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Whenever the integrand of a gauge-theory loop amplitude can be arranged into a form where the
BCJ duality between color and kinematics is manifest, a corresponding gravity integrand can be
obtained simply via the double-copy procedure. However, finding such gauge-theory representations
can be challenging, especially at high loop orders. Here we show that we can instead start from
generic gauge-theory integrands, where the duality is not manifest, and apply a modified double-copy
procedure to obtain gravity integrands that include contact terms generated by violations of dual
Jacobi identities. We illustrate this with three-, four- and five-loop examples in N = 8 supergravity.

PACS numbers: 04.65.+e, 11.15.Bt, 11.25.Db, 12.60.Jv

Introduction— Gravity and gauge theories are intimately
connected by a double-copy relationship that was first
brought to light by the Kawai–Lewellen–Tye (KLT) [1]
tree-level amplitude relations, and then fleshed out by the
Bern–Carrasco–Johansson (BCJ) duality [2, 3] between
color and kinematics. Apart from giving remarkably sim-
ple means for obtaining loop-level scattering amplitudes
in a broad class of (super)gravity theories [3–8], the du-
ality also addresses the construction of black-hole and
other classical solutions [9] including those potentially
relevant to gravitational-wave detectors [10], corrections
to gravitational potentials [11], the relation of supergrav-
ity symmetries to gauge-theory ones [7, 8, 12], and the
observation of mysterious “enhanced” ultraviolet cancel-
lations in certain supergravity theories [13]. This duality
was later found to be applicable to a wider class of quan-
tum field and string theories [14]. For recent reviews, see
Ref. [15].
In the tree-level approximation, manifestly BCJ

duality-satisfying representations of amplitudes are
known for any multiplicity [16]. However, the off-shell
duality remains mysterious despite progress related to
the infinite-dimensional Lie algebra underlying BCJ du-
ality [17] and interesting connections to gauge symme-
tries [18]. At loop level the duality continues to be a
conjecture, with many known examples [3–8]. There are
also various related double-copy constructions [14, 19].
When known, BCJ-dual representations arguably pro-

vide the most efficient approach to finding loop am-
plitudes in gauge, gravity and other double-copy con-
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FIG. 1: Sample Nk-maximal cuts at three, four and five loops.
Exposed lines are all on shell.

structible theories. Gauge-theory BCJ representations
are usually found by subjecting an Ansatz to the duality
and unitarity constraints. However, as the multiplicity
and loop order increases, finding an Ansatz that actu-
ally solves the system becomes an increasingly difficult
challenge. In particular, no BCJ form of the five-loop
four-point amplitude of N = 4 super-Yang–Mills (sYM)
theory has yet been found, although a BCJ-dual 1/2-
BPS five-loop form factor in this theory has recently been
found [20]. In this Letter, we explain how to apply the
duality to construct gravity integrands from generic (not
manifestly BCJ-dual) gauge-theory integrands.

Contact Terms from BCJ Duality— Our derivation of
gravity amplitudes uses the method of maximal cuts [21],
a refinement of generalized unitarity [22]. In this method,
amplitudes are constructed from cuts that reduce inte-
grands to sums of products of tree-level amplitudes, as
illustrated in Fig. 1. The cuts are organized according
to the number k of propagators that remain off shell.
We first find an expression whose maximal (k = 0) cuts
(MCs) are correct, then correct it such that all next-to-
maximal (k = 1) cuts (NMCs) are correct and system-

http://arxiv.org/abs/1701.02519v2
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FIG. 2: Diagrams (a)-(i) define the three-loop four-point am-
plitude of N = 4 sYM theory; diagrams (j)-(m) are the addi-
tional contact terms needed for N = 8 supergravity.

atically proceed through the NkMCs, until no further
corrections exist. The maximal k depends on the power
counting of the theory and on choices made at earlier
levels. The corrections coming from NkMCs are assigned
to contact terms corresponding to each cut. For exam-
ple, the first cut in Fig. 1 determines the double-contact
diagram (l) in Fig. 2. The contact terms are taken off
shell in a manner that preserves the diagram symmetry.
This process introduces an ambiguity that can then be
absorbed into changes in subsequent (k+1)-level contact
terms.
Generically, an L-loop m-point gravity amplitude can

be organized in terms of diagrams that have cubic and
higher-point (contact term) vertices,

