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Prepared for

We continue our investigation of Z-theory, the second double-copy component of open-string tree-level interactions besides super-Yang-Mills (sYM). We show that the amplitudes of the extended non-linear sigma model (NLSM) recently considered by Cachazo, Cha, and Mizera are reproduced by the leading α -order of Z-theory amplitudes in the semiabelian limit. The extension refers to a coupling of NLSM pions to bi-adjoint scalars, and the semi-abelian limit refers to a partial symmetrization over one of the color orderings that characterize the Z-theory amplitudes. Alternatively, the partial symmetrization corresponds to a mixed interaction among abelian and non-abelian states in the underlying open-superstring amplitude. We simplify these permutation sums via monodromy relations which greatly increase the efficiency in extracting the α -expansion of these amplitudes. Their α -corrections encode higher-derivative interactions between NLSM pions and bi-colored scalars all of which obey the duality between color and kinematics. Through double-copy, these results can be used to generate the predictions of supersymmetric Dirac-Born-Infeld-Volkov-Akulov theory coupled with sYM as well as a complete tower of higher-order α -corrections.

Introduction

Z-theory [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF][START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF] refers to the α dependent theory of bi-colored1 scalars whose double copy [START_REF] Kawai | A Relation Between Tree Amplitudes of Closed and Open Strings[END_REF][START_REF] Bern | New Relations for Gauge-Theory Amplitudes[END_REF][START_REF] Cachazo | Scattering equations and Kawai-Lewellen-Tye orthogonality[END_REF] with maximally supersymmetric Yang-Mills theory (sYM) [START_REF] Brink | Supersymmetric Yang-Mills Theories[END_REF] generates the tree-level scattering predictions of the open superstring. Z-theory was originally defined by taking its amplitudes to be the set of doubly-ordered functions Z σ (τ ) of ref. [START_REF] Broedel | Polylogarithms, Multiple Zeta Values and Superstring Amplitudes[END_REF] -iterated integrals over the boundary of a worldsheet of disk topology -which arise in the tree-level amplitudes of the open superstring [START_REF] Mafra | Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation[END_REF][START_REF] Mafra | Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure[END_REF]. The complete α -expansion of the non-linear Z-theory equations of motion is pinpointed in ref. [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF].

To translate these doubly-ordered Z σ (τ )-functions to field-theory scattering amplitudes, one dresses the permutation σ ∈ S n encoding the integration domain with the Chan-Paton (CP) factors associated with open-string endpoints. Depending on whether the CP factors are entirely non-abelian or abelian, the low-energy limits of the corresponding Z-theory amplitudes reproduce the tree-level interactions of either bi-adjoint scalar particles [START_REF] Bern | On the coupling of gravitons to matter[END_REF][START_REF] Cachazo | Scattering of Massless Particles: Scalars, Gluons and Gravitons[END_REF], or non-linear sigma model (NLSM) pions2 [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF]. Z-theory amplitudes offer a fascinating laboratory to study stringy emergence in a new and technically much simpler context. From a double-copy perspective they isolate, in a scalar field theory, what is ultra UV-soft in higherderivative tree-level predictions of the open superstring.

The main result of this work concerns the semi-abelian version of Z-amplitudes -those involving a mixture of abelian and non-abelian CP factors. Their low-energy theory will be identified with interactions among NLSM pions and bi-adjoint scalar particles (NLSM+φ 3 ). Amplitudes in this theory have been recently studied [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] in a Cachazo-He-Yuan (CHY) representation [START_REF] Cachazo | Scattering equations and Kawai-Lewellen-Tye orthogonality[END_REF][START_REF] Cachazo | Scattering of Massless Particles: Scalars, Gluons and Gravitons[END_REF][START_REF] Cachazo | Scattering of Massless Particles in Arbitrary Dimensions[END_REF]. To be concrete, we will generalize the emergence of color-stripped NLSM amplitudes from completely abelianized disk integrals or abelian Z-theory amplitudes [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF],

A NLSM (1, 2, . . . , n) = lim α →0 1 nα R n dz 1 dz 2 . . . dz n vol(SL(2, R)) n i<j |z ij | α k i •k j z 12 z 23 . . . z n-1,n z n1 , (1.1) 
where z ij ≡ z i -z j . In close analogy to (1.1), we will identify the doubly-stripped amplitudes of the (NLSM+φ 3 ) theory in the low-energy limit of semi-abelian Z-amplitudes (3.2), 

A NLSM+φ 3 (
n i<j |z ij | α k i •k j τ (z 12 z 23 . . . z n-1,n z n1 ) , (1.2 
) with 2≤r≤n external bi-adjoint scalars. The power of α is δ = 0 and δ = 1 for even and odd numbers of pions n-r, respectively, and the second ordering referring to the integrand is governed by a permutation τ ∈ S n .

As first realized in ref. [START_REF] Cachazo | Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM[END_REF], the NLSM double copies with sYM to generate predictions in Dirac-Born-Infeld-Volkov-Akulov theory (DBIVA) -the supersymmetric completion of Born-Infeld (see e.g. [START_REF] Bergshoeff | Dirac-Born-Infeld-Volkov-Akulov and Deformation of Supersymmetry[END_REF]). The abelianized open string, as an all-order double copy of abelian Z-theory with sYM, provides α -corrections to DBIVA [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF]. Similarly, as the NLSM+φ3 double copies with sYM to generate predictions in DBIVA coupled with sYM, the semi-abelian open string provides an all-order α -completion to DBIVA+sYM. One can either use the fieldtheory (α → 0) Kawai-Lewellen-Tye (KLT) relations at tree level [START_REF] Kawai | A Relation Between Tree Amplitudes of Closed and Open Strings[END_REF] to double copy ordered amplitudes, or solve for Jacobi-satisfying numerators and take the double copy graph by graph, following the duality between color and kinematics due to Bern, Johansson and one of the present authors (BCJ) [START_REF] Bern | New Relations for Gauge-Theory Amplitudes[END_REF][START_REF] Bern | Perturbative Quantum Gravity as a Double Copy of Gauge Theory[END_REF]. As sYM amplitudes are by now standard textbook material [26], the new ingredient which we provide is the understanding of how to generate the various α -components of semi-abelian Z-theory. Additionally, with these amplitudes in hand, one can even consider the double copy of semi-abelian Z-theory with itself, which results in a set of higher-derivative corrections to the theory of special Galileons coupled with NLSM+φ 3 discussed in ref. [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF].

It should be noted that the type of non-linear symmetry at work in effective field theories like the NLSM and (through double copy with sYM) in DBIVA, has recently garnered some attention from applications to cosmology. Volkov-Akulov-type constrained N = 1 superfields allow for technically simple inflationary models [START_REF] Ferrara | Cosmology with Nilpotent Superfields[END_REF][START_REF] Ferrara | Cosmology with orthogonal nilpotent superfields[END_REF][START_REF] Carrasco | α-attractors: Planck, lhc and dark energy[END_REF][START_REF] Carrasco | Minimal supergravity inflation[END_REF] and descriptions of dark energy [START_REF] Bergshoeff | Pure de Sitter Supergravity[END_REF][START_REF] Hasegawa | Component action of nilpotent multiplet coupled to matter in 4 dimensional N = 1 supergravity[END_REF][START_REF] Kuzenko | Complex linear Goldstino superfield and supergravity[END_REF][START_REF] Bandos | Brane induced supersymmetry breaking and de Sitter supergravity[END_REF]. This, as well as independent advances in the notion of a soft bootstrap, has motivated renewed interest in understanding the effect of such non-linear symmetries on the S-matrix, with special attention to its soft limits 3 , see e.g. [START_REF] Kallosh | Nonlinear (Super)Symmetries and Amplitudes[END_REF][START_REF] Kallosh | Origin of soft limits from nonlinear supersymmetry in volkov-akulov theory[END_REF][START_REF] Cheung | A Periodic Table of Effective Field Theories[END_REF][START_REF] Du | Leading order multi-soft behaviors of tree amplitudes in[END_REF] and references therein. It should be interesting to discover what symmetries survive, and indeed emerge from, the higher-order string-theory type completion encoded in the Z-theory amplitudes presented in [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF] and here.

