
HAL Id: cea-01531019
https://cea.hal.science/cea-01531019v1

Submitted on 1 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Development Tools for Rule-Based Coordination
Programming in LINC

Maxime Louvel, François Pacull, Eric Rutten, Adja Ndeye Sylla

To cite this version:
Maxime Louvel, François Pacull, Eric Rutten, Adja Ndeye Sylla. Development Tools for Rule-Based
Coordination Programming in LINC. 19th International Conference on Coordination Languages and
Models (COORDINATION), Jun 2017, Neuchâtel, Switzerland. pp.78-96, �10.1007/978-3-319-59746-
1_5�. �cea-01531019�

https://cea.hal.science/cea-01531019v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Development tools for rule-based coordination
programming in LINC

Maxime Louvel1, François Pacull2, Eric Rutten3, Adja Ndeye Sylla1

1 Univ Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
2 Bag-Era

3 Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, F-38000 Grenoble,
France

maxime.louvel@cea.fr, francois.pacull@bag-era.fr

AdjaNdeye.Sylla@cea.fr, Eric.Rutten@inria.fr

Abstract. During the last decades a lot of coordination models and
languages have been proposed in the literature. These approaches have
proven that they can greatly improve the development of distributed
applications that are now common. However, to be used by many devel-
opers, there is still a gap regarding the available tools.
This paper details a set of tools that have been built to develop ap-
plications in LINC, a coordination environment rooted in Linda tuple
spaces and Gamma chemical machine approaches. These tools allow de-
velopers to design better coordination rules, to monitor and update a
running distributed application. The tools proposed here include design
and debugging tools.

Keywords: Coordination environment, development tools, distributed systems

1 Introduction

Coordination models and languages [31] have been around for decades [28]. Ini-
tial works on tuple spaces with Linda [17] have paved the way to space and time
decoupling between data producer and data consumer through a very simple
API. The Gamma approach [3] brought the chemistry inspired programming to
move away from sequential programming. Since these early works, many pro-
posals have been made to improve them. An important trend has been to use a
distributed tuple space [5,16,22,25,27,30]. Another interesting trend has been to
extend the chemistry based programming to design self adaptive systems [32,37].
Coordination models have been used in many areas including mobile comput-
ing [8,27], context aware applications [19], cyber-physical systems, wireless sensor
networks [10] or scientific applications [15]. Several works have tried to formalise
the coordination aspects to bridge the gap with the formal methods [2, 12].

One of the main challenges that is left open for the adoption of coordination
paradigms by software engineers is the lack of tools [28]. There is a need for de-
velopment tools that better capture the coordination models instead of relying

only on the understanding of software engineers. There is also a need for de-
bugging tools and tools to monitor, introspect and update applications without
restarting them.

This paper presents the development tools of the coordination environment
LINC [23]. LINC uses distributed tuple spaces, a rule based language and trans-
actional reactions implementing the chemical machine. LINC is used for dis-
tributed applications, possibly large scale, that may include cyber-physical sys-
tems or the Internet of Things (IoT). This paper details the tools available to
developers of LINC applications. This includes rule generation tools as well as
analysis and debugging tools. The former generate correct rules based on do-
main specific or formal models. The latter offer run time monitoring, run time
debugging and analysis of the coordination rules executions. To the best of the
authors knowledge there exist no equivalent set of development tools for tuple
space programming environment. This paper introduces several tools tailored
to LINC but that can be of interest, at least partially, to other coordination
environments, under some assumptions.

This paper is organised as follows. Section 2 briefly introduces the LINC
model. Section 3 details the modelling and analysis tools that are available to
developers of LINC applications. Then section 4 presents a short summary of
several applications built with LINC and these tools. Section 5 presents related
works. Finally, section 6 concludes the paper and presents future works.

2 LINC model

To make this paper self-contained, this section presents an overview of the coordi-
nation environment LINC. More details on LINC can be found in [23]. Technical
information can also be found on the LINC wiki 4.

2.1 Tuple space implementation

Bags: LINC uses a distributed tuple space [7] implemented as a set of bags. In
a bag all the tuples have the same number of fields. Bags are accessed through
three operations:

– rd(): takes a partially instantiated tuple as input parameter and returns a
stream of fully instantiated tuples matching the input pattern;

– put(): takes a fully instantiated tuple as input parameter and inserts it in
the bag;

– get(): takes a fully instantiated tuple as input parameter, verifies if a match-
ing tuple exists in the bag and consumes it.

4 http://linc.middlewares.info/

Objects: LINC objects, or simply objects, are the deployment units of LINC.
An object contains one or more bags. An object has a type that defines its bags
and its internal implementation. For instance a Sensor object has a Sensor bag
(with the last sensors’ values) and a thread that periodically polls the sensors and
puts their values in the Sensor bag. Objects’ type can be inherited to include
new bags or to modify the object implementation. Bags are grouped within
objects according to application logic. For instance, all the bags managing a set
of devices that communicate with the same communication technology can be
grouped in the same object. Any object may execute coordination rules that
manipulate tuples in its own bags or in the bags of any other objects. From a
functional point of view, it makes no difference which object manipulates the
tuples of a bag. However from a run-time performance point of view, this may
have a strong impact on CPU, memory or network resources.

2.2 Coordination rules

The three operations rd(), get() and put() are used within production rules [9].
A production rule is composed of a precondition phase and a performance phase.