M(L)
m = iL

(κ
2

)m−2+2L ∑

j∈ΓL

∫
dLDp

(2π)LD

1

Sj

Nj
∏

λj
d
(λj)
j

, (1)

where ΓL is the set of all L-loop m-point graphs with
labeled external lines, λj labels the edges of graph j, and

1/d
(λj)
j are the corresponding propagators. For exam-

ple, for the three-loop four-point N = 8 amplitude, the
diagrams needed are given in Fig. 2. The symmetry fac-
tors Sj remove overcounts arising from automorphisms
of each graph. The integration is over L independent D-
dimensional loop momenta. The gravity numerators Nj

will be obtained through our double-copy procedure, in
a manner that respects the graph’s symmetries.
BCJ duality [2, 3] is manifest if the kinematic numer-

ators n of a gauge-theory amplitude’s graphs have the
same algebraic properties as its color factors c. The ba-
sic Jacobi identity of the gauge-group structure constants
can be embedded in arbitrary multiloop diagrams and
leads to relations between the color factors c of triplets
{A,B,C} of graphs. For generic theories with only fields
in the adjoint representation, the duality implies the
functional relations

cA + cB + cC = 0 ←→ nBCJ
A + nBCJ

B + nBCJ
C = 0 , (2)

for all such triplets. Generalized gauge transformations—

shifts of n that cancel in the amplitude because of color
Jacobi relations— bring the kinematic numerators to this
form. Numerators that satisfy Eq. (2) lead directly to
gravity integrands by replacing color factors of the gauge-
theory amplitude with the kinematic numerators of a sec-
ond gauge-theory amplitude [2, 3, 23].

At loop level, the functional relations (2) are typi-
cally solved through Ansätze obeying additional simplify-
ing assumptions [4]. While the resulting expressions are
compact, sufficiently unconstrained Ansätze can be pro-
hibitively large. This motivates us to find an alternative
efficient double-copy construction of gravity integrands
that evades the need for explicit duality-satisfying repre-
sentations of gauge-theory amplitudes.

The starting point of our construction is a “naive dou-
ble copy” of amplitudes of two possibly distinct gauge
theories, written in terms of cubic diagrams with nu-
merator factors ni and ñi for which duality (2) is not
manifest:

Ni = niñi (cubic only) . (3)

This naive double copy automatically satisfies all the
gravity MCs and NMCs, because BCJ duality always
holds for on-shell four-point tree amplitudes [2]. How-
ever, because BCJ duality is not manifest, Eq. (3) is
not the complete answer, as can be checked by evaluat-
ing N2MCs. We need a systematic determination of the
contact-term corrections that lead to the correct NkMCs,
matching the result that could be independently obtained
by less efficient methods, such as applying KLT relations
directly on the cuts.

The key observation is that the additional contact con-
tributions should be related to the violation of the kine-
matic Jacobi relations (2) by the gauge-theory amplitude
numerators. Together with generalized gauge invariance
and properties of BCJ numerators in the generalized cuts,
this observation provides the building blocks for the con-
struction of the missing terms. To describe their con-
struction we need a labeling of a general cut C, made of
q factors of 4 ≤ m-point tree amplitudes. We choose an
ordering, 1, . . . , q, of these amplitude factors, an ordering
of the graphs contributing to each such factor and label
numerators by the labels of the graph in each amplitude
factor, ni1,i2,...,iq with i1 running over the graphs in the
first amplitude factor, etc. For example, the numerators
of the nine diagrams (some of which can vanish) appear-
ing in the first cut in Fig. 1 are labeled by ni1,i2 , where
i1 and i2 each runs over the three graphs in a four-point
tree amplitude.