To understand the functions at work we will recall in Section 2 the definition of the disk integrals or Z-amplitudes at the heart of the CP-stripped open string. As explained in section 3, the semi-abelian limit requires partial symmetrizations over CP orderings which are simplified using monodromy relations [START_REF] Bjerrum-Bohr | Minimal Basis for Gauge Theory Amplitudes[END_REF][START_REF] Stieberger | Open & Closed vs[END_REF][START_REF] Chen | On Primary Relations at Tree-level in String Theory and Field Theory[END_REF]. These techniques for evaluating (1.2) together with the Berends-Giele recursion for non-abelian Z-theory amplitudes [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF] give efficient access to the higher-derivative interactions between pions and bi-colored scalars. Integration-byparts relations among the disk integrals guarantee that the BCJ duality between color and kinematics [START_REF] Bern | New Relations for Gauge-Theory Amplitudes[END_REF][START_REF] Bern | Perturbative Quantum Gravity as a Double Copy of Gauge Theory[END_REF] holds to all orders in α .

In the low-energy limit of semi-abelian Z-amplitudes (1.2) detailed in section 4 we will make contact with recent results involving NLSM+φ 3 [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF]. Z-theory finds exact agreement with the tree amplitudes of ref. [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] for an even number of pions, while yielding additional couplings for odd numbers of pions. Our low-energy results reveal novel amplitude relations between the extended NLSM and pure φ 3 theory and imply simplifications of their CHY description [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF][START_REF] Cachazo | Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM[END_REF].

Review

He we provide a lightening overview of doubly-ordered Z-theory amplitudes so as to set up the main results. We refer the reader to [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF][START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF] for detailed reviews of Z-theory as well as properties of color-kinematics and the double copy.

As discussed in [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF], it is possible, and indeed quite intriguing, to interpret the iterated disk integrals of the CP stripped open-string amplitude as predictions in an effective field theory. First we define the doubly-ordered Z-functions [START_REF] Broedel | Polylogarithms, Multiple Zeta Values and Superstring Amplitudes[END_REF],

Z σ(1,2,...,n) (τ (1, 2, . . . , n)) ≡ α n-3 -∞≤z σ(1) ≤z σ(2) ≤...≤z σ(n) ≤∞ dz 1 dz 2 • • • dz n vol(SL(2, R)) n i<j |z ij | α s ij τ (z 12 z 23 . . . z n-1,n z n1 ) , (2.1) 
with permutations σ, τ ∈ S n . The field-theory ordering τ determines the cyclic product of inverse z ij ≡ z i -z j in the integrand, and integration-by-parts manipulations imply [START_REF] Broedel | Polylogarithms, Multiple Zeta Values and Superstring Amplitudes[END_REF] that different choices of τ are related by the BCJ relations [START_REF] Bern | New Relations for Gauge-Theory Amplitudes[END_REF] n-1 j=2

(k 1 • k 23...j ) Z σ(1,2,...,n) (2, 3, . . . , j, 1, j+1, . . . , n) = 0 (2.2)
at fixed σ. The CP-ordering σ, on the other hand, constrains the domain of integration such that z σ(i) ≤ z σ(i+1) for i = 1, 2, . . . , n-1, where Z 12...n (. . .) is cyclically equivalent to Z 2...n1 (. . .). The monodromy relations [START_REF] Bjerrum-Bohr | Minimal Basis for Gauge Theory Amplitudes[END_REF][START_REF] Stieberger | Open & Closed vs[END_REF] n-1 j=2 e iπα k intertwine the contributions from different integration domains resulting ultimately in an (n-3)!-basis at fixed integrand ordering τ . Accordingly, the σ-ordering in (2.1) will also be referred to as the monodromy ordering. Note that our conventions for Mandelstam invariants in (2.1) and multiparticle momenta in (2.3) are fixed by

k 12...p ≡ k 1 + k 2 + . . . + k p , s 12...p ≡ 1 2 k 2 12...p = p i<j k i • k j . (2.4)
The prefactor α n-3 in (2.1) is designed to obtain the doubly-partial amplitudes of the biadjoint scalar theory m[•|•] in the limit [START_REF] Cachazo | Scattering of Massless Particles: Scalars, Gluons and Gravitons[END_REF] lim

α →0 Z σ(1,2,...,n) (τ (1, 2, . . . , n)) = m[σ(1, 2, . . . , n) | τ (1, 2, . . . , n)] , (2.5) 
see [START_REF] Mafra | Berends-Giele recursion for double-color-ordered amplitudes[END_REF] and [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF] for Berends-Giele recursions for the field-theory amplitudes m[•|•] and the full-fledged disk integrals (2.1), respectively.

Perhaps the most natural way to think about Z-theory as an effective field theory is as a doubly-colored scalar theory where one color (corresponding to color order σ, whose generators we will annotate with t a ) is provided by the stringy4 CP factors. The CP color mixes with all higher-order kinetic terms5 depending on α k i • k j . The other color (corresponding to color order τ , whose generators we will annotate with T a ) represents a familiar field-theory non-abelian color dressing.

As mentioned in the introduction, to achieve familiar color-ordered amplitudes we must dress the doubly-ordered Z σ (τ ) along one of their orderings. Dressing σ with the CP factors leaves us with a manifestly factorizable theory whose amplitudes obey the standard fieldtheory BCJ relations (2.2). Explicitly, we sum (2.1) over all distinct σ orders, weighting each Z σ (τ ) with the σ-ordered CP trace:

Z (τ (1, 2, . . . , n)) ≡ σ∈S n-1 Tr(t 1 t σ(2) • • • t σ(n) )Z 1,σ(2,...,n) (τ (1, 2, . . . , n)) .
(2.6)

Starting from the CP-dressed Z-theory amplitude (2.6), the color-dressed open-string amplitude [START_REF] Mafra | Complete N-Point Superstring Disk Amplitude I. Pure Spinor Computation[END_REF] can be written in the form [START_REF] Broedel | Polylogarithms, Multiple Zeta Values and Superstring Amplitudes[END_REF] M

open n = τ,ρ∈S n-3 Z (1, τ (2, . . . , n-2), n, n-1) (2.7) × S[τ (23 . . . n-2) | ρ(23 . . . n-2)] 1 A YM (1, ρ(2, . . . , n-2), n-1, n)
of the KLT relations for supergravity amplitudes [START_REF] Kawai | A Relation Between Tree Amplitudes of Closed and Open Strings[END_REF][START_REF] Bern | Multileg one loop gravity amplitudes from gauge theory[END_REF]. The matrix S[•|•] 1 is known as the field-theory momentum kernel [START_REF] Bjerrum-Bohr | The Momentum Kernel of Gauge and Gravity Theories[END_REF] and allows for the recursive representation [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF], . . , c q ). In the next section, we will derive simplified representations for the CP dressed Z-amplitudes (2.6) when some of the generators t a are abelian. In this semi-abelian limit, the open-string amplitudes (2.7) encode a UV completion of supersymmetric DBIVA coupled with sYM [START_REF] Metsaev | The Born-Infeld Action as the Effective Action in the Open Superstring Theory[END_REF], and our subsequent results on Z(. . .) should offer insight into the structure of its tree-level S-matrix.

S[A, j | B, j, C] i = (k iB • k j )S[A | B, C] i , S[∅ | ∅] i ≡ 1 , (2.8 
3 Semi-abelian Z-theory amplitudes

A structural perspective

In the case of some abelian CP-charged particles where t a → 1, the traces in (2.6) reduce to only the relevant non-abelian generators. If there are r non-abelian charged particles with labels 1, 2, . . . , r and n-r abelian particles, the color-ordered CP-dressed Z(τ ) amplitude (2.6) can be written as

Z (τ (1, 2, . . . , n)) t r+1 ,...,t n →1 = σ∈S r-1 Tr(t 1 t σ(2) • • • t σ(r) )Z 1,σ(2,3,...,r) (τ (1, 2, . . . , n)) . (3.1)
In the notation Σ(1, 2, . . . , r) ≡ {1, σ(2, 3, . . . , r)} for their integration domain, the semiabelianized doubly-ordered Z Σ (τ )-amplitudes with r ≤ n are given as

Z Σ(12...r) (τ (1, 2, . . . , n)) ≡ α n-3 -∞≤z Σ(1) ≤z Σ(2) ≤...≤z Σ(r) ≤∞ dz 1 dz 2 . . . dz n vol(SL(2, R)) n i<j |z ij | α s ij τ (z 12 z 23 . . . z n-1,n z n1 ) , (3.2) 
where the punctures z r+1 , . . . , z n are understood to be integrated over the range (z Σ(1) , ∞).