The precondition phase is a sequence of rd() operations which detect or wait for
the presence of tuples in several given bags. The tuples are, for instance, values
from sensors, external events, or results of service calls. The output fields of a
rd() operation can be used to define input fields of subsequent rd() operations.
The precondition builds an inference tree with right propagation. A rd() is
blocked until at least one tuple corresponding to the input pattern is available.
In addition to read in the tuple spaces it is possible to call ASSERT and COMPUTE

functions. Both can execute any Python code. ASSERT functions return a boolean
value that stops the inference tree if false and triggers the subsequent token (rd,
ASSERT or COMPUTE) if true. COMPUTE functions can take as input any previously
instantiated variables; they return a tuple of variables. These variables can be
used by subsequent tokens or in the performance phase. When the last token of
the precondition is reached, the performance is triggered.

The performance phase combines the three rd(), get() and put() operations
to respectively verify that some tuples are present (e.g. the one(s) found in the
precondition phase), consume some tuples, and insert new tuples. In this phase,
the operations are embedded in one or multiple distributed transactions [4],
executed in sequence. Each transaction contains a set of operations that are
performed in an atomic manner. Hence, LINC guarantees that for operations
belonging to the same transaction, either all are executed successfully or none.

A LINC rule example is given in Listing 1.1. The precondition (before the symbol
::) first checks that ”c1” is ”true” (rd at line 1 on bag Condition belonging
to object O2). Then it waits for events (line 2). Then it reads the parameters
associated to the event (rd in line 3 with evt variable instantiated with the
value return by the previous rd). For every branch of the inference tree reaching

the last rd, a performance is triggered. This performance contains 1 transaction
(between curly brackets). It first checks that the condition is still valid (i.e.
(”c1”, ”true”) is in the bag Condition), then it consumes the event (line 6
with variables instantiated in the precondition), then it adds this event in the
bag Stats of the object O1 (line 7) and puts the command ”cmd1” with the
parameters p1 and p2 in the bag Cmd of the object O3 (line 8). Note that the
performance does not read again the Param bag, because the rule assumes that
this value does not change.

1[”O2” , ”Cond i t i o n ”] . r d (”c1” , ”t r u e ”) &
[”O1” , ”Event”] . r d (e v t , t ime) &

3[”O3” , ”Params”] . r d (e v t , p1 , p2) &
: :

5{ [”O2” , ”Cond i t i o n ”] . r d (”c1” , ”t r u e ”) &
[”O1” , ”Event”] . ge t (”e v t 1 ” , p1 , p2) &

7[”O1” , ”S t a t s ”] . put (”e v t 1 ” , t ime , p1 , p2) &
[”O3” , ”Cmd”] . put (”cmd1” , p1 , p2) & } .

Listing 1.1: Example of LINC rule

Linda - LINC: read and out operations of Linda are respectively implemented in
LINC by rd in precondition and put in performance. The in operation of Linda
takes partially instantiated tuples and removes the matching tuples from the
tuple space. If no tuple matches, the in is blocked. In LINC, this is implemented
by a rd in the precondition and a get in the performance. In the precondition,
the rd uses a partially instantiated tuple and blocks when no tuple matches. A
performance is triggered for every matching tuple. In each performance, a get

is done with the fully instantiated tuples created by the precondition rd.

3 Coordination rules development and debugging

Being based on the tuple spaces paradigm LINC has a very small API (rd, get
and put). Most of the complexity thus resides in how to use them best, or in
other words how to write coordination rules. Two sets of tools are now presented,
first to generate rules and second to analyse and debug them.

3.1 Rules generation tools

Two kinds of tools are available to developers. The first one consists in building
domain specific tools, the second one relies on formal languages to ensure the
correctness of the system. In both cases, rules are automatically validated and
generated from the models built by the developers. Hence the developers can
focus on the application logic and not the writing of rules. This paper presents a
synthesis of several tools, how they are related and how they can help developers.
Details on each tools can be found in papers cited in this section.

Domain specific tools One solution to help developers is to provide them a
domain specific design tool. Such tool limits the expressiveness offered by the
coordination language to a valid subset. In addition, the tool uses knowledge on
the domain to build advanced validation of the rules written by developers. The
latter need only to be experts of their domains and not experts in coordination
models or distributed systems.

An example of such tool is the Coordination Scheme Editor (CSE) [24] to
design scenarios in building automation systems. CSE provides a drag an drop
interface to design rules for sensors and actuators. The precondition is a set of rd
on sensors and thresholds or ranges checks. The performance is a set of action on
actuators. Examples of verification done when generating rules are: valid ranges
in sensors, valid types of commands sent to actuators or invalid thresholds.

High-level reactive language support for behavioural specification

Motivation: As explained above, LINC provides applications with transactional
guarantees that ensure their reliability at run-time. But, although LINC ensures
the consistent execution of individual rules, it does not prevent from writing
erroneous rules. Individual rules can present bugs, as in all programming lan-
guages, but more importantly, because more difficult to detect and avoid, the set
of rules may contain design errors such as conflicts between rules, and violations
of applicative constraints that can bring the system in unsafe or undesirable
states. More precisely, a rule, written to achieve a given objective, can violate
one or several other objectives of other rules. An example of conflict is between
rule A which opens the window to decrease the CO2 level in the room and rule
B which closes the window and turns on the AC to decrease the room tempera-
ture. Moreover, the execution of a sequence of rules can bring the system in an
undesirable state or into an undesired circularity or endless loop of rules having
the effect of firing each other.

