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Whenever the integrand of a gauge-theory loop amplitude can be arranged into a form where the
Bern-Carrasco-Johansson duality between color and kinematics is manifest, a corresponding gravity
integrand can be obtained simply via the double-copy procedure. However, finding such gauge-theory
representations can be challenging, especially at high loop orders. Here, we show that we can, instead, start
from generic gauge-theory integrands, where the duality is not manifest, and apply a modified double-copy
procedure to obtain gravity integrands that include contact terms generated by violations of dual Jacobi
identities. We illustrate this with three-, four- and five-loop examples in N ¼ 8 supergravity.
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Introduction.—Gravity and gauge theories are intimately
connected by a double-copy relationship that was first
brought to light by the Kawai-Lewellen-Tye (KLT) [1] tree-
level amplitude relations, and then fleshed out by the Bern-
Carrasco-Johansson (BCJ) duality [2,3] between color and
kinematics. Apart from giving remarkably simple means
for obtaining loop-level scattering amplitudes in a broad
class of (super)gravity theories [3–8], the duality also
addresses the construction of black-hole and other classical
solutions [9] including those potentially relevant to gravi-
tational-wave detectors [10], corrections to gravitational
potentials [11], the relation of supergravity symmetries to
gauge-theory ones [7,8,12], and the observation of mys-
terious “enhanced” ultraviolet cancellations in certain
supergravity theories [13]. This duality was later found
to be applicable to a wider class of quantum field and string
theories [14]. For recent reviews, see Ref. [15].
In the tree-level approximation, manifestly BCJ duality-

satisfying representations of amplitudes are known for any
multiplicity [16]. However, the off-shell duality remains
mysterious despite progress related to the infinite-
dimensional Lie algebra underlying BCJ duality [17] and
interesting connections to gauge symmetries [18]. At loop
level, the duality continues to be a conjecture, with many
known examples [3–8]. There are also various related
double-copy constructions [14,19].
When known, BCJ-dual representations arguably pro-

vide the most efficient approach to finding loop amplitudes
in gauge, gravity, and other double-copy constructible
theories. Gauge-theory BCJ representations are usually
found by subjecting an Ansatz to the duality and unitarity
constraints. However, as the multiplicity and loop order
increases, finding an Ansatz that actually solves the system
becomes an increasingly difficult challenge. In particular,
no BCJ form of the five-loop four-point amplitude of
N ¼ 4 super-Yang–Mills (SYM) theory has yet been

found, although a BCJ-dual 1=2-Bogomolny-Prasad-
Sommerfield (BPS) five-loop form factor in this theory
has recently been found [20]. In this Letter, we explain how
to apply the duality to construct gravity integrands from
generic (not manifestly BCJ-dual) gauge-theory integrands.
Contact terms from BCJ duality.—Our derivation of

gravity amplitudes uses the method of maximal cuts [21], a
refinement of generalized unitarity [22]. In this method,
amplitudes are constructed from cuts that reduce integrands
to sums of products of tree-level amplitudes, as illustrated
in Fig. 1. The cuts are organized according to the number k
of propagators that remain off shell. We first find an
expression whose maximal (k ¼ 0) cuts (MCs) are correct,
then correct it such that all next-to-maximal (k ¼ 1) cuts
(NMCs) are correct and systematically proceed through the
NkMCs, until no further corrections exist. The maximal k
depends on the power counting of the theory and on choices
made at earlier levels. The corrections coming from NkMCs
are assigned to contact terms corresponding to each cut. For
example, the first cut in Fig. 1 determines the double-
contact diagram (l) in Fig. 2. The contact terms are taken off
shell in a manner that preserves the diagram symmetry.
This process introduces an ambiguity that can then be
absorbed into changes in subsequent (kþ 1)-level con-
tact terms.
Generically, an L-loop m-point gravity amplitude

can be organized in terms of diagrams that have cubic
and higher-point (contact term) vertices

FIG. 1. Sample Nk-maximal cuts at three, four, and five loops.
Exposed lines are all on shell.
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where ΓL is the set of all L-loop m-point graphs with
labeled external lines, λj labels the edges of graph j, and