Note that we have Σ ≡ {∅} for the abelianized Z-theory introduced in [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF], and so what would putatively be a doubly-ordered integral becomes the only single-ordered integral relevant to the theory at a given multiplicity of τ n ≡ τ (1, 2, . . . , n).

Both the monodromy relations [START_REF] Bjerrum-Bohr | Minimal Basis for Gauge Theory Amplitudes[END_REF][START_REF] Stieberger | Open & Closed vs[END_REF] and the recent all-multiplicity developments on α -expansions [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF][START_REF] Broedel | Polylogarithms, Multiple Zeta Values and Superstring Amplitudes[END_REF][START_REF] Schlotterer | Motivic Multiple Zeta Values and Superstring Amplitudes[END_REF][START_REF] Broedel | All order α -expansion of superstring trees from the Drinfeld associator[END_REF] are tailored to non-abelian disk integrals Z ρ (τ ) in (2.1), where ρ and τ refer to all the n particles. In order to export these results to the semi-abelian disk integrals of (3.1), the latter need to be expressed in terms of their completely ordered counterparts Z ρ (τ ).

Of course, the inequalities among z 1 , z 2 , . . . , z r imposed by the Σ-ordering in (3.2) can always be translated into a combination of n-particle orderings, Z 1,σ(2,3,...,r) (τ n ) = ρ(2,...,n)∈σ(2,...,r)

¡ r+1 ¡ r+2 ¡...¡ n Z 1,ρ(2,3,...,n) (τ n ) , (3.3) 
where the shuffle symbol acting on words B = (b 1 , . . . , b p ) and C = (c 1 , . . . , c q ) can be recursively defined by

∅¡B = B¡∅ = B , B¡C ≡ b 1 (b 2 . . . b p ¡C) + c 1 (c 2 . . . c q ¡B) . (3.4) 
However, this "naive" expansion of semi-abelian Z-amplitudes Z Σ(12...r) (τ n ) = Z 1,σ(2,...,r) (τ n ) in terms of their non-abelian counterparts Z ρ (τ ) usually carries a lot of redundancies and obscures the leading low-energy order. Hence, we will be interested in a simplified representation in terms of (n-2)! non-abelian orderings ρ = ρ(2, 3, . . . , n-1) which is specified by an

α -dependent coefficient matrix W α (Σ | ρ), Z Σ (τ n ) ≡ ρ∈S n-2 W α (Σ | ρ(2, 3, . . . , n-1)) Z 1,ρ(2,3,...,n-1),n (τ n ) , (3.5) 
where Σ might depart from permutations of the first legs 1, 2, . . . , r. The expansion coefficients in the matrix W α (Σ | ρ) will be identified as trigonometric functions of α s ij universal to all τ n which clarify the first non-vanishing order of α . This approach will be seen to yield particularly useful expressions for Z Σ (τ ) with a small number r of non-abelian CP factors, to expose their leading low-energy order, to simplify the identification of their field-theory limit and to render the computation of their α -expansion more efficient. The desired form (3.5) of semi-abelian Z-theory amplitudes can be achieved by exploiting the monodromy relations at the level of the CP-dressed integrals (2.6) [START_REF] Chen | On Primary Relations at Tree-level in String Theory and Field Theory[END_REF],

Z(τ n ) = σ∈S n-2 Tr([[• • • [[t 1 , t σ(2) ] α , t σ(3) ] α , • • • ], t σ(n-1) ] α t n ) Z 1,σ(2,3,...,n-1),n (τ n ) . (3.6)
In the context of the color-dressed open superstring (2.7), this can be viewed as a generalization of the Del-Duca-Dixon-Maltoni representation of color-dressed sYM amplitudes [START_REF] Del Duca | New color decompositions for gauge amplitudes at tree and loop level[END_REF]. The complex phases seen in the monodromy relations (2.3) are absorbed into the symmetric version of the α -weighted commutator of [START_REF] Chen | On Primary Relations at Tree-level in String Theory and Field Theory[END_REF],

[t i 1 t i 2 . . . t ip , t j 1 t j 2 . . . t jq ] α ≡ e ix i 1 i 2 ...ip,j 1 j 2 ...jq (t i 1 t i 2 . . . t ip ) (t j 1 t j 2 . . . t jq ) (3.7) -e -ix i 1 i 2 ...ip,j 1 j 2 ...jq (t j 1 t j 2 . . . t jq ) (t i 1 t i 2 . . . t ip ) ,
where the exponents are furnished by rescaled Mandelstam invariants (2.4)

x i 1 i 2 ...ip,j 1 j 2 ...jq ≡ πα 2 k i 1 i 2 ...ip • k j 1 j 2 ...jq . (3.8) 
A simplified representation (3.5) of semi-abelian Z-theory amplitudes (3.2), in particular the explicit form of the coefficient matrix W α (Σ | ρ) for Σ ≡ Σ(12 . . . r), follows by isolating the coefficient of a given CP trace in (3.6) after abelianizing t r+1 , t r+2 , . . . , t n → 1.

Simplified representation of abelian Z-theory amplitudes

Once we specialize (3.6) to abelian gauge bosons with t j → 1 for j = 1, 2, . . . , n, the αweighted commutators (3.7) reduce to sine-functions and yield the following simplified expression for the abelian Z-theory amplitudes of [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF],

Z(τ n ) t j →1 ≡ Z × (τ n ) = (2i) n-2 ρ∈S n-2 Z 1,ρ(2,3,...,n-1),n (τ n ) n-1 k=2 sin(x 1ρ(23•••(k-1)),ρ(k) ) . (3.9)
We continue to use the shorthand τ n ≡ τ (1, 2, . . . , n) for the integrands, and by the vanishing of odd-multiplicity instances Z × (τ 2m-1 ) = 0, the multiplicity n is taken to be even, e.g.

Z × (τ 4 ) = 4 sin 2 πα 2 s 12 Z 1234 (τ 4 ) + 4 sin 2 πα 2 s 13 Z 1324 (τ 4 ) (3.10) Z × (τ 6 ) = 16 ρ∈S 4 sin πα 2 s 1ρ(2) sin πα 2 (s 1ρ(3) + s ρ(23) ) (3.11) × sin πα 2 (s ρ(45) + s ρ(4)6 ) sin πα 2 s ρ(5)6 Z 1ρ(2345)6 (τ 6 ) .
Given that each factor of sin(x 12..

.j-1,j ) = sin πα 2 k 12...j-1 • k j = πα 2 k 12...j-1 • k j + O(α 3 ) (3.12)
introduces one power of πα k 2 into the low-energy limit, the leading behaviour of

Z × (τ (1, 2, . . . , n)) = O(α (n-2) ) (3.13)
is manifest in (3.9), in lines with the identification of the NLSM amplitude in [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF]. Hence, the sine-factors bypass the α -expansion of disk integrals Z 1,ρ,n (τ ) to the order α n-2 when extracting the n-point NLSM amplitude -the field-theory limit (2.5) of Z 1,ρ,n (τ ) is enough to obtain the leading order of (3.9) in α . Moreover, one can identify the above sine-functions with the string-theory momentum kernel [START_REF] Bjerrum-Bohr | The Momentum Kernel of Gauge and Gravity Theories[END_REF], defined recursively via [1]

S α [A, j | B, j, C] i = sin(πα k iB • k j ) S α [A | B, C] i , S α [∅ | ∅] i ≡ 1 , (3.14) 
with the same notation as seen in its field-theory counterpart (2.8). More precisely, (3.9) can be rewritten in terms of its diagonal elements at rescaled value

6 α → α /2 Z × (τ n ) = (2i) n-2 ρ∈S n-2 S α /2 [ρ(23 . . . n-1) | ρ(23 . . . n-1)] 1 Z 1,ρ(2,3,...,n-1),n (τ n ) . (3.15)

