β, now with
m = −a− 1, 0 ≤ a ≤ α and i = α + 1, as the smallest index in the denominator is always
α + 1. As m + i = α − a ≥ 0, we are left with only the contributions with a = α, of
terms of the form (−q)k

uβ+1uβ+2···uβ+α

(uα+1)α
λ′

uα+1uα+2···uα+β
, λ′ a monomial involving variables uℓ

with β ≥ ℓ > α + 1. By (4.13), with i = α and α→ α + 1, this contributes the same as:

(−1)α(−q)k
uβ+1uβ+2 · · ·uβ+α

u1u2 · · ·uα

λ′

uα+1uα+2 · · ·uα+β

= (−1)α(−q)k
λ′

u1u2 · · ·uβ

If λ′ had a non-trivial denominator, i.e. λ′ = u−a′

i′ λ′′, i′ ≥ α+2 the smallest label appearing,
we would get a zero contribution from Corollary 4.16 with α → β,m = −a′ ≥ −α, i′ ≥ α+2,
hence i′ + m ≥ 2, and g = 1/(u1u2 · · ·uβ). We are left with only λ′ = 1, which implies
k = α and:

(4.26) M(z) = qαCTu1,...,uα+β

(
∆q[1, β]∆q[β + 1, α+ β]

u1u2 · · ·uβ

α+β∏

i=1

m(ui)δ(u1 · · ·uα+β/z)

)

Identifying the expressions (4.25) and (4.26) yields (4.18) for α < β and ǫ = 1.
The case α > β is dealt with by interchanging the roles of α and β in the previous result,

which amounts to (4.18) for α > β and ǫ = −1, which implies the identity for ǫ = 1 upon
dividing by z = u1u2 · · ·uα+β within the constant term.

The theorem follows.

4.5. Conserved quantities as quantum determinants: proof of Theorem 3.11.

This section is devoted to the proof of Theorem 3.11. It turns out to be a consequence of
the more general formula:

Theorem 4.19. For all m = 0, 1, ..., r + 1, we have:

(4.27) Cmmr+1(u) = CTu1,...,ur+1

(
∆q(u1, ..., ur+1)

u1u2 · · ·um

r+1∏

a=1

m(ua)δ(u1 · · ·ur+1/u)

)
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Proof. We start from the fact that mr+2(z) = 0 (from (2.3)), and write:

0 = CTu1,...,ur+2

(
∆q[1, r + 2]

r+2∏

a=1

m(ua)δ(u1 · · ·ur+2/z)

)

= CTu1,...,ur+2

(
∆q[1, r + 1]

r+1∏

a=1

(
1− q

ur+2

ua

) r+2∏

a=1

m(ua)δ(u1 · · ·ur+2/z)

)

= CTu1,...,ur+2

(
∆q[1, r + 1]

r+1∑

m=0

(−qur+2)
m

u1u2 · · ·um

r+1∏

a=m+2

(
1− q

ur+2

ua

) r+2∏

a=1

m(ua)δ(u1 · · ·ur+2/z)

)

where in the last term, the products for a = r + 2, r + 3 are taken to be 1. Let us expand
the m-th contribution for each m ≥ 0 to the sum as:

(−qur+2)
m

u1u2 · · ·um

r+1∏

a=m+2

(
1− q

ur+2

ua

)
=

(−qur+2)
m

u1u2 · · ·um

{
1− q

r+1∑

ℓ=m+2

ur+2

uℓ

r+1∏

k=ℓ+1

(
1− q

ur+2

uk

)}

and apply Lemma 4.13 to each contribution with ℓ ≥ m + 2, with (u, v) = (uℓ−1, uℓ). As
before the ℓ term is proportional to 1/uℓ and independent of uℓ−1, hence when multiplied by
∆q[1, r + 1]m(u1) · · ·m(ur+2) it is skew-symmetric in (uℓ−1, uℓ), and therefore the constant
term vanishes. The only remaining contribution is 1, and we conclude that

(4.28) 0 = CTu1,...,ur+2

(
∆q[1, r + 1]

r+1∑

m=0

(−qur+2)
m

u1u2 · · ·um

r+2∏

a=1

m(ua)δ(u1 · · ·ur+2/z)

)