1=d
ðλjÞ
j are the corresponding propagators. For example, for

the three-loop four-point N ¼ 8 amplitude, the diagrams
needed are given in Fig. 2. The symmetry factors Sj remove
overcounts arising from automorphisms of each graph. The
integration is over L independent D-dimensional loop
momenta. The gravity numerators Nj will be obtained
through our double-copy procedure, in a manner that
respects the graph’s symmetries.
BCJ duality [2,3] is manifest if the kinematic numerators

n of a gauge-theory amplitude’s graphs have the same
algebraic properties as its color factors c. The basic Jacobi
identity of the gauge-group structure constants can be
embedded in arbitrary multiloop diagrams and leads to
relations between the color factors c of triplets fA;B; Cg of
graphs. For generic theories with only fields in the adjoint
representation, the duality implies the functional relations

cA þ cB þ cC ¼ 0 ↔ nBCJA þ nBCJB þ nBCJC ¼ 0; ð2Þ

for all such triplets. Generalized gauge transformations—
shifts of n that cancel in the amplitude because of color
Jacobi relations—bring the kinematic numerators to this
form. Numerators that satisfy Eq. (2) lead directly to
gravity integrands by replacing color factors of the
gauge-theory amplitude with the kinematic numerators
of a second gauge-theory amplitude [2,3,23].
At loop level, the functional relations (2) are typically

solved through Ansätze obeying additional simplifying
assumptions [4]. While the resulting expressions are
compact, sufficiently unconstrained Ansätze can be pro-
hibitively large. This motivates us to find an alternative
efficient double-copy construction of gravity integrands
that evades the need for explicit duality-satisfying repre-
sentations of gauge-theory amplitudes.

The starting point of our construction is a “naive double
copy” of amplitudes of two possibly distinct gauge theo-
ries, written in terms of cubic diagrams with numerator
factors ni and ~ni for which duality (2) is not manifest

Ni ¼ ni ~ni ðcubic onlyÞ: ð3Þ
This naive double copy automatically satisfies all the
gravity MCs and NMCs, because BCJ duality always
holds for on-shell four-point tree amplitudes [2].
However, because BCJ duality is not manifest, Eq. (3) is
not the complete answer, as can be checked by evaluating
N2MCs. We need a systematic determination of the
contact-term corrections that lead to the correct NkMCs,
matching the result that could be independently obtained
by less efficient methods, such as applying KLT relations
directly on the cuts.
The key observation is that the additional contact

contributions should be related to the violation of the
kinematic Jacobi relations (2) by the gauge-theory ampli-
tude numerators. Together with generalized gauge invari-
ance and properties of BCJ numerators in the generalized
cuts, this observation provides the building blocks for the
construction of the missing terms. To describe their con-
struction, we need a labeling of a general cut C, made of q
factors of 4 ≤ m-point tree amplitudes. We choose an
ordering, 1;…; q, of these amplitude factors, an ordering
of the graphs contributing to each such factor and label
numerators by the labels of the graph in each amplitude
factor, ni1;i2;…;iq with i1 running over the graphs in the first
amplitude factor, etc. For example, the numerators of the
nine diagrams (some of which can vanish) appearing in the
first cut in Fig. 1 are labeled by ni1;i2, where i1 and i2 each
runs over the three graphs in a four-point tree amplitude.
For every propagator of every graph contributing to a

generalized cut, there is a kinematic Jacobi relation.
Choosing an ordering for the propagators in every graph,
we define the violation of the kinematic Jacobi relation on
the λAth propagator of graph A of vth amplitude factor

Ji1;…;iv−1;fA;λAg;ivþ1;…;iq ¼ ni1;…;iv−1;A;ivþ1;…;iq

þni1;…;iv−1;B;ivþ1;…;iq þ ni1;…;iv−1;C;ivþ1;…;iq ; ð4Þ

where graphs B and C are connected to graph A by the
color Jacobi relation on the λAth propagator of graph A.
(The relative signs between terms should match those of the
corresponding color Jacobi relation.) We can define, in the
obvious way, violations of multiple Jacobi relations; they
are linear combinations of these.
Not all such Js are independent. First, there is a triple

over-count, since the same J can be defined for each
of the three diagrams connected by a Jacobi relation.
Furthermore, there are linear relations, some from the
definition (4) of J in terms of n and some due to BCJ
amplitude relations [2]. Tree-level examples of these latter
J relationships are derived in Refs. [24,25].