Deriving the BCJ numerators of the NLSM

Here we can resolve a mystery first identified in ref. [START_REF] Du | Explicit BCJ numerators of nonlinear simga model[END_REF], and made acute in ref. [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF]. In the former reference it was shown that color-kinematic satisfying numerators can be written down for the NLSM as some sum over permuted entries of the KLT matrix (2.8). In ref. [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF] it was realized that in fact one needed only the diagonal elements of the KLT matrix to construct the master numerators. The reason can be understood by recalling the emergence of NLSM amplitudes from abelian Z-theory [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF], 

A NLSM (τ n ) = lim α →0 α 2-n Z × (τ n ) , (3.16) 
A NLSM (τ n ) = (πi) n-2 ρ∈S n-2 S[ρ(23 . . . n-1) | ρ(23 . . . n-1)] 1 m[1, ρ(2, . . . , n-1), n|τ n ] , (3.18)
from the field-theory limit of (3.15). As firstly exploited implicitly in [START_REF] Mafra | Explicit BCJ Numerators from Pure Spinors[END_REF], color-kinematic satisfying master numerators enter the full amplitude through a sum over their product with the doubly-stripped partial amplitudes m[•|•] of the bi-adjoint scalar theory. Hence, the role of the diagonal entries S[ρ(23 . . . n-1) | ρ(23 . . . n-1)] 1 in (3.18) identifies them as the master numerators of the NLSM [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF].

We would be remiss if we did not refer to a remarkable recent result due to Cheung and Shen [START_REF] Cheung | Symmetry and Action for Flavor-Kinematics Duality[END_REF]. There an explicit cubic action was found for the NLSM which indeed generates exactly these color-dual kinematic numerators from application of naive Feynman rules.

Examples of semi-abelian Z-amplitudes

In this section, we extract the W α -matrices in (3.5) from the semi-abelian CP-dressed Zamplitudes in their simplified representation (3.6) when a small number r = 0, 1, . . . , 5 of CP factors is left non-abelian.

r ≤ 2 non-abelian generators

Given the cyclic equivalence of integration domains Σ(12 . . . r) → Σ(2 . . . r1), we need a minimum of r = 3 non-trivial CP generators in (3.1) to deviate from the abelian disk integrals Z × (. . .): This can be immediately seen from the rearrangements of the integration region (3.3) following from the definition (3.2) of Z 1 (τ n ) and Z 12 (τ n ),

Z 1 (τ n ) = Z 12 (τ n ) = σ(2,3,...,n) ∈2¡3¡...¡n Z 1,σ(2,3,...,n) (τ n ) = σ∈S n-1 Z 1,σ(2,3,...,n) (τ n ) = Z × (τ n ) . (3.19)
Equivalently, one can check (3.19) by comparing the sine-functions in the trace (and its permutations in 2, 3, . . . , n-1)

Tr([. . . [[t 1 , t 2 ] α , t 3 ] α , . . . , t n-1 ] α t n ) t 2 ,...,t n-1 =1 = (2i) n-2 Tr(t 1 t n ) n-1 k=2 sin(x 12...k-1,k ) , (3.20)
with (3.9) after stripping off the trace Tr(t 1 t n ) of the leftover non-abelian generators. Hence, the non-trivial semi-abelian disk integrals which are different from their abelian counterparts involve at least r ≥ 3 non-abelian generators.

r = 3 non-abelian generators

For three non-trivial CP generators at positions i, j and n and all other generators abelian, t =i,j,n → 1, the CP-dressed Z-amplitudes (3.6) boil down to traces of the form

Tr([. . . [. . . [. . . [t 1 , t 2 ] α , . . . , t i ] α , . . . , t j ] α , . . . , t n-1 ] α t n ) (3.21) → (2i) n-3 n-1 k=2 k =j sin(x 12...k-1,k )
Tr(e ix 12...j-1,j t i t j t n -e -ix 12...j-1,j t j t i t n ) ,

where the coefficients of Tr(t Σ(i) t Σ(j) t n ) in Z(τ ) determines the semi-abelian integrals Z Σ(ij)n (τ ).

Since the latter are known to be real, we will only be interested in the real part of (3.21), e.g.

Re (2i) n-3 n-1 k=2 k =j sin(x 12...k-1,k )e ix 12...j-1,j = (2i) n-3 n-1 k=2 k =j
sin(x 12...k-1,k ) i sin(x 12...j-1,j ) : n even cos(x 12...j-1,j ) : n odd (3.22) along with Tr(t i t j t n ). Note that cos(x 12...j-1,j ) enters with a different sign when considering Tr(t j t i t n ) instead of Tr(t i t j t n ). As such we arrive at the overall result

W α (Σ(ij)n | 2 . . . i . . . j . . . n-1) = (2i) n-3 n-1 k=2 k =j sin(x 12...k-1,k ) (3.23) × i sin(x 12...j-1,j )
: n even sgn(Σ(ij)|ij) cos(x 12...j-1,j ) : n odd for the W α -matrix in (3.5), where sgn(ij|ij) = 1 and sgn(ji|ij) = -1. For even multiplicity n = 2m, one recovers half the result W α (ij | 23 . . . 2m-1) = (2i) n-2 n-1 k=2 sin(x 12...k-1,k ) known from two non-abelian CP factors t i and t j . Hence, the semi-abelian disk integrals for three non-abelian CP factors and even n are again captured by their abelian counterparts 7 ,

Z 1ij (τ 2m ) = 1 2 Z × (τ 2m ) . (3.24) 
The first novel expression for a semi-abelian integral (i.e. different from Z × (τ n )) can be found at five points with three non-abelian CP factors, where (3.23) implies that Z 345 (τ 5 ) = 4 sin(x 1,2 ) sin(x 12,4 ) cos(x 124,3 )Z 12435 (τ 5 ) + sin(x 1,4 ) sin(x 14,2 ) cos(x 124,3 )Z 14235 (τ 5 )

+ sin(x 1,4 ) sin(x 134,2 ) cos(x 14,3 )Z 14325 (τ 5 ) -sin(x 1,2 ) sin(x 12,3 ) cos(x 123,4 )Z 12345 (τ 5 ) (3.25)

-sin(x 1,3 ) sin(x 13,2 ) cos(x 123,4 )Z 13245 (τ 5 ) -sin(x 1,3 ) sin(x 134,2 ) cos(x 13,4 )Z 13425 (τ 5 ) .

The two sine-factors in each term signal the leading low-energy order α 2 and lead to the α -expansions after appropriate relabelling in the second case. The non-abelian Z-amplitudes on the right hand side of (3.25) can for instance be evaluated through the Berends-Giele techniques of [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF].

Z 345 (1, 2, 3, 4, 5) = (πα )
Seven-point examples of the low-energy limits at the order of (πα ) 4 to be found in (A. [START_REF] Ellis | On the relationship between chiral and dual models[END_REF]) and (A.20) can be easily arrived at by inserting (3.23) into (3.5).

As will be detailed in section 4, the low-energy limits ∼ (πα ) 2 of (3.26) tie in with the expressions in section 2.3 of [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF],

A 5 (1 φ , 2 φ , 3 φ , 4 Σ , 5 Σ ) = s 34 + s 45 s 12 + s 15 + s 45 s 23 -1 A 5 (1 φ , 2 φ , 3 Σ , 4 φ , 5 Σ ) = s 34 + s 45 s 12 -1 , (3.27) 
which describe the doubly-ordered five-point amplitudes involving two NLSM pions Σ and three bi-colored φ 3 scalars.

r = 4 and r = 5 non-abelian generators

The r = 4 analogue of the trace (3.21) with t =p,q,r,n → 1 is given by

Tr([. . . [. . . [. . . [. . . [t 1 , t 2 ] α , . . . , t p ] α , . . . , t q ] α , . . . , t r ] α , . . . , t n-1 ] α t n ) → (2i) n-4 n-1 k=2 k =q,r sin(x 12...k-1,k
)Tr e ix 12...r-1,r (e ix 12...q-1,q t p t q t r t n -e -ix 12...q-1,q t q t p t r t n ) -e -ix 12...r-1,r (e ix 12...q-1,q t r t p t q t n -e -ix 12...q-1,q t r t q t p t n )

= (2i) n-4 n-1 k=2 k =q,r
sin(x 12...k-1,k )Tr cos(x 12...q-1,q ) cos(x 12...r-1,r )[[t p , t q ], t r ]t n (3.28)

-sin(x 12...q-1,q ) sin(x 12...r-1,r ){{t p , t q }, t r }t n + i cos(x 12...q-1,q ) sin(x 12...r-1,r ){[t p , t q ], t r }t n + i sin(x 12...q-1,q ) cos(x 12...r-1,r )[{t p , t q }, t r ]t n .