Therefore, when writing rules one has to control their resulting behaviours.
Developers have to manually avoid conflicts and violations of constraints by
adding the testing of numerous additional conditions on specific rules, and adding
new rules. For large applications, programmed by large sets of rules, manually
controlling the rules is a difficult combinatorial problem and is error prone.

Our approach: To tackle this problem, we adopt the direction of high-level lan-
guage support for behavioural specification. We consider high-level languages
from the domain of reactive systems, related to transition systems, because they
can be equipped with formal verification or synthesis tools, based on models
for the behaviours of programs. On the other hand, we want them to be imple-
mented in such a way as to be concretely executable in the LINC environment.
We propose to combine the two reactive programming approaches in order to
support the safe design and execution of control systems, in the application
domain of smart environments. As illustrated in Fig. 1, data is gathered from
the controlled environment through the tuple spaces. A transition system takes

the correct decision and produces the commands executed by LINC transac-
tions. LINC transactions update both the actual system and the state of the
transition system. Hence if an action on the actual system fails (e.g. due to a
communication error or a hardware failure), the state of the transition system
is not updated and stays consistent with the actual system. For instance if a
window failed to open due to a communication error, the transition system will
not wrongly assume that it has been opened.

Transition System

Tuple spaces

Controlled environment

Transactional execution

data

data commands

commands

data commands

Fig. 1

One approach, presented in [34], first models the application logic using
coloured Petri nets. Then, it verifies the designed model using a model-checker [33],
and finally, it generates the corresponding LINC rules. This approach enables
the verification of several properties (e.g. absence of conflicts and violations of
constraints) before execution. When generating LINC rules from the coloured
Petri nets specification, the state of the system is embedded in a LINC bag. The
transition and update of the state is performed in a transaction together with
the actions on the system. However, modelling the application logic also requires
to manually specify how to avoid conflicts and violations of constraints, in the
model. Moreover, when a target property is not satisfied, the model has to be
manually modified and verified again.

To overcome these limitations, we explore the use of a high-level language
based on transition systems to access another formal technique: Discrete Con-
troller Synthesis (DCS) [35]. Similarly to model-checking, DCS is an algorith-
mic technique that performs an exploration of the reachable state-space of a
transition system. However, whereas model-checking verifies the satisfaction of
a property in a programmed solution, DCS produces a solution from a more
declarative specification. This specification contains the possible behaviours and
properties to be enforced by control. More precisely, DCS takes (i) a transition
system modelling possible behaviours of a system, (ii) a partition of the set of
variables between controllable and uncontrollable ones, and (iii) a property to
be enforced (e.g. invariance of a predicate). Given this, DCS synthesises, if it ex-
ists, the constraint on controllable variables in function of current values of state
and uncontrollable variables, so that the resulting constrained transition system
satisfies the property. This constitutes a controller that will avoid transitions
leading to incorrect states (i.e. violating the property), or to correct states from
which a sequence of uncontrollable conditions and transitions could lead to an
incorrect state. Concretely, LINC has been combined with the automata-based

language Heptagon/BZR [11]. Heptagon/BZR enables the verification and the
control of the system behaviour at compilation time. The generated executable
code is called from the execution of LINC rules. A related approach was used in
the context of ECA rules [6], different from tuple spaces, but with a similar goal
as a mean to coordinate the execution of rules so as to avoid inconsistencies,
circularities, and environment and application related constraints.

This way designers are provided for a support for both design-time and run-
time reliability. At design time the developers have language support and DCS to
generate a control function that can avoid conflicts, circularities and violations of
constraints. The generated function is then reliably executed using LINC which
enforces, through distributed transactions, the consistency between the states of
the automata and the states of the actual system. Advantages of our reactive
language-based approach are as follows:

– high-level language support for controller specification, less tedious and error-
prone than at lower level;

– correctness of the controller, w.r.t. specified properties, hard to enforce man-
ually, obtained by using formal methods and algorithms like model checking;

– automated synthesis of controllers, using DCS with declarative objectives,
which is more constructive than classical verification of a hard to write so-
lution ; our approach also ensures that developers need only to be expert of
their domain and not expert in formal models;

– automated generation of executable code compatible with LINC.

Extension to other coordination languages The tools presented in this
section generate LINC rules. Generating code or rules for other tuple spaces
based coordination languages is possible under certain conditions. Most of the
tuple spaces based languages will allow a level of abstraction similar to LINC.
However the tools presented above assume the following:

– the consistency between the state of the actual system and the state of the
transition system will be ensured only if a distributed consensus mechanism
(transactions in LINC) is available;

– a reactive environment that calls the transition system when necessary;
– LINC combines tuple spaces, production rules and transactions. This allows

to only consider the important states. For instance, consider a rule consuming
events A and B and producing C and D. The state where only A is consumed
or only C is produced is not possible in LINC. This simplifies the generation
of LINC rules and might not be directly available in other environments.

3.2 Analysis and debugging tools

The tools developed for rules generation are naturally not meant to completely
replace the hand writing of rules, but as a complement. The domain specific tools
provide a solution limited to a domain and a subset of the coordination model.