FIG. 2. Diagrams (a)–(i) define the three-loop four-point
amplitude of N ¼ 4 SYM theory; diagrams (j)–(m) are the
additional contact terms needed for N ¼ 8 supergravity.
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With this notation, the generalized gauge shift, Δ, that
relates arbitrary kinematic numerators n to BCJ ones is

ni1;i2;…iq ¼ nBCJi1;i2;…iq
þ Δi1;i2;…iq ;

Δi1;i2;…iq ¼
X
v

X
j

dðv;jÞiv
αðv;jÞi1;…{̂v;…iq

; ð5Þ

where the hat notation indicates that the index is omitted,
and j runs over the labels of the ordered set of inverse
propagators of the graph iv of the vth amplitude factor and
dðv;jÞiv

is the jth element of this set. The Δs are constrained
so they do not alter the gauge-theory cut integrand [2,3,23]

X
i1;…;iq

Δi1;i2;…iqci1;i2;…iq

Di1…Diq

¼ 0; ð6Þ

where Div is the product of all inverse propagators of the
graph iv in the vth amplitude factor.
Using Eq. (5), the gravity cut is given by

CG ¼
X

i1;…;iq

ðnBCJi1;i2;…iq
Þ2

Di1…Diq

¼
X

i1;…;iq

n2i1;i2;…iq

Di1…Diq

þ EG;

EG ¼ −
X

i1;…;iq

Δ2
i1;i2;…iq

Di1…Diq

: ð7Þ

For simplicity, we have taken the two gauge-theory
numerators to be identical. The key to the cancellation
of the nBCJ · Δ cross terms is Eq. (6), given that the nBCJ

satisfy Eq. (2). We stress that this argument relies only on
the existence, but not explicit construction, of tree-level
BCJ representations used in the generalized cuts.
To express EG in terms of Js requires inverting, on a case

by case basis, the relations JðΔÞ obtained by plugging
Eqs. (5) into Eq. (4). Since not all Js are independent, only
some gauge shifts can be determined. The remaining ones
preserve the BCJ form of the gauge-theory cut. The
resulting expression in a complete J basis superficially
has spurious singularities; they may be eliminated explic-
itly by using the remaining gauge freedom.
We illustrate the general construction described here by

discussing, in some detail, the N2MCs made of two four-
point amplitudes. The numerators are labeled as ni1;i2 where
i1 and i2 run over the three graphs in the first and second
four-point amplitude, respectively. Each graph has a single
propagator; the second upper index on inverse propagators
is, therefore, redundant, so we do not include it. The
generalized gauge transformation (5) is

Δi1;i2 ¼ dð1Þi1
αð1Þi2

þ dð2Þi2
αð2Þi1

: ð8Þ
After use of momentum conservation

P
i1d

ðvÞ
i1

¼ 0, this
gives the violations of kinematic Jacobi relations as

Jfu1;1g;i2 ≡
X
i1

ni1;i2 ¼ dð2Þi2

X
i1

αð2Þi1
;

Ji1;fu2;1g ≡
X
i2

ni1;i2 ¼ dð1Þi1

X
i2

αð1Þi2
: ð9Þ

The threefold degeneracy of J implies independence on the
labels u1 or u2. We see that only particular combinations of

gauge shifts αðvÞi are determined. We also note that

Ji1;fu2;1g=d
ð1Þ
i1

and Jfu1;1g;i2=d
ð2Þ
i2

are independent of the
graph in the second and first amplitude, respectively.
Combining Eqs. (7), (8), and (9), the additional contact

term in the N2MC with two four-point amplitudes is

E4×4
G ¼ −2

X
i1;i2

αð1Þi1
αð2Þi2

¼ −2
Jf1;1g;1J1;f1;1g

dð1Þ1 dð2Þ1

: ð10Þ

The two denominators cancel against the numerator,
yielding a local expression.
Similar but more involved analysis gives formulas

correcting any cut of a naive double copy. Unlike the
example above, the nontrivial constraints between Js, as
well as the requirement that generalized gauge transforma-
tions should not modify gravity amplitudes, require non-
trivial disentangling. At the N2MC level, the extra term
corresponding to a five-point contact term is

E5
G ¼ −

1

3

X15
i¼1

Jfi;1gJfi;2g
dð1;1Þi dð1;2Þi

; ð11Þ

where the sum runs over all 15 cubic graphs of the five-
point amplitude and dð1;1Þi and dð1;2Þi are the two propagators
of graph i. This formula is a symmetric loop-generalization
of the one given in Ref. [25] for tree amplitudes.
At the N3MC level, the extra terms are more involved.