Selecting the real part of (3.28) amounts to constraining the number of brackets accompanied by a sine-function, such that

W α (Σ(pqr)n | 23 . . . p . . . q . . . r . . . n-1) = (2i) n-4 n-1 k=2 k =q,r sin(x 12...k-1,k ) (3.29) ×               
cos(x 12...q-1,q ) cos(x 12...r-1,r )Tr([[t p , t q ], t r ]t n ) -sin(x 12...q-1,q ) sin(x 12...r-1,r )Tr({{t p , t q }, t r }t n ) Tr(t Σ(p) t Σ(q) t Σ(r) t n ) : n even i cos(x 12...q-1,q ) sin(x 12...r-1,r )Tr({[t p , t q ], t r }t n ) +i sin(x 12...q-1,q ) cos(x 12...r-1,r )Tr([{t p , t q }, t r ]t n ) Tr(t Σ(p) t Σ(q) t Σ(r) t n ) : n odd .

The notation (Y )| Tr(X) instructs to select from the expression Y the coefficients of the CP trace Tr(X). The obvious r = 5 counterpart of (3.28) with t =p,q,r,s,n → 1 yields

W α (Σ(pqrs)n | 23 . . . p . . . q . . . r . . . s . . . n-1) = (2i) n-5 n-1 k=2 k =q,r,s sin(x 12...k-1,k ) (3.30) ×                                 
Tr(cos(x 12...q-1,q ) cos(x 12...r-1,r ) cos(x 12...s-1,s )[[[t p , t q ], t r ], t s ]t n -cos(x 12...q-1,q ) sin(x 12...r-1,r ) sin(x 12...s-1,s ){{[t p , t q ], t r }, t s }t n : n odd -sin(x 12...q-1,q ) cos(x 12...r-1,r ) sin(x 12...s-1,s ){[{t p , t q }, t r ], t s }t n -sin(x 12...q-1,q ) sin(x 12...r-1,r ) cos(x 12...s-1,s )[{{t p , t q }, t r },

t s ]t n ) Tr(t Σ(p) t Σ(q) t Σ(r) t Σ(s) t n )
Tr(-i sin(x 12...q-1,q ) sin(x 12...r-1,r ) sin(x 12...s-1,s ){{{t p , t q }, t r }, t s }t n +i sin(x 12...q-1,q ) cos(x 12...r-1,r ) cos(x 12...s-1,s )[[{t p , t q }, t r ], t s ]t n

: n even +i cos(x 12...q-1,q ) sin(x 12...r-1,r ) cos(x 12...s-1,s )[{[t p , t q ], t r }, t s ]t n +i cos(x 12...q-1,q ) cos(x 12...r-1,r ) sin(x 12..

.s-1,s ){[[t p , t q ], t r ], t s }t n ) Tr(t Σ(p) t Σ(q) t Σ(r) t Σ(s) t n )
Examples for five-and six-point low-energy limits with r = 4 can be found in (A.1) as well as (A.3) to (A.9), respectively. Moreover, the leading α -orders of six-point integrals with r = 5 are displayed in (A.11) to (A.18).

General form of the semi-abelian W α -matrix

To conjecture a form of the W α -matrix in (3. Using the binary-vector notation, the above derivations are consistent with a W α given as:

W α (Σ(p 1 p 2 • • • p r-1 )n | 23 . . . p 1 . . . p 2 . . . . . . p r-1 . . . (n-1)) = (2i) n-r n-1 k=2 k =p 2 ,••• ,p r-1 sin x 12...(k-1), k × v∈Bin(r-2,n) Tr   • • • p 1 , p 2 v 1 , p 3 v 2 • • • v r-3 , p r-1 v r-2 t n   Tr(t Σ(p 1 ) •••t Σ(p r-1 ) t n ) , (3.34) 
where without loss of generality we take the first leg to be CP-abelian, leg n to be CP-nonabelian, and the second entry of W α to be canonically ordered. 

Structure of the low-energy expansion

In this subsection, we describe the implications of the representation (3.5) of semi-abelian disk integrals (3.2) for the structure of their low-energy expansion. As emphasized in (3.12), each sine-factor descending from the α -weighted brackets in (3.6) contributes an overall factor of πα . For r non-abelian CP factors and n external legs, tracking the commutators [•, •] α with an identity matrix in one of their entries amounts to the lower bound (πα ) n-r on the leading low-energy order, see the examples in the previous section. Moreover, depending on (2i) n-r being real or imaginary, another sine factor with low-energy order πα arises from the α -weighted traces, leading to the refined lower bound

Z Σ(12...r) (τ n ) = O(πα n-r ) : n -r even , r ≥ 2 O(πα n-r+1 ) : n -r odd , r ≥ 3 . (3.36)
For small n and r, (3.36) implies the following leading low-energy contributions for Z Σ(12...r) 

(τ n ), n r ≤ 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 4 α 2 ζ 2 α 2 ζ 2 1 × × × × 5 0 α 2 ζ 2 α 2 ζ 2 1 × × × 6 α 4 ζ 4 α 4 ζ 4 α 2 ζ 2 α 2 ζ 2 1 × × 7 0 α 4 ζ 4 α 4 ζ 4 α 2 ζ 2 α 2 ζ
(τ n ) = O(α n-2 ) in (3.9).
The even powers of π in the leading low-energy orders (3.36) can be obtained from rational multiples of Riemann zeta values ζ 2k in the α -expansion of completely ordered disk integrals Z σ (τ n ) in (2.1), e.g. .38) with B 2k denoting the Bernoulli numbers. When naively assembling their semi-abelian counterparts (3.2) from combinations of Z σ (τ n ) via rearrangements (3.3) of the integration domain, the leading order of (πα ) 2k reflects cancellations among the contributing Z σ (τ n ) at all lower orders α ≤2k-1 , see section 4.3 of [START_REF] Carrasco | Abelian Z-theory: NLSM amplitudes and alpha'-corrections from the open string[END_REF].

ζ 2 = π 2 6 , ζ 4 = π 4 90 , ζ 6 = π 6 945 , . . . ζ 2k = (-1) k-1 (2π) 2k B 2k 2(2k)! , ( 3 
As a major advantage of the trigonometric representation (3.5) of the semi-abelian disk integrals, their leading low-energy order (3.36) is determined from the field-theory limit (2.5) of completely ordered disk integrals Z σ (τ ). More generally, the n-r and n-r+1 overall powers of α in the W α -matrix for even and odd numbers of abelian CP factors, respectively, reduces the required order of α in the low-energy expansion of Z σ (τ ) by the same amount when assembling the α -expansion of semi-abelian disk integrals.

The α -expansion of Z σ (τ ) 8 involves multiple zeta values (MZVs)

ζ n 1 ,n 2 ,...,nr ≡ ∞ 0<k 1 <k 2 <...<kr k -n 1 1 k -n 2 2 . . . k -nr r , n r ≥ 2 (3.39)
in a uniformly transcendental pattern, i.e. the order of α w is accompanied by MZVs of transcendental weight w = n 1 + n 2 + . . . + n r [START_REF] Mafra | Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure[END_REF][START_REF] Schlotterer | Motivic Multiple Zeta Values and Superstring Amplitudes[END_REF][START_REF] Aomoto | Special values of hyperlogarithms and linear difference schemes[END_REF][START_REF] Terasoma | Selberg integrals and multiple zeta values[END_REF][START_REF] Brown | Multiple zeta values and periods of moduli spaces M 0,n (R)[END_REF][START_REF] Stieberger | Constraints on Tree-Level Higher Order Gravitational Couplings in Superstring Theory[END_REF]. Uniform transcendentality is particularly transparent from the recursive method of [START_REF] Broedel | All order α -expansion of superstring trees from the Drinfeld associator[END_REF] to obtain the α -expansion of n-point integrals from the Drinfeld associator9 acting on their (n-1)-point counterparts.