The tools based on formal models help to ensure the correctness of the coordi-
nation in the system. They can avoid conflict between rules, within the parts of
the systems modelled in the high-level languages. Moreover, advanced features
of LINC such as guards, alternative transactions, graceful degradation (see [23]
for more details) are not always available to developers. Hence a set of tools
are now described to monitor, analyse and debug applications. Note that these
tools can be used in combination with the modelling tools. Indeed, the latter
produce correct rules according to the assumptions made in the formal model or
the domain hypothesis. However, if an error occurs outside these assumptions,
the rules generated from the modelling tool will behave incorrectly. Therefore
rules have to be validated by analysis and debugging tools. This section now
presents tools to monitor, modify and analyse the execution of an application.

Monitor When developing and debugging a distributed application, it is not
always easy to access the information of all the elements. Indeed they are spread
out, possibly in different networks. Furthermore, it is possible that they move
(e.g. due to load balancing, system update or failure). Hence the developer has
to keep track of what is where and how to access it. Then another challenge is
to know what to observe and how. In tuple spaces based models, the important
information is stored in the tuple spaces. It is thus fundamental to be able to
access them easily.

To answer these challenges, every object in LINC provides a web interface
to monitor its content and access the monitor interface of the other objects in
the application. The interface can be accessed from any web browser. It allows
to observe the content of any bags of any objects. This is particularly useful
when a rule is blocked. The developer can connect to the monitor and check if
the required tuples are there or not. In addition, the monitor interface allows
to modify the content of the bags of the object. Hence a developer can unlock
an application by adding a missing tuple. At the development stage, this can
help to move forward if a bug occurred. At the production stage, this allows the
maintenance to unlock the application while tracking the cause of the missing
tuple. Rules in LINC are also modelled as tuples. Hence it is possible, from the
monitor, to start, stop or update rules or group of rules by adding or removing
the corresponding tuples.

Debugging and information traces In a distributed application it might be
a daunting task to gather all the traces generated in one application. To help
developers, a tracer is built for every LINC object. Instead of using print on
various files, the developer simply calls the tracer to add a trace. The tracer
contains all the traces that might be useful for the application (e.g. communica-
tion error, debug traces or traces defined by developers when writing new LINC
objects). For instance, when a developer creates an object to support a new
sensor protocol he/she will use traces to debug his/her own code. The traces
are saved to disk. The trace files are accessible through the Monitor interface
of each object; they can also be accessed offline, e.g. by downloading them in a

development computer. Trace files are generated incrementally. Hence they can
be periodically archived, possibly remotely, if needed.

Traces may have an important cost, in CPU and disk usage. To limit this,
several levels of traces are available, from -1 (error) to 3 (debug information).
The level of trace is set when starting an object. Then every trace with a level
higher than the trace level are ignored. This is actually very efficient because the
actual trace string is passed via a dictionary and is not evaluated if the trace is
ignored. This mechanism allows to leave traces in the code and activate them
only when necessary. Traces level can be dynamically changed. For instance the
level can be increased when an error occurred. If the application behaviour is
periodic or event based, the next loop or event handling will be traced with a
higher level. Once the problem is understood, the trace level can be decreased
again.

In the monitor, the traces are presented in a HTML table, sorted by date.
The last line contains the most recent trace. Inside the LINC object, the tracer
can either be used directly or cloned. All the clones of the tracer share the same
file. Two filters criteria are provided to find specific traces in the table. The tracer
clone displays traces of the selected clones only. The Level displays traces with a
level lower or equal to the filter. The tracer clones allow to filter on functionality
(e.g. communication traces or traces related to specific actions). Both filters can
be combined to display the traces of one or more clones which are lower than
a given level. It is then possible to search within the traces. This creates a new
filter that can be combined with the clone or level filters. A second level of search
is provided to filter again the traces.

Exploring coordination rules executions A LINC application is composed
of a set of rules defining the behaviour of the application. When executing these
rules, the LINC objects build inference trees (precondition) and execute perfor-
mances. All the preconditions and performances are logged in several log files.
Logs are organised by rule: for each rule there is one log. These log files are then
explored to help the developer understand the behaviour of its application. The
logs are dedicated to rules executions and capture the application behaviour.
They are complementary to traces.

Logger interface For each rule, the inference tree built can be walked through a
web interface. Three types of elements are presented for the precondition:

– rd: contains the precondition rd() executed (e.g. rd("evt-a", ts) to read
all the events "evt-a";

– result of rd, COMPUTE: contains the tuples returned (e.g. rd("evt-a", "X32");
– result of ASSERT: successful calls are shown as a specific tuple, failed calls

are presented in red because they stop the inference tree.

When a performance is reached, successful transactions are displayed in green
without details. If the transaction failed, it is automatically expended to see
which operation caused the failure (displayed in red). Hence the developer can
understand why this performance did not execute.

The logger may help the developer to see where an execution is blocked.
Typically, when a rd has not returned matching tuples. From the logger interface,
the developer can be redirected to the monitor of the object and inspect the bags’
content. From there the developer can see for instance that the error comes from:

– an erroneous spelling and add the missing tuple to continue the execution;
– a missing tuple, meaning that another transaction (in the same rule or in

another rule) consumed the tuple or that it has never been produced.