Define

cm(u) =
∑

n∈Z
uncm,n := CTu1,...,ur+1

(
∆q[1, r + 1]

qm

u1u2 · · ·um

r+1∏

a=1

m(ua)δ(u1 · · ·ur+1/u)

)

then (4.28) is equivalent to the recursion relation:

CTur+2

(
r+1∑

m=0

cm(u)(−ur+2)
mm(ur+2)δ(uur+2/z)

)
= 0 ⇒

r+1∑

m=0

(−1)mcm,nMn−m = 0 (n ∈ Z)

Comparing to (3.14), we find that cm,n must be proportional to Cm, up to an overall factor
depending on n only, namely cm,n = Rn Cm. Rn is fixed by the value for m = 0, where
C0 = 1 and c0(u) = mr+1(u) by definition. We conclude that Rn = Mr+1,n and cm(u) =
mr+1(u)Cm. Finally, by Lemma 3.5, Cm commutes with Cr+1 = A, and ∆Cm = qmCm∆
(by (3.13)), so that we have Mr+1,nCm = qmCmMr+1,n, hence cm(u) = qmCmmr+1(u), and
the theorem follows. �
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Example 4.20. In the case A1, r = 1 of Example 3.3, picking the coefficient of un in
(4.27), we get:

C1 = (Mn+1Mn − qMn+2Mn−1)∆
−1A−n

Comparing with the constant term (coefficient of u0), we get the conservation law:

Mn+1Mn − qMn+2Mn−1 = q−2n(M1M0 − qM2M−1)A
n

The explicit formula of Theorem 3.11 for Cm is obtained by taking the constant term in
u in (4.27), which selects the coefficient CmMr+1,0 = Cm∆.

Summing the result of Theorem 4.27 and reinstating the vanishing terms, we may
also express the generating polynomial for the conserved quantities. Noting further that
∆C(z) = C(qz)∆ while A commutes with C(z), so that Mr+1,nC(z) = C(qz)Mr+1,n for
all n ∈ Z, we arrive at the following compact formula.

Corollary 4.21. We have:

mr+1(u)C(z) = C(qz)mr+1(u)

= CTu1,...,ur+1

(
∆q(u1, ..., ur+1, z)

r+1∏

a=1

m(ua) δ(u1 · · ·ur+1/u)

)

5. The quantum affine algebra

In this section we define other currents in Ur, which satisfy relations similar to that of
the quantum affine algebra of sl2 with zero central extension and a non-standard Cartan
current valuation, depending on the integer r.

5.1. Definitions of the generating functions f and ψ±. So far, we have shown that
Ur is isomorphic to a quotient of quantum enveloping algebra U√

q(n+[u, u
−1]). Define the

renormalized generating function

(5.1) e(z) := m(q1/2z) =
∑

n∈Z
znqn/2Mn.

The generating function f(z) is defined using two involutions of Ur. Recall the time-reversal
anti-automorphism τ from Definition 4.5. By definition, τ(e(z)) = e(z−1).

There is another involutive automorphism of Ur:

Definition 5.1. The Weyl reflection automorphism σ is defined on Ur via:

σ(Mα,n) = A−nMr+1−α,n ∆
−1, σ(A) = A−1, σ(∆) = ∆−1, σ(q) = q.

It is straightforward to check that σ preserves the relations (2.1), (2.2) and (2.3) and
that it is an involution.
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We define the new generating function f(z) as

(5.2) f(z) := στ(e(z)) =
∑

n∈Z
z−nqn/2A−nMr,n∆

−1.

Let C(z) be the generating polynomial of conserved quantities (3.17). We define the two
series, ψ± ∈ Ur[[z

±1]] (Cartan currents), as the expansions of the same rational fraction in
either z or z−1:

ψ+(z) = (−q−1/2z)r+1AC(q1/2z)−1C(q−1/2z)−1(5.3)

= (−q−1/2z)r+1A(1 + (q1/2 + q−1/2)C1z +O(z2))

ψ−(z) = (−q1/2z)−r−1A

(
C(q1/2z)

(q1/2z)r+1

)−1(
C(q−1/2z)

(q−1/2z)r+1

)−1

,(5.4)

= (−q1/2z)−r−1A−1
(
Ĉ(q−1/2z−1)Ĉ(q1/2z−1)

)−1

= (−q1/2z)−r−1A−1(1 + (q1/2 + q−1/2)A−1Crz
−1 +O(z−2)).