For example, the correction terms relevant to three four-
point amplitude cuts are

E4×4×4
G ¼2

Jð1Þ1;1J
ð2;3Þ
1 þJð2Þ1;1J

ð1;3Þ
1 þJð3Þ1;1J

ð1;2Þ
1

dð1Þ1 dð2Þ1 dð3Þ1

−
X
i3

2Jð1Þ1;i3
Jð2Þ1;i3

dð1Þ1 dð2Þ1 dð3Þi3

−
X
i2

2Jð1Þi2;1
Jð3Þ1;i2

dð1Þ1 dð2Þi2
dð3Þ1

−
X
i1

2Jð2Þi1;1
Jð3Þi1;1

dð1Þi1
dð2Þ1 dð3Þ1

; ð12Þ

where we used the shorthand notations Jð1Þ1;i3
≡ Jf1;1g;1;i3 ,

etc., and Jð1;2Þi3
≡P

i1Ji1;f1;1g;i3 , etc. As in Eq. (8), we have

suppressed the second upper index on dðv;jÞi because it takes
a single value. We have also derived general formulas for
cuts with 4 × 5 and 6-point amplitude factors, which we
will present together with theN ¼ 8 supergravity five-loop
four-point integrand [26].
One subtlety is that, in special cuts, momentum con-

servation can force on shell an internal propagator of a tree
amplitude, leading to a 1=0 divergence. This is associated
with bubble on external leg or tadpole diagrams, which, in
dimensionally regulated massless theories, integrate to
zero. In N ¼ 8 supergravity, the simplest prescription is
to take such contributions to vanish whenever a corre-
sponding numerator vanishes and, if the cancellation occurs
between terms (which can leave finite pieces behind) to
take advantage of the asymmetry of the formulas to choose
a labeling that avoids this situation.
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Locality and dimension counting imply that contact terms
become simpler as the level increases. For example, the
contact-term numerators at the N6MCs level in the five-loop
four-point amplitude ofN ¼ 8 supergravity are just a linear
combination of s2, st, and t2. Thus, in practical calculations,
it is more efficient to determine the high-level contact terms
by numerically evaluating the generalized cuts.
Examples.—The three-loop four-point amplitude of

N ¼ 8 supergravity is well studied [3,4,27,28] and serves
as a useful illustration. We will reconstruct it here from the
corresponding N ¼ 4 SYM amplitude of Ref. [27] whose
numerators are displayed in Table I with the momentum
labeling in Fig. 2(a)–2(i) (corresponding to the one of
Ref. [3]). As in the normalization of Ref. [3], an overall
factor of stAtree

4 is removed. Following our procedure, the
N ¼ 8 supergravity numerators of diagrams Figs. 2(a)–2(l)
are squares of the corresponding N ¼ 4 SYM ones

NN¼8
ðxÞ ¼ n2ðxÞ; x ∈ fa � � � ig: ð13Þ

Contact diagrams can appear only at the N2MC level.
There are a total of 62 possible independent contact terms.
Of these, all but the four diagrams (j)–(m) in Fig. 2 vanish.
As an example, consider the contact diagram in Fig. 2(l),
composed of two four-point vertices. We obtain it from
Eq. (10). First, we identify the nine cubic diagrams that
contribute to it (some are vanishing) and pick one whose
numerator we label as n1;1; we choose diagram (c) in Fig. 2.
The two J functions are calculated by relabeling the
appropriate numerators to the labels of Fig. 3. For example,
Jfu1;1g;1 is obtained from the N ¼ 4 SYM numerators of
the three diagrams shown in Fig. 3

n1;1¼ s2; n2;1 ¼ sðtþ τ26þ τ36Þ; n3;1 ¼ sðu− τ36Þ;
ð14Þ

corresponding to relabeling of diagrams (c) and (g) in
Fig. 2. Summing and applying momentum conservation

gives Jf1;1g;1 ¼ sτ26. Similarly, J1;f1;1g ¼ sτ37. With these
labels, the two off-shell inverse propagators are τ26 and τ37,
so that, from Eq. (10), theN ¼ 8 supergravity contact term
numerator for diagram (l) is