Filters Looking at all the inference tree might not be possible when its size
increases. However, most of the time the developer is only interested in some
particular tuples. Hence, the logger interface allows developer to search the logs
of interest. The search can be done in object, bag and/or tuple name. The search
can be done on one or more rules. If matching logs are found, they are displayed
in the interface. The developer can then browse them. For instance if it filters
on tuples matching "evt-a" only the actions including matching tuples will be
displayed (branches of the inference tree and transactions). If a rule handles all
the events (rd(evt, ts)), only the interesting ones (i.e. handling evt-a) will be
displayed. Fig. 2a shows an example of log search on tuples containing "alice".
This example contains only preconditions for this tuple, i.e. no performance with
a tuple containing "alice" has been triggered. The problem here can be that a
tuple is not added as expected by the rule.

(a) Example of search in logs
(b) Logger interface example

Fig. 2: Logger interface and search

Logger interface example To illustrate the use of the logger interface, let’s con-
sider an application which models people travelling with a metro. This appli-
cation has one object (Test) containing three bags. The bag Customer for cus-
tomer locations (containing the tuples ("alice","A"), ("denis","A")); the bag
Arrival for customer destinations (containing ("alice","D"), ("denis","D"))

and the bag Connection for metro connections (containing ("A","D")). The pre-
condition of the rule 1.2 reads the customer location and arrival of each person
and checks that a connection exists between the two stations. The performance
then gets the customer, its destination, the connection and puts the customer in
its arrival station. After executing the rule, the developer notices that only alice
reached its destination, denis is still in its initial location.

[”Tes t” , ”Customer”] . r d (name, d e p a r t u r e) &
2[”Tes t” , ”D e s t i n a t i o n ”] . r d (name, a r r i v a l) &

[”Tes t” , ”Connec t i on”] . r d (d epa r t u r e , a r r i v a l) &
4: :

{ [”Tes t” , ”Customer”] . ge t (name, d e p a r t u r e) ;
6[”Tes t” , ”D e s t i n a t i o n ”] . ge t (name, a r r i v a l) ;

[”Tes t” , ”Connec t i on”] . ge t (d epa r t u r e , a r r i v a l) ;
8[”Tes t” , ”Customer”] . put (name, a r r i v a l) ; } .

Listing 1.2: Travel LINC rule

Fig. 2b shows the log of the rule. The rule is executed twice (one starting with
the tuple ("alice","A") and the other starting with the tuple ("denis","A")).
In this example, the two people make the same journey, and the same connection
tuple is used. The first transaction that executes succeeds and gets the tuple
("A","D") which makes the second transaction fail because the tuple seen in the
precondition is not there anymore. In Fig. 2b, the third action of the transaction
(line 7 of Listing 1.2) for the second transaction (get("A","D")) has failed which
is shown in the log displayed. The solution here is to use a rd() instead of a
get() on the connection to avoid removing the tuple.

Current inference tree The Logger interface contains all the coordination ac-
tions done since the application started. To decrease the resources used (CPU,
memory), LINC objects periodically execute a garbage collector to remove un-
necessary branches in their inference tree. The garbage collection consists in
walking the tree and checking that the tuples seen are still in the bags. If not,
this means the performances that will be triggered by this branch will fail. To
avoid this, the branch is removed from the tree. It thus may be useful to know
the current inference tree of a LINC object. For that, an interface is provided
that displays the current tree in a textual form. This interface can help to under-
stand why the garbage collection has not been performed, for instance because
the same tuple is always produced (e.g. ("evt-a")). Here a solution is to use
different tuples to model different events (e.g. ("evt-a", "XX...")).

Analysing coordination rules executions The logger interface allows to
understand what has been done by the rule. This can solve functional errors or
highlight some performances issues. However it is not easy to draw high level
conclusion by looking at all the coordination actions. For that, two analysis
tools are provided; the first one focuses on data flow observations; the second
one focuses on a global view of the logs.

Data flow This tool provides a data flow view of the coordination actions done.
The information comes from the log files but is presented differently. This tool

gives a picture of the rules’ executions to link the data (tuples contained in bags)
to the control flow (coordination actions done by the LINC objects). Two kinds
of pictures are built, one for the preconditions and one for the performances.
Fig. 3a and Fig. 3b respectively show the preconditions and the performances
for the execution of the rule in Listing 1.2. These pictures show the data flow
between rules and bags (rd, get and put). The size of the line is proportional
(logarithmic) to the number of actions done. The number of actions is also added
in small on the line. By comparing the two pictures, one can see that there are
more preconditions operations (

∑
prec op = 1775) than performances operations

(
∑

perf op = 46). This means lots of preconditions never reach the performance
phase, in other words big inference trees are built for nothing.

rd

Rule

Bag

Legend:

C-RU0002

Connection CustomerDestination

C-RU0005 C-RU0004

C-RU0001

16
9 8

1543

10
16

13

150
10

(a) Rules analysis - all preconditions

rd
get

put

Legend:

C-RU0003 C-RU0000

4

C-RU0004

Connection CustomerDestination

C-RU0001

6

6

C-RU0005

9
2

3 1

6
6

1
2

(b) Rules analysis - all performances

Fig. 3: Rules analysis

It is also possible to build a bag centred picture. This time only one bag is
displayed with all the rules accessing this bag. This is particularly useful to find
out which rule gets or puts tuples in a bag. For all analysis, it is possible to
display only the successful performances, only the failed performances or both.
Fig. 4a is centred on the bag Customer. Here one can see that rule RU0001 is
missing (compare to Fig. 3b) and that RU0002 does not access the bag. RU0002
is shown in the picture because it is connected to the Customer bag in the
precondition. Fig. 4b shows only the successful performances. Here only RU0003
and RU0004 update tuples in the bag Customer. Finally, Fig. 4c shows a picture
of a rule that only copies data from a bag to another one.