Here, we have introduced the notation

(5.5) Ĉ(z) := (−z)r+1A−1C(z−1) =
r+1∑

m=0

(−z)jA−1Cr+1−j = 1− zA−1Cr +O(z2).

Lemma 5.2. The conserved quantities Cm are invariant under στ , for all m = 0, 1, ..., r+1.
Equivalently:

στ(C(z)) = C(z).

Proof. Computing explicitly the action of σ and τ on the Miura operator µ = µn = µ−n−1

of (3.2). We have σ(xα,n) = x−1
r+2−α,n and τ(xα,n) = x−1

α,−n−1. As σ and τ both commute
with the time shift operator D, we have:

σ(µn) =

1∏

α=r+1

(D − x−1
r+2−α,n) =

r+1∏

α=1

(D − x−1
α,n),

τ(µ−n−1) =

r+1∏

α=1

(D − x−1
α,n).

This implies that σ(Cm) = τ(Cm) for allm. Moreover, σ and τ are involutions by definition,
hence στ(Cm) = Cm for all m. �

Corollary 5.3.

(5.6) στ(ψ±(z)) = ψ±(z)

Proof. The coefficients of both series ψ± are polynomials of the conserved quantities Cm,
hence the Corollary follows from Lemma 5.2. �
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5.2. Drinfeld-type relations. We now come to the main theorem of this section, in the
form of relations between the currents e(z), f(z) and the series ψ±(z).

Theorem 5.4. The currents e(z), f(z) and series ψ±(z) obey the following relations:

(z − qw)e(z) e(w) + (w − qz)e(w) e(z) = 0(5.7)

(z − q−1w)f(z) f(w) + (w − q−1z)f(w) f(z) = 0(5.8)

(z − qw)ψ±(z) e(w) + (w − qz)e(w)ψ±(z) = 0(5.9)

(z − q−1w)ψ±(z) f(w) + (w − q−1z)f(w)ψ±(z) = 0(5.10)

[e(z), f(w)] = (1− q)δ(z/w)
(
ψ+(z)− ψ−(z)

)
(5.11)

Proof. Eq.(5.7) is equivalent (2.20). Eq.(5.8) is obtained by applying στ to (??): as τ is
an anti-automorphism, the order of the currents is switched.

To prove (5.9), we use the formulation (3.18) of Theorem 3.8:

(5.12) C(z) e(w)
q1/2z − w

q−1/2z − w
= e(w)C(z)

with C(z) as in (3.17). using the commutation A−1Mn = qMnA
−1,

A−1C(q−1/2z)C(q1/2z) e(w)
z − w

q−1z − w

qz − w

z − w
= q e(w)A−1C(q−1/2z)C(q1/2z)

and (5.9) follows for ψ+. The equation for ψ− follows, as both ψ±(z) are the same rational
fraction of z. Eq. (5.10) follows from (5.9) by applying στ , and using (5.6).

It remains to prove the commutation relation (5.11). Define ρn,p from the equation

(5.13) [e(z), f(w)] =
∑

n,p∈Z
zn+pw−nqn+p/2[Mn+p, A

−nMr,n∆
−1] =:

∑

n,p∈Z
zn+pw−nρn,p.

Then ρn,p can be computed directly for sufficiently small values of |p|:
(5.14)
ρn,p = qn+p/2[Mn+p, A

−nMr,n∆
−1] = qp/2A−n[Mn+p,Mr,n]q−p∆

−1 = 0 for p = 0,±1, ...,±r

by the relations (2.9) for α = 1, β = r. Furthermore, when p = ±(r + 1),

ρn,r+1 = q
r+1
2 A−n[Mn+r+1,Mr,n]q−r−1∆

−1 = (−1)r(q − 1)q−
r+1
2 A−nMr+1,n+1∆

−1

= (−1)r(q − 1)q−
r+1
2 A

ρn,−r−1 = q−
r+1
2 A−n[Mn−r−1,Mr,n]qr+1∆

−1 = (−1)r+1(q − 1)q−
r+1
2 A−nMr+1,n−1∆

−1

= (−1)r+1(q − 1)q−
r+1
2 A−1

by (4.4) and (4.5) for α = r + 1.
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Using the linear recursion (3.14), define σn,p from the equation
(5.15)