Extending an alternative all-multiplicity technique based on polylogarithm integration [START_REF] Broedel | Polylogarithms, Multiple Zeta Values and Superstring Amplitudes[END_REF], a Berends-Giele recursion for the α -expansion of disk integrals Z σ (τ ) was given in [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF] whose efficiency comes to maximal fruition at high multiplicity and fixed order in α . By (3.5), all these expansion-methods for Z σ (τ ) as well as the results available for download via [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF]65] can be neatly imported to infer the α -dependence of semi-abelian disk integrals. The complete (conjectural) basis of MZVs over Q present in the α -expansion of Z σ (τ ) generically enters their semi-abelian counterparts, accompanied by an appropriate global prefactor of (πα ) 2k as determined by (3.36). The coefficient of each such basis MZV in the semi-abelian Z-amplitudes signals an independent effective higher-derivative interaction between NLSM pions and φ 3 scalars 4 NLSM coupled to bi-adjoint scalars in semi-abelian Z-theory

Summary and overview

In this section, we identify the low-energy limits of semi-abelian Z-theory amplitudes (3.2) with doubly partial amplitudes in a scalar field theory. We recall that the tree-level S-matrices of the bi-adjoint φ 3 theory and the NLSM emerge from the (α → 0)-regime of completely ordered disk integrals (2.1) and their abelian limits (3.9), respectively. On these grounds, it is not at all surprising that the "interpolating" case of semi-abelian disk integrals incorporates couplings between NLSM pions and φ 3 scalars.

While the bi-colored φ 3 scalars are taken to be charged under two gauge groups with generators t a ⊗ T b , the CP matrix t a is absent in the color-dressing T b of NLSM pions. In any field theory with interaction vertices involving both species, the tree-level amplitudes of r bi-colored scalars and n-r pions admit a color-decomposition

M NLSM+φ 3 r,n = σ∈S r-1 τ ∈S n-1 Tr(t 1 t σ(2) t σ(3) • • • t σ(r) )Tr(T 1 T τ (2) T τ (3) • • • T τ (n) ) × A NLSM+φ 3 (1, σ(2, 3, . . . , r) | 1, τ (2, 3, . . . , n)) (4.1)
modulo multi-traces in the t a due to the exchange of pions in the internal propagators. As a main result of this work, it is apparent that, for a suitable choice of NLSM+φ 3 couplings, the doubly-partial single-trace amplitudes

A NLSM+φ 3 (1, σ(2, . . . , r)) | 1, τ (2, . . . , n)) in (4.1)
emerge from the low-energy limit of semi-abelian Z-theory amplitudes (3.2),

A NLSM+φ 3 (1, 2, . . . , r | τ (1, 2, . . . , n)) = lim α →0 (α ) -2 n-r 2 Z 12...r (τ (1, 2, . . . , n)) , (4.2) 
which is equivalent to (1.2). The structure of a multi-trace completion of (4.1) as well as its tentative string-theory origin (see e.g. ref. [START_REF] Green | Symmetry breaking at enhanced symmetry points[END_REF]) is left as an interesting open problem for the future.

A specific set of couplings NLSM+φ 3 is singled out by the coefficients of the Adler zeros in the tree-level amplitudes of the NLSM [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF]. In this reference, interactions of the NLSM with φ 3 scalars are inferred from a soft-limit extension of the NLSM, and the resulting single-trace doubly-partial amplitudes are represented in the CHY framework [START_REF] Cachazo | Scattering equations and Kawai-Lewellen-Tye orthogonality[END_REF][START_REF] Cachazo | Scattering of Massless Particles: Scalars, Gluons and Gravitons[END_REF][START_REF] Cachazo | Scattering of Massless Particles in Arbitrary Dimensions[END_REF]. For an even number of pions, we claim that the tree amplitudes of the NLSM+φ 3 theory in [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] match the low-energy limits (4.2) of semi-abelian disk integrals, see (3.26) and (3.27) for five-point examples. For odd values of n-r, however, the NLSM+φ 3 amplitudes of [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] vanish and do not admit any non-trivial comparison with the leading α -order of semi-abelian Z-theory.

From the incarnation of relevant double-copy structures in the CHY formalism [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF], the NLSM+φ 3 theory under investigation is closely related to DBIVA coupled to sYM by dualizing the color-factors built from the field-theory T a into kinematic factors of sYM. The DBIVA + sYM theory, in turn, appears in the low-energy limit of string theory with abelian and non-abelian CP factors in the tree amplitudes (2.7) and therefore supports the identification (4.2).

In the rest of this section, we discuss two implications of (4.2) for new representations of the tree-level S-matrix in the NLSM+φ 3 theory.

Amplitude relations: NLSM+φ 3 versus pure φ 3

The representation of semi-abelian disk integrals in (3.5) along with the low-energy limit of the W α -matrix therein reduces any doubly-partial amplitude of the coupled NLSM+φ 3 theory to those of pure φ 3 ,

A NLSM+φ 3 (1, 2, . . . , r | τ n ) = ρ∈S n-2 W (12 . . . r | ρ(23 . . . n-1)) m[1, ρ(23 . . . n-1), n | τ n ] , (4.3)
where τ n ≡ τ (1, 2, . . . , n). The entries of the W -matrix are polynomials in the Mandelstam invariants,

W (12 . . . r | ρ(23 . . . n-1)) ≡ lim α →0 (α ) -2 n-r 2 W α (12 . . . r | ρ(23 . . . n-1)) , (4.4) 
which follow by replacing the trigonometric functions at the leading α -order of W α via sin(x A,B ) → iπ 2 k A • k B and cos(x A,B ) → 1. In the simplest case of r ≤ 2 bi-adjoint scalars, they coincide with the diagonal entries of the field-theory KLT matrix (2.8),

W (∅ | 23 . . . n-1) = W (p | 23 . . . n-1) = W (pq | 23 . . . n-1) (4.5) = (iπ) n-2 S[23 . . . n-1 | 23 . . . n-1] 1 = (iπ) n-2 n-1 j=2 k 12...j-1 • k j ,
and do not depend on the legs p, q. The resulting amplitude relations connecting the bi-adjoint scalar theory with its coupling to the NLSM read

A NLSM+φ 3 (∅ | τ n ) = A NLSM+φ 3 (1 | τ n ) = A NLSM+φ 3 (1, 2 | τ n ) (4.6) = (iπ) n-2 ρ∈S n-2 m[1, ρ(2, 3, . . . , n-1), n | τ n ] n-1 j=2 (k 1ρ(23...j-1) • k ρ(j) ) ,
and their general form (4.3) resembles recent relations [START_REF] Stieberger | New relations for Einstein-Yang-Mills amplitudes[END_REF][START_REF] Nandan | Einstein-Yang-Mills from pure Yang-Mills amplitudes[END_REF][START_REF] De La Cruz | Relations for Einstein-Yang-Mills amplitudes from the CHY representation[END_REF][START_REF] Schlotterer | Amplitude relations in heterotic string theory and Einstein-Yang-Mills[END_REF][START_REF] Du | Direct Evaluation of n-point single-trace MHV amplitudes in 4d Einstein-Yang-Mills theory using the CHY Formalism[END_REF] between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. We shall next elaborate on the cases with r ≥ 3 bi-colored scalars and extract the field-theory limits (4.4) from the W α matrices of the previous section via sin(x 12...j-1,j ) → iπ 2 (k 12...j-1 • k j ) and cos(x 12...j-1,j ) → 1.

r = 3, 4 bi-adjoint scalars

With three or four bi-adjoint scalars at legs n, p, q, r, (3.23) and (3.29) imply

W (Σ(pq)n | 23 . . . p . . . q . . . n-1) = (iπ) n-3 n-1 j=2 j =q k 12...j-1 •k j × iπ 2 k 12...q-1 • k q : n even sgn(Σ(pq)|pq) : n odd (4.7) 
with sgn(pq|pq) = 1 and sgn(qp|pq) = -1 as well as

W (Σ(pqr)n | 23 . . . p . . . q . . . r . . . n-1) = (iπ) n-4 n-1 j=2 j =q,r k 12...j-1 • k j (4.8) ×          Tr([[t p , t q ], t r ]t n ) Tr(t Σ(p) t Σ(q) t Σ(r) t n ) : n even iπ 2 (k 12...q-1 • k q )Tr([{t p , t q }, t r ]t n ) + iπ 2 (k 12...r-1 • k r )Tr({[t p , t q ], t r }t n ) Tr(t Σ(p) t Σ(q) t Σ(r) t n ) :
n odd Note that cases with three bi-adjoint scalars at legs p, q, n and even multiplicity simplify to W (Σ(pq)n | 23 . . . p . . . q . . . n-1)

n even = 1 2 W (∅ | 23 . . . n-1) (4.9) 
by the first line of (4.7).