C-RU0004

C-RU0003

C-RU0000

C-RU0002C-RU0005

Customer

6

6

3 2

1

4

(a)

C-RU0004 C-RU0003

C-RU0000

Customer
3

2

1

1

4

(b)

C-RU0003

Data Log

37181

37181

(c)

Fig. 4: Rules analysis - bag centered

All representations are also available in a table format with numbers instead
of arrows of different size. Both views can be interesting depending on the type
of patterns to observe, the number of bags, rules or tuples.

Error prone patterns that may be found with this tool are typically:

– overloading bags (a bag where more put than get are done);
– unused bags;
– performances which fail most of the time (meaning a lot of coordination is

done just to fail afterwards).

This tool might also be useful to find or check some patterns such as a
producer / consumer relationship between two or several rules. Hence better
choices can be made for the deployment decision. Indeed, nothing prevents a rule
to access only bags physically far from the object executing the rule. However,
from a run-time performance point of view this may have a strong impact.

Global view on the logs The second tool for log analysis provides a global view
of the logs. For that, the tool relies on the D3JS javascript framework 5. This
framework allows to easily build data driven document and to display them in
a web browser. Several interesting points may be analysed with this tool. For
instance, it is possible to view the size of the inference tree, if all the branches of
the tree lead to a performance, or the ratio of successful performances over the
number of performances tried. This tool can help developers to understand how
the rules they wrote perform in the system. The goal is to optimise the rules
in order to decrease the CPU and memory used by the LINC object executing
them. Such optimisation may be achieved by reducing the size of the inference
tree, the number of failing performances or the number of branches that lead to
no performance.

Fig. 5 shows the overview of three rules with a radial tree display 6. At the
centre is found the root node of the inference tree. The nodes of the inference
tree leading nowhere are displayed in grey, the nodes leading to successful (resp.
failing) performances are displayed in green (resp. red) and the nodes leading to
both successful and failing performances are displayed in orange. Failing ASSERT

in the precondition are displayed as failing performances. It is possible to click
on each node to have the information of the action done (e.g. rd("evt-a"),
put("action-b")). Fig. 5 contains examples of log analysis for several rules.
Here we can see that rule 5a is more efficient with a smaller inference tree and
more green nodes than rule 5b which does a lot of work for nothing. Rule 5c
shows a rule that simply copies data from a bag to another one; hence it is
mainly green. The few orange points are failing ASSERT for tuples that should
not be processed by this rule.

It is possible to filter the global view of the logs on tuples, objects or bag
names and on time interval. This can help developers understand when a rule
did more or less work, or if some tuples (e.g. modelling events) triggered a lot
of work or none.
5 https://d3js.org/
6 https://bl.ocks.org/mbostock/4063550

https://d3js.org/
https://bl.ocks.org/mbostock/4063550

(a)
(b)

(c)

Fig. 5: Examples of global views

Extension to other coordination languages The tools presented in this
section help to design, analyse and debug LINC rules. They could be adapted
to other coordination environments with some assumptions.

The monitor is well suited for any tuple space environment because important
information is stored in tuple spaces. This tool provides a central point of view
to access all the information of the coordination entities (objects in LINC). To
be as useful as in LINC, the monitor requires full introspection and intersession
capacities of the coordination entities and tuple spaces. For the tracer tool, its
main interest is to provide relevant filters and being accessible from the monitor.

The analysing tools require to log all the coordination actions. This requires
to instrument the code of the coordination entities to log all relevant actions.
This is of particular interest for exogenous coordination languages [1] that do
not mix the coordination code within the computation code. For these languages
it seems possible to extract, as in LINC, the relevant coordination actions to
analyse them. Indeed the application state is stored in the tuple spaces and the
application logic is done by the coordination entities.

The interfaces of the analyses tools are relevant if an inference tree is used.
Some display are specific to LINC that uses rules with precondition and transac-
tions in performances (typically the logger interface). The data flow and global
view of the log could be adapted even if the rules execution paradigm is different.

4 Applications developed with LINC

More than a dozen of demonstrators have been developed with LINC, within Eu-
ropean or national projects, with industrial partners, in several domains. LINC
is now transferred to industry through the start-up Bag-Era 7 which is respon-
sible for its support and commercialisation. This section details a few examples
showing what LINC and its tools can be used for.

7 http://www.bag-era.fr/

In the building automation domain, several demonstrators have been built
during the H2020 TOPAs and FP7 SCUBA projects. In these demonstrators
buildings have been controlled automatically. Some experiments ran for several
months. Data collection, on several buildings in Ireland and France, is ongoing to
continuously analyse the buildings’ behaviour (with ≈ 1000 data points updated
every minutes or ever 10 minutes). In such applications, with remote components,
the monitoring has proven really useful. The logger observation and analysis tools
have been useful to developers during the development stage.

In the Artemis Arrowhead project, a LINC application has been deployed
across three different and remote Local Area Networks [14]. A web interface to
control the application has been developed and used across Europe. Some of the
LAN provide no external access. The monitor was available on some parts of the
application. For the rest, the traces and log files were downloaded and analysed
locally, with the same tools executed by local objects.