r+1∑

j=0

(−q1/2)jCjρn,p−j = −qn+p/2

r+1∑

j=0

(−1)jCjA
−nMr,n∆

−1Mn+p−j =: σn,p (n, p ∈ Z)

with the initial values σn,p = 0 for p = 1, 2, ..., r (by (5.14)), and

σn,0 = (−1)r+1Cr+1ρn,−r−1 = (q − 1)q−
r+1
2 , σn,r+1 = C0ρn,r+1 = (−1)r(q − 1)q−

r+1
2 A.

Moreover, (3.20) implies the right recursion relation:

(5.16)

r+1∑

j=0

σn,p+j(−q
−1/2)jCr+1−j = 0.

Then σn,p is entirely fixed by the initial conditions. Indeed, we may consider the recursion
relation (5.16) as a descending recursion on p for σn,p for p ≤ r, with initial conditions

0, 0, ..., 0, (q − 1)q−
r+1
2 for p = r, r − 1, ..., 1, 0, respectively, which fixes entirely all σn,p for

p ≤ 0. On the other hand, we may view it as an ascending recursion relation on p for σn,p
for p ≥ 1, with initial conditions 0, 0, ..., 0, (−1)r(q−1)q−

r+1
2 A for p = 1, 2, ..., r, r+1, which

fixes entirely all σn,p for p ≥ r + 1. The result may be rewritten as:

σn,+(z) :=
∑

p≥1

zpσn,p = (−1)r(q − 1)(q−1/2z)r+1AC(q−1/2z)−1

as an identity between power series of z while

σn,−(z
−1) :=

∑

p≤0

zpσn,p = (−1)r+1(q−1)q−
r+1
2 A

(
C(q−1/2z)

(q−1/2z)r+1

)−1

= (q−1)q−
r+1
2 Ĉ(q1/2z−1)−1

with Ĉ as in (5.5), as an identity between power series of z−1. Introducing similarly the
series ρn,±(z

±1) :=
∑

±p≥0 z
pρn,p, we may rephrase (5.15) as:

C(q1/2z)ρn,±(z
±1) = σn,±(z

±1)

resulting in

ρn,+(z) = (−1)r(q − 1)(q−1/2z)r+1AC(q1/2z)−1C(q−1/2z)−1

= (1− q)ψ+(z)

ρn,−(z
−1) = (−1)r+1(q − 1)(q1/2z)−r−1A

(
C(q1/2z)

(q1/2z)r+1

C(q−1/2z)

(q−1/2z)r+1

)−1

= (−1)r+1(q − 1)(q1/2z)−r−1A−1
(
Ĉ(q−1/2z−1)Ĉ(q1/2z−1)

)−1

= −(1 − q)ψ−(z)
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This shows that ρn,p is independent of n, and we may finally express (5.13) as:

[e(z), f(w)] =
∑

n∈Z

( z
w

)n∑

p∈Z
zpρn,p = δ(z/w)(ρn,+(z)+ρn,−(z)) = (1−q)δ(z/w)(ψ+(z)−ψ−(z))

This completes the proof of the theorem. �

6. Discussion/Conclusion

In this paper, we have expressed the algebra Ur associated with the Ar quantum Q-
system as an r-dependent quotient of the quantum enveloping algebra U√

q(n+[u, u
−1]).

This was proved using the integrable structure underlying the quantum Q-system, making
use of quantum conserved quantities.

We have also obtained a remarkably compact expression (2.25) for the solutions Mα,n of
the M-system and commutation relations (2.1-2.2) as polynomials of the variables {Mi}i∈Z
with coefficients in Z[q]. Up to transforming back Mα,n → Qα,n, and a harmless renor-
malization, the latter had been conjectured in [DFK11] to be the result of telescopic
products of increasing principal quasi-minors of the “discrete Wronskian” matrix Wα,n =
(Mn−a+b)1≤a,b≤α, using Gelfand and Retakh’s definition of quasi-determinants for matrices

with non-commuting entries [GR97]. This led us to coining the result as a “quantum deter-
minant”. We note that the expression (2.25) involves a q-deformation ∆q(u1, ..., uα) of the

Vandermonde determinant which for q = 1 reads simply ∆1(u1, ..., uα) = det1≤i,j≤α

(
ui−j
i

)
.