NN¼8
ðlÞ ¼ −2

Jf1;1g;1J1;f1;1g
τ26τ37

¼ −2s2: ð15Þ

The other three independent contact terms corresponding to
diagrams (j), (k), and (m), can similarly be obtained from
Eq. (11), with the result

NN¼8
ðjÞ ¼ −

1

9
ðs− tÞ2; NN¼8

ðkÞ ¼ NN¼8
ðmÞ ¼ −2s2: ð16Þ

All nonvanishing contact terms are relabelings of these.
We have also computed the four-loop four-point

amplitude of N ¼ 8 supergravity using the contact-term
method described above. The results are included in the
Supplemental Material [29]. Power counting dictates that
this N ¼ 8 amplitude can have no contact terms beyond
level k ¼ 4, which we checked explicitly.
Generating contact-term diagrams by collapsing the

propagators of the cubic contributions in all possible ways,
we find the result is surprisingly simple. The vast majority
of contacts, 2353 of 2621, vanish outright due to vanishing
J’s. (In this count, we drop cuts where a leg of a tree
amplitude is directly sewn to another one of the same tree,
since these do not appear in N ¼ 8 supergravity at four
loops.) Even the nonvanishing 268 contact terms are
remarkably simple. For example, as for the three-loop
cut (l), we evaluated the four-loop contact term given by the
second cut in Fig. 1 (corresponding to the 48th N2MC in
the Supplemental Material [29]) using Eq. (10) and found
that its numerator is ð−2s4Þ. All remaining contact terms
are included in the Supplemental Material [29].
By five loops, even promising methods may prove

ineffective due to a combinatorial proliferation of terms.
Therefore, we perform extensive checks at five loops to
ensure that the methods presented here remain practical.
For example, starting from the N ¼ 4 SYM expression in
Ref. [30], we find that the overwhelming fraction of contact
terms through N6MCs are zero, such as the rather nontrivial
third cut in Fig. 1. This is consistent with lower loops and
enormously simplifies the construction and structure of the
N ¼ 8 supergravity five-loop four-point amplitude, to be
described elsewhere [26].
Conclusions and outlook.—Some open problems remain.

The power counting of the gravity integrands given by our
modified double-copy construction depends on the choices
of numerators in the SYM amplitude; generic representa-
tions of the latter typically lead to higher-than-optimal
power counting of the former. For example, the known
five-loop N ¼ 4 SYM integrand is of this type. Gauge-
theory integrands designed to minimize the power count in
the double copy, in particular of its naive part, are, therefore,
desirable; finding them is an important problem.
Although we focused here on N ¼ 8 supergravity and

N ¼ 4 SYM, the construction generalizes in the obvious

TABLE I. A non-BCJ form of the three-loop four-point N ¼4
SYM diagram numerators from Ref. [27]. We define τij¼2pi ·pj,
s ¼ ðp1 þ p2Þ2, t ¼ ðp2 þ p3Þ2, and u ¼ ðp1 þ p3Þ2.

Graph N ¼ 4 SYM numerators

(a)–(d) s2

(e)–(g) sðp2
5 þ τ45Þ

(h) sðτ26 þ τ36Þ − tðτ17 þ τ27Þ þ st
(i) sðp2

5 þ τ45Þ − tðp2
5 þ τ56 þ p2

6Þ − ðs − tÞp2
6=3

FIG. 3. The three diagrams whose kinematic numerators
contribute to Jf1;1g;1. The thick shaded (red) cross marks the
off-shell legs participating in the dual Jacobi relation. The shaded
(red) dot indicates the off-shell leg of the second amplitude factor.
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way to different gauge and other theories with adjoint
matter which obey BCJ duality and, thus, to all gravita-
tional and nongravitational [14] double-copy theories
obtained from them. If the two theories in the double copy
are distinct, the contact terms are obtained by simply
replacing in our expressions JiJj → ðJi ~Jj þ ~JiJjÞ=2,
where J and ~J are the violations of the kinematic Jacobi
relations in each theory.
Similar ideas to the ones presented in this Letter should

hold in all double-copy theories whose single copies include
fields in the fundamental representation of the gauge group
[6,8]. Our results suggest that it may be possible to
generically convert any gauge-theory classical solution to
a gravitational one without choosing special generalized
gauges.We expect that the ideas presented in this Letter will
be useful not only for investigating the ultraviolet behavior
of perturbative quantum gravity, but also for understanding
general physical properties of gravity theories.
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