In the frame of French project IRT Nanoelec, a smart parking has been de-
veloped [13]. LINC allowed to coordinate a dozen of independent products, some
off-the-shelf, some still under development. In this demonstrator, approximately
one hundred rules were written. Part of them have been generated from Coloured
Petri Nets [34]. The monitoring and log analysing tools, with their filtering and
search features have proven useful to developers.

Finally, LINC has been used by control scientists to develop advanced control
strategies [36]. In this work, LINC bridged the gap between the control scientists
assumption and devices of wireless sensor networks.

5 Related works

In [21] the authors propose the Peer Model, a design tool for parallel and dis-
tributed applications. The model assumes a tuple space middleware. The authors
focus on some specific patterns commonly used in distributed applications such
as split or join of data flow. This approach is extended in [20] where the author
introduces design patterns dedicated to coordination. Similarly to our design
tools, this helps developer using coordination models. However, no help is pro-
vided at run time. In addition, our design tools offer verification at design time.

REO [2] is a coordination model focusing on the interaction between com-
ponents. A lot of efforts have been put to provide a formal model of REO and
connections with formal languages [12]. This is similar to our design tool based
on formal languages. However, REO focuses only on the interaction between
components whereas our approach provides developers with a complete model
of the environment and the application.

ReSpecT nets [38] is a language to map ReSpecT programs to Petri nets.
ReSpecT is a reactive language based on TuCSoN [29] and tuple spaces. However,
this fails to bridge the gap between (i) the large expression capabilities of tuple
space coordination languages and (ii) the set of Petri nets on which interesting
formal analysis can be done. Whereas, in our approach verification are done on
the model and then the coordination code is generated. It is thus possible to

limit in the model the expressiveness to provided formal guarantees. However
this language could be a good target for our rule generation tools.

Finally, in [26] the authors propose a software engineering methodology to
develop multiagent systems in the SAPERE project which target self awareness
in pervasive systems. The developers use an API and a development methodol-
ogy. However it is not clear if the authors provide any tools to help developers
understand how their applications are evolving and how to debug them.

6 Conclusion

Design and debugging tools are essential to make coordination models and lan-
guages accepted by a broader range of developers. This paper has presented the
development tools put in place with LINC, a coordination environment based on
tuple spaces and implementing the chemical machine paradigm. The design tools
detailed in this paper allow developers to generate rules that are validated with
domain specific knowledge or by the use of formal methods. In addition several
tools allow developers to monitor, analyse and update a distributed application.

To the best of the authors knowledge, there exists no other tuple space coor-
dination environment providing an equivalent set of tools. The tools developed
for LINC could be useful for other tuple spaces based coordination environments.
The paper initiates the analysis of what might be reused and what assumptions,
on the coordination environment, are made by the different tools.

Future works will focus on extending analysis tools to allow to re-execute
an application with the same scheduling as the original execution. This is not
guaranteed by default because most of the rules executions are not deterministic.
We means that the same result may be achieved with different histories if we
consider elementary actions (rd, get and put) order. In case of bug it could be
possible that a particular history is the cause of the bug. Thus restarting the
application is not enough to ensure that we will have the same sequence during
the second execution and thus the bug is not reproducible. By forcing at the
replay the order of the rd, get and put we can ensure that the order of the
different event is kept and thus this helps in reproducing the bug. Regarding
modelling tools, perspectives involve generalising the approach by integrating
the potentials of having multiple controllers and control loops. These loops will
require to be coordinated themselves, following a related approach involving
coordination controllers for autonomic loops [18].

Acknowledgment. This work is funded by the H2020 TOPAs (grant 676760).

References

1. Farhad Arbab. What do you mean, coordination. Bulletin of the Dutch Association
for Theoretical Computer Science, NVTI, 1122:1–18, 1998.

2. Farhad Arbab. Reo: a channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

3. Jean-Pierre Banătre, Pascal Fradet, and Daniel Le Métayer. Gamma and the
chemical reaction model: Fifteen years after. In Multiset Processing, pages 17–44.
Springer, 2001.

4. Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency control
and recovery in database systems, volume 370. Addison-wesley New York, 1987.

5. Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Mars: A programmable
coordination architecture for mobile agents. Internet Computing, IEEE, 4(4):26–
35, 2000.

6. Julio Cano, Gwenaël Delaval, and Eric Rutten. Coordination of eca rules by veri-
fication and control. In International Conference on Coordination Languages and
Models, pages 33–48. Springer, 2014.

7. N. Carriero and D. Gelernter. Linda in context. Commun. ACM, 32:444–458, 1989.
8. Justin Collins and Rajive Bagrodia. Mobile application development with melon.

In Int. Conf. on Ad-Hoc Networks and Wireless, pages 265–278. Springer, 2014.
9. Thomas Cooper and Nancy Wogrin. Rule-based Programming with OPS5, volume

988. Morgan Kaufmann, 1988.
10. Paolo Costa, Luca Mottola, Amy L Murphy, and Gian Pietro Picco. Teenylime:

transiently shared tuple space middleware for wireless sensor networks. In Pro-
ceedings of the international workshop on Middleware for sensor networks, pages
43–48. ACM, 2006.

11. Gwenaël Delaval, Hervé Marchand, and Eric Rutten. Contracts for modular dis-
crete controller synthesis. SIGPLAN Not., 45(4):57–66, April 2010.

12. Kasper Dokter, Sung-Shik Jongmans, Farhad Arbab, and Simon Bliudze. Combine
and conquer: Relating BIP and Reo. Journal of Logical and Algebraic Methods in
Programming, 86(Ice):3–20, 2016.