For generic q however ∆q(u1, ..., uα) is not such a simple determinant, but it turns out to

be the lambda-determinant of the same Vandermonde matrix Vu =
(
ui−j
i

)
, as defined by

Robbins and Rumsey [RR86], for the particular value λ = −q. The latter is known to be
related to the classical T -system with coefficients, a higher-dimensional version of the Q-
system, itself having a cluster algebra formulation [DF13]. In particular, it was shown that
the lambda-determinant of any matrix is the partition function for suitable families of non-
intersecting lattice paths whose local weights involve the matrix entries, or alternatively
of weighted domino tilings of the so-called Aztec diamond. The expression (2.25) should
therefore allow to interpret the quantum determinant of the matrix Wα,n as the partition
function for suitable families of non-intersecting lattice paths with non-commuting local
weights involving the entries {Mi}i∈Z, thus providing a non-trivial example of a quantum
Gessel-Viennot theorem [GV85].

We note also that expressions like (2.25) and more generally the constant term identities
of Section 4 are closely related to identities in shuffle algebras [Neg14].

Constructing moreover other currents in order to complete the quantum affine algebra
U√

q(sl2[u, u
−1]), we found that the Cartan currents ψ± have a non-standard structure, as

series respectively of z, z−1, both with valuation r + 1. It is interesting to note that the
limit r → ∞ of the Ar quantum Q-system makes sense as arising from a cluster algebra
of infinite rank. The valuation property just mentioned implies that ψ± → 0 as r → ∞,
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so that the currents e and f provide two commuting copies of U√
q(n+[u, u

−1]), while the
quotient by Mr+2,n = 0 is removed.

This non-standard structure of the Cartan currents can be understood in the light of a
natural t-deformation of the whole picture. In [DFK15], we have constructed a representa-
tion of the Ar M-system and commutations (2.1-2.2) by means of difference operators acting
on a space of symmetric functions. The latter generalize the so-called dual q-Whittaker
limit t → ∞ of the Macdonald operators, of which Macdonald polynomials are common
eigenfunctions [Mac95]. They act on symmetric functions of the variables x1, x2, ..., xr+1

as:

(6.1) Mα,n =
∑

I⊂[1,r+1]
|I|=α

(∏

i∈I
xi

)n∏

i∈I

j 6∈I

xi
xi − xj

∏

i∈I
Di α ∈ [0, r + 1], n ∈ Z,

where the “shift” operator Di acts on functions of x1, x2, ..., xr+1 by the substitution xi 7→
qxi. It is easy to check that these operators obey the relations of Theorem 5.4, by taking:

C(z) =
r+1∏

i=1

(1− zxi), Ĉ(z) =
r+1∏

i=1

(1− zx−1
i ), A =

r+1∏

i=1

xi , ∆ =
r+1∏

i=1

Di ,

and noting that:

e(z) =
r+1∑

i=1

δ(q1/2zxi)
∏

j 6=i

xi
xi − xj

Di

f(z) =
r+1∑

i=1

δ(q−1/2zxi)
∏

j 6=i

xj
xj − xi

D−1
i .

In the sequel to the present paper [DFK16], we show that there is a natural t-deformation
of these generalized Macdonald operators, within the contex of Double Affine Hecke Alge-
bras, and show that they give rise to a representation of the quantum toroidal algebra for
gl1 of [FJMM12] at level 0. These act on symmetric functions of the variables x1, x2, ..., xr+1

as the following difference operators:

(6.2) M
q,t
α,n =

∑

I⊂[1,r+1]
|I|=α

(∏

i∈I
xi

)n∏

i∈I
j 6∈I

txi − xj
xi − xj

∏

i∈I
Di α ∈ [0, r + 1], n ∈ Z,

with Di as above. These operators generalize the Ar Macdonald operators [Mac95], to
which they reduce for n = 0. The non-standard structure of the Cartan currents ψ± is
simply a consequence of the t→ ∞ limit of the quantum toroidal algebra for gl1.
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