General form of the W -matrix in field theory

In the binary-vector representation of the W α -matrix given in section 3.4, words with large numbers of entries v j = 1 dominate the sum in (3.34). For even numbers n-r of pions, only the word v = (1, 1, . . . , 1) contributes and yields the simple result

W (Σ(p 1 p 2 • • • p r-1
)n | 23 . . . p 1 . . . p 2 . . . . . . p r-1 . . . (n-1)) n-r even = (iπ) n-r (4.10)

× n-1 j=2 j =p 2 ,••• ,p r-1 k 12...(j-1) • k j Tr([[. . . [[t p 1 , t p 2 ], t p 3 ], . . .], t p r-1 ]t n ) Tr(t Σ(p 1 ) t Σ(p 2 ) ...t Σ(p r-1 ) t n )
in terms of commutators. For odd values of n-r, on the other hand, the leading low-energy order of (3.34) stems from words with a single entry v = 0 such that the trace in exhibits one anti-commutator operation {•, •} inside the nested commutators.

W (Σ(p 1 p 2 • • • p r-1 )n | 23 . . . p 1 . . . p 2 . . . . . . p r-1 . . . (n-1)) n-r odd = 1 2 (iπ) n-r+1 n-1 j=2 j =p 2 ,••• ,p r-1 k 12...(j-1) • k j r-1 =2 (k 12...(p -1) • k p ) ( 4 

Comparison with CHY integrands

Recently the modern connected formalism of Cachazo, He and Yuan (CHY) [START_REF] Cachazo | Scattering equations and Kawai-Lewellen-Tye orthogonality[END_REF][START_REF] Cachazo | Scattering of Massless Particles: Scalars, Gluons and Gravitons[END_REF][START_REF] Cachazo | Scattering of Massless Particles in Arbitrary Dimensions[END_REF] has given rise to all-multiplicity representations for NLSM amplitudes [START_REF] Cachazo | Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM[END_REF] and their (NLSM+φ 3 ) extensions [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF]. These CHY representations arise from integrals over the moduli space of punctured Riemann spheres, where the integrands depend on both the external data {t a i , T b i , k i } of the NLSM-or φ 3 scalars and the punctures z i ∈ C associated with the i th leg. The punctures are constrained by the scattering equations

E i ≡ n j =i s ij z ij = 0 (4.12)
which mirror integration-by-parts relations in string theory and completely localize the integrals.

For any combination of the two species of scalars, the CHY integrands for NLSM+φ 3 amplitudes in [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] allow to factor out a universal piece, where n-particle Parke-Taylor factors (z 12 z 23 . . . z n,1 ) -1 are combined with traces Tr(T b 1 T b 2 . . . T bn ) of the generators T b i of the common gauge group. The other factor of the integrand depending on the number of pions and φ 3 scalars is based on a matrix A = A({k i , z i }) specified in [START_REF] Cachazo | Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM[END_REF]. For pure NLSM amplitudes, this non-universal piece of the CHY integrand is a reduced Pfaffian (Pf A) 2 , where the prime refers to the deletion of two rows and columns each. For generic configurations of the two scalar species, the non-universal part of the integrand factorizes into an r-particle Parke-Taylor factor (z 12 z 23 . . . z r,1 ) -1 Tr(t a 1 t a 2 . . . t ar ) and a Pfaffian (Pf A r+1,...,n ) 2 referring to the external pion legs r+1, . . . , n. Accordingly, the integrands vanish for an odd number n-r of pions.

In order to express the connected amplitudes in terms of doubly-partial amplitudes as done in (4.3), any z-dependence from (Pf A) 2 and (z 12 z 23 . . . z r,1 ) -1 (Pf A r+1,...,n ) 2 has to be reduced to Parke-Taylor factors -(z 12 z 23 . . . z n,1 ) -1 and permutations in 1, 2, . . . , n. The naive evaluation of the Pfaffians, however, involves more diverse functions of z j than captured by linear combinations of τ (z 12 z 23 . . . z n,1 ) -1 with τ ∈ S n . The desired reduction to Parke-Taylor factors requires manifold applications of the scattering equations (4.12) and can in principle be addressed through the algorithms of [START_REF] Cachazo | Computation of Contour Integrals on M 0,n[END_REF][START_REF] Cardona | Cross-ratio Identities and Higher-order Poles of CHY-integrand[END_REF]. Still, the complexity of these manipulations grows rapidly with the multiplicity and has therefore obstructed a compact Parke-Taylor representation of the non-universal integrands with more than four legs.

From the amplitude relations (4.3) reducing the tree-level S-matrix of the NLSM+φ 3 theory to doubly-partial amplitudes, one can reverse-engineer a Parke-Taylor form of the underlying CHY integrands, valid on the support of the scattering equations (4.12). The simple form for the W -matrix of NLSM amplitudes in (4.5) translates into the following representation of the connected integrand, 

(Pf A) 2 = ρ∈S n-2 S[ρ(23 . . . n-1)|ρ(23 . . . n-1)] 1 (1, ρ (2), ρ(3) 
Similarly, (4.3) along with the explicit W -matrices given in the previous section yields a simplified form of the connected integrands for mixed amplitudes A NLSM+φ 3 (Σ(p 1 p 2 . . . p r-1 )n | . . .) with an even number of pions

(Pf A {12...n-1}\{p 1 ,p 2 ,...,p r-1 } ) 2 (Σ(p 1 ), Σ(p 2 ), . . . , Σ(p r-1 ), n) = (iπ) r-n ρ∈S n-2 W (Σ(p 1 p 2 . . . p r-1 )n | ρ(23 . . . n-1)) (1, ρ(2), ρ(3), . . . , ρ(n-1), n) mod E i .
(4.15) Note that one can use the expression (4.10) for the W -matrix, given the even values of n-r in (4.15). The simplest instance beyond (4.13) involves two pions and three bi-adjoint scalars,

(Pf A 12 ) 2 z 34 z 45 z 53 = (k 1 • k 2 )(k 12 • k 3 ) (1, 2, 3, 4, 5) + (k 1 • k 3 )(k 13 • k 2 ) (1, 3, 2, 4, 5) + (k 1 • k 3 )(k 134 • k 2 ) (1, 3, 4, 2, 5) - (k 1 • k 2 )(k 12 • k 4 ) (1, 2, 4, 3, 5) - (k 1 • k 4 )(k 14 • k 2 ) (1, 4, 2, 3, 5) - (k 1 • k 4 )(k 134 • k 2 ) (1, 4, 3, 2, 5) mod E i , (4.16) 
with the underlying W -matrix given in (4.7). While the number of terms in (4.15) and (4.16) generically grows when converting the rank-(n-r) Pfaffians into sums over (n-2)! permutations, our motivation for the rearrangement stems from the simplicity of the Parke-Taylor form (4.14) for the entire z-dependence.

Conclusions

Here we continue the program of understanding the predictions of color-stripped Z-theory as sYM-stripped open-superstring scattering. Unlike sYM where color and kinematics, along with their respective Lie-algebra structures, can be cleanly separated, the α -dependent kinematic factors of color-stripped semi-abelian Z-theory involve functions of both CP traces and momenta. Each of these orders in α can be understood as part of a successive set of colorkinematic satisfying effective field theories, whose culmination in Z-theory exhibits very soft UV behavior. We find compact expressions for the doubly-ordered Z-amplitudes whose CP factors admit a mixture of both abelian and non-abelian generators. At leading order in α , these doubly-stripped amplitudes encode the predictions of a field theory of NLSM pions coupled to bi-adjoint scalars. Single-trace amplitudes in this theory were recently expressed in the CHY formalism by Cachazo, Cha, and Mizera [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF]. The form of Z-theory's low-energy results presented here offer an efficient complementary representation. As color-kinematics is supported at every order in α (as well as the resummation), the results presented here have applicability, through double copy, to a spectrum of theories including higher-derivative corrections to DBIVA+SYM of various supersymmetries, as well as higher-derivative corrections to scattering within the special-Galileon+NLSM+φ 3 theory.