13. L F Ducreux, C. Guyon-Gardeux, M. Louvel, F. Pacull, S R Thior, and M I
Vergara-Gallego. Rapid prototyping of complete systems, the case study of a smart
parking. In 2015 International Symposium on Rapid System Prototyping (RSP),
volume 2016-Febru, pages 133–139, Amsterdam, 2015.

14. Boutin et al. Energy optimisation using analytics and coordination, the example
of lifts. In 19th IEEE Conf. Emerging Technologies and Factory Automation, 2014.

15. Hector Fernandez, Cédric Tedeschi, and Thierry Priol. Rule-driven service co-
ordination middleware for scientific applications. Future Generation Computer
Systems, 35:1–13, 2014.

16. Tony Garnock-Jones and Matthias Felleisen. Coordinated Concurrent Program-
ming in Syndicate. In LNCS, volume 9632, pages 310–336. springer, 2016.

17. David Gelernter. Generative communication in linda. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

18. Soguy Mak Karé Gueye, Noël de Palma, and Eric Rutten. Component-based auto-
nomic managers for coordination control. In Rocco De Nicola and Christine Julien,
editors, Coordination Models and Languages: 15th International Conference, pages
75–89, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

19. Christine Julien and G-C Roman. Egospaces: Facilitating rapid development of
context-aware mobile applications. Software Engineering, IEEE Transactions on,
32(5):281–298, 2006.

20. Eva Kühn. Reusable Coordination Components: Reliable Development of Coop-
erative Information Systems. International Journal of Cooperative Information
Systems, 25(4):1740001, 2017.

21. Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas Scheller.
Peer-based programming model for coordination patterns. In Coordination Models
and Languages, pages 121–135. Springer, 2013.

22. Eva Kuhn, Johannes Riemer, Richard Mordinyi, and Lukas Lechner. Integration
of XVSM Spaces with the Web to Meet the Challenging Interaction Demands in
Pervasive Scenarios. Ubiquitous Computing and Communication Journal, CPE -
SI(Special issue of Coordination in Pervasive Environments):20–31, 2008.

23. Maxime Louvel and François Pacull. Linc: A compact yet powerful coordination
environment. In Coordination Models and Languages, pages 83–98. Springer, 2014.

24. Maxime Louvel, François Pacull, and Maria Isabel Vergara-Gallego. Coordination
Scheme Editor for Building Management Systems. In IEEE, editor, IECON 2016-
42nd Annual Conference of the IEEE, pages 7052–7057, 2016.

25. Marco Mamei and Franco Zambonelli. Programming pervasive and mobile comput-
ing applications: The tota approach. ACM Transactions on Software Engineering
and Methodology, 18(4):15, 2009.

26. Ambra Molesini, Andrea Omicini, Mirko Viroli, and Franco Zambonelli. Engineer-
ing pervasive multiagent systems in SAPERE. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8245 LNAI:196–214, 2013.

27. Amy L Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime: A coor-
dination model and middleware supporting mobility of hosts and agents. ACM
Transactions on Software Engineering and Methodology, 15(3):279–328, 2006.

28. Andrea Omicini and Mirko Viroli. Coordination models and languages: from paral-
lel computing to self-organisation. The Knowledge Engineering Review, 26(01):53–
59, 2011.

29. Andrea Omicini and Franco Zambonelli. Tucson: a coordination model for mobile
information agents. In Proceedings of the 1st Workshop on Innovative Internet
Information Systems, volume 138, 1998.

30. Andrea Omicini and Franco Zambonelli. Coordination for internet application
development. Autonomous Agents and Multi-agent systems, 2(3):251–269, 1999.

31. George A Papadopoulos and Farhad Arbab. Coordination models and languages.
Advances in computers, 46:329–400, 1998.

32. Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation of
computational systems with alchemist. Journal of Simulation, 7(3):202–215, 2013.

33. K. Schmidt. Lola a low level analyser. In Application and Theory of Petri Nets.
Springer, 2000.

34. Adja Ndeye Sylla, Maxime Louvel, and François Pacull. Coordination Rules Gen-
eration from Coloured Petri Net Models. In PNSE@ Petri Nets, pages 325–326,
2015.

35. Adja Ndeye Sylla, Maxime Louvel, and Eric Rutten. Combining Transactional and
Behavioural Reliability in Adaptive Middleware. In ACM, editor, Proceedings of
the 15th Int. Workshop on Adaptive and Reflective Middleware, page 5, 2016.

36. Maria Isabel Vergara-Gallego, Olesia Mokrenko, Maxime Louvel, Suzanne Lesecq,
and Francois Pacull. Implementation of an Energy Management Control Strategy
for WSNs Using the LINC Middleware. In Proceedings of the 2016 International
Conference on Embedded Wireless Systems and Networks, pages 53–58, 2016.

37. Mirko Viroli, Matteo Casadei, Sara Montagna, and Franco Zambonelli. Spatial
coordination of pervasive services through chemical-inspired tuple spaces. ACM
Trans. Auton. Adapt. Syst., 6(2):14:1–14:24, June 2011.

38. Mirko Viroli and Andrea Omicini. Respect nets: Towards an analysis methodology
for respect specifications. Electron. Notes Theor. Comput. Sci., 180(2):123–144,
June 2007.

	Development tools for rule-based coordination programming in LINC