(n-2)! representation (3.5) with the Berends-Giele recursion for non-abelian Z-amplitudes [START_REF] Mafra | Non-abelian Z-theory: Berends-Giele recursion for the α -expansion of disk integrals[END_REF] (using in particular the program BGap described in the reference).

Not all of the examples in this appendix follow the labelling of the W α -matrices given in sections 3.3 or 3.4 and might require some straightforward permutations of all the legs in Z Σ (τ n ) and the momenta on the right hand side. Our subsequent choice of labels is tailored to reach all permutation-inequivalent arrangements of Σ and τ n from the canonical field-theory ordering τ n → I n ≡ 1, 2, . . . , n.

A.1 semi-abelian five-point integrals

At five points, semi-abelian disk integrals Z Σ (τ 5 ) with three non-abelian CP factors can be found in (3.26). Their counterparts with four non-abelian CP factors allow for three permutation-inequivalent arrangements of Σ and τ 5 : The field-theory amplitudes along with the low-energy limit vanish in the setup of [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] since the interaction vertices therein do not support any couplings to an odd number of pions.

Z 1234 (I 5 ) = (πα ) 2 2 
A.2 semi-abelian six-point integrals where also (A.15) starts at higher order (πα ) 4 as compared to the generic expectation from table (3.37). Again, the low-energy limits do not have any counterparts in [START_REF] Cachazo | Extensions of Theories from Soft Limits[END_REF] by the odd number of NLSM pions.

A.3 semi-abelian seven-point integrals

The low-energy limit of the seven-point integral with r = 3 non-abelian CP factors Z 123 (I 7 ) = -(πα ) 4 

  ) with multiparticle labels such as B = (b 1 , . . . , b p ) and C = (c 1 , . . . , c q ), multiparticle momentum k iB ≡ k i + k b 1 + • • • + k bp and composite label B, C = (b 1 , . . . , b p , c 1 , .

  5) for an arbitrary number of non-trivial CP particles it is helpful to introduce a unifying notation relying on a set of binary vectors, Bin(a, b) ≡ {v ∈ ({0, 1}) a s.t. |v| 2 odd ⇐⇒ b odd} . (3.31) Bin(a, b) is the set of binary vectors in an a-dimensional space whose magnitude squared is odd if and only if b is odd, e.g. Bin(3, 1) = Bin(3, 3) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1)} (3.32) Bin(3, 0) = Bin(3, 2) = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 0)} . (3.33)

= ρ∈S n- 2 n- 1 j=2

 21 , . . . , ρ(n-1), n) mod E i (k 1ρ(23...j-1) • k ρ(j) ) (1, ρ(2), ρ(3), . . . , ρ(n-1), n) mod E i ,(4.13) in terms of Parke-Taylor factors with (1, 2, 3, . . . , n-1, n) ≡ z 12 z 23 . . . z n-1,n z n,1 .
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+

  The binary commutators (whose trigonometric dressing singles out the underlined entry p b ) are defined as follows, [p a , p b ] 0 ≡ (t pa t p b + t p b t pa ) × i sin(x 12...(p b -1), p b ) (3.35) [p a , p b ] 1 ≡ (t pa t p b -t p b t pa ) × cos(x 12...(p b -1), p b ) .
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  Among the semi-abelian six-point integrals, any instance with r ≤ 3 non-abelian CP factors is proportional to the NLSM amplitude by(3.19) and (3.24), e.g. 12 + s 23 )(s 45 + s 56 ) s 123 + (s 23 + s 34 )(s 56 + s 61 ) s 234 + (s 34 + s 45 )(s 61 + s 12 ) s 345 -s 12 -s 23 -s 34 -s 45 -s 56 -s 61 + O(α 6 ) . (A.2) Four non-abelian CP factors Starting with four non-abelian CP factors, one obtains inequivalent cases such as Z 1234 (I 6 ) = (πα ) 2 1
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It may be tempting to refer to the Z-theory scalars as "bi-adjoint", since in the low-energy (α → 0) limit, non-abelian Z-theory becomes bi-adjoint φ 3 . We make a different choice here to emphasize the following important point: the α -corrections imply that Z-theory scalars are not trivially Lie-algebra valued w.r.t. to one of the gauge groups. Charges under the gauge groups are referred to as "color" throughout this work which may equivalently be replaced by "flavour".

See[START_REF] Cronin | Phenomenological model of strong and weak interactions in chiral U(3) x U(3)[END_REF][START_REF] Weinberg | Dynamical approach to current algebra[END_REF][START_REF] Weinberg | Nonlinear realizations of chiral symmetry[END_REF][START_REF] Brown | Field theory of chiral symmetry[END_REF][START_REF] Chang | Unified Formulation of Effective Nonlinear Pion-Nucleon Lagrangians[END_REF] and[START_REF] Susskind | Algebraic aspects of pionic duality diagrams[END_REF][START_REF] Osborn | Implications of adler zeros for multipion processes[END_REF][START_REF] Ellis | On the relationship between chiral and dual models[END_REF][START_REF] Kampf | Tree-level Amplitudes in the Nonlinear Sigma Model[END_REF] for earlier references on the NLSM and its tree level amplitudes, respectively.

The ability of soft limits of a theory's S-matrix to encode its symmetries has long been appreciated, from the conception of what became known as Adler zeros[START_REF] Adler | Consistency conditions on the strong interactions implied by a partially conserved axial vector current[END_REF], to the imprint of coset symmetry on double-soft limits[START_REF] Arkani-Hamed | What is the Simplest Quantum Field Theory?[END_REF].

Of course there is nothing stringy about the CP factors themselves, rather the doubly-ordered amplitude obeys the string monodromy relations on the order dressed by the CP factors.

Indeed these higher-derivative terms are responsible for the CP ordering satisfying monodromy relations as opposed to the field-theory relations of the field-theory color-ordering.

The rescaling stems from the present choice to incorporate the relative monodromy phase between the two color factors in the brackets [t i , t j ] α of (3.7) via e iπα s ij /2 t i t j -e -iπα s ij /2 t j t i instead of the more conventional representation t i t j -e -iπα s ij t j t i underlying[START_REF] Chen | On Primary Relations at Tree-level in String Theory and Field Theory[END_REF] and the original literature on monodromy relations[START_REF] Bjerrum-Bohr | Minimal Basis for Gauge Theory Amplitudes[END_REF][START_REF] Stieberger | Open & Closed vs[END_REF].

An alternative argument can be derived from reflection symmetry Z123...n(τn) = (-1) n Z1,n...32(τn).

Both the initial studies of α -expansions beyond four points[START_REF] Medina | The Open superstring five point amplitude revisited[END_REF][START_REF] Barreiro | 5-field terms in the open superstring effective action[END_REF][START_REF] Oprisa | Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums[END_REF][START_REF] Stieberger | Multi-Gluon Scattering in Open Superstring Theory[END_REF] and powerful recent results on fivepoint integrals[START_REF] Boels | On the field theory expansion of superstring five point amplitudes[END_REF][START_REF] Puhlfuerst | Differential Equations, Associators, and Recurrences for Amplitudes[END_REF] benefit from the connection with (multiple Gaussian) hypergeometric functions

.[START_REF] Mafra | Complete N-Point Superstring Disk Amplitude II. Amplitude and Hypergeometric Function Structure[END_REF] Also see[START_REF] Drummond | Superstring amplitudes and the associator[END_REF] for a connection with the pattern relating the appearance of MZVs ζn 1 ,n 2 ,...,nr of different depth r in open-superstring amplitudes[START_REF] Schlotterer | Motivic Multiple Zeta Values and Superstring Amplitudes[END_REF].
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A Expansions of semi-abelian disk integrals

In this appendix, we gather examples for the low-energy expansion of semi-abelian Z-theory amplitudes (3.2). The expressions can be efficiently obtained by combining their simplified