For every propagator of every graph contributing to
a generalized cut there is a kinematic Jacobi relation.
Choosing an ordering for the propagators in every graph,
we define the violation of the kinematic Jacobi relation
on the λA-th propagator of graph A of v-th amplitude
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factor:

Ji1,...,iv−1,{A,λA},iv+1,...,iq = ni1,...,iv−1,A,iv+1,...,iq

+ ni1,...,iv−1,B,iv+1,...,iq + ni1,...,iv−1,C,iv+1,...,iq , (4)

where graphs B and C are connected to graph A by the
color Jacobi relation on the λA-th propagator of graph A.
(The relative signs between terms should match those of
the corresponding color Jacobi relation.) We can define,
in the obvious way, violations of multiple Jacobi relations;
they are linear combinations of these.
Not all such Js are independent. First, there is a triple

over-count, since the same J can be defined for each of the
three diagrams connected by a Jacobi relation. Further-
more, there are linear relations, some from the definition
(4) of J in terms of n and some due to BCJ amplitude
relations [2]. Tree-level examples of these latter J rela-
tionships are derived in Refs. [24, 25].
With this notation, the generalized gauge shift, ∆, that

relates arbitrary kinematic numerators n to BCJ ones is

ni1,i2,...iq = nBCJ
i1,i2,...iq

+∆i1,i2,...iq ,

∆i1,i2,...iq =
∑

v

∑

j

d
(v,j)
iv

α
(v,j)
i1,...̂ıv ,...iq

, (5)

where the hat notation indicates that the index is omit-
ted, and j runs over the labels of the ordered set of in-
verse propagators of the graph iv of the v-th amplitude

factor and d
(v,j)
iv

is the j-th element of this set. The ∆
are constrained so they do not alter the gauge-theory cut
integrand [2, 3, 23]

∑

i1,...,iq

∆i1,i2,...iqci1,i2,...iq
Di1 . . . Diq

= 0 , (6)

where Div is the product of all inverse propagators of the
graph iv in the v-th amplitude factor.
Using Eq. (5), the gravity cut is given by

CG =
∑

i1,...,iq

(nBCJ
i1,i2,...iq

)2

Di1 . . .Diq

=
∑

i1,...,iq

n2
i1,i2,...iq

Di1 . . .Diq

+ EG ,

EG = −
∑

i1,...,iq

∆2
i1,i2,...iq

Di1 . . . Diq

. (7)

For simplicity we have taken the two gauge-theory nu-
merators to be identical. The key to the cancellation of
the nBCJ ·∆ cross terms is Eq. (6), given that the nBCJ

satisfy Eq. (2). We stress that this argument relies only
on the existence, but not explicit construction, of tree-
level BCJ representations used in the generalized cuts.
To express EG in terms of Js requires inverting, on a

case by case basis, the relations J(∆) obtained by plug-
ging Eqs. (5) into Eq. (4). Since not all Js are indepen-
dent, only some gauge shifts can be determined. The re-
maining ones preserve the BCJ form of the gauge-theory

cut. The resulting expression in a complete J-basis su-
perficially has spurious singularities; they may be elimi-
nated explicitly by using the remaining gauge freedom.

We illustrate the general construction described here
by discussing in some detail the N2MCs made of two
four-point amplitudes. The numerators are labeled as
ni1,i2 where i1 and i2 run over the three graphs in the
first and second four-point amplitude, respectively. Each
graph has a single propagator; the second upper index on
inverse propagators is therefore redundant so we do not
include it. The generalized gauge transformation (5) is

∆i1,i2 = d
(1)
i1

α
(1)
i2

+ d
(2)
i2

α
(2)
i1

. (8)

After use of momentum conservation
∑

i1
d
(v)
i1

= 0, this
gives the violations of kinematic Jacobi relations as

J{u1,1},i2 ≡
∑

i1

ni1,i2 = d
(2)
i2

∑

i1

α
(2)
i1

,

Ji1,{u2,1} ≡
∑

i2

ni1,i2 = d
(1)
i1

∑

i2

α
(1)
i2

. (9)

The threefold degeneracy of J implies independence on
the labels u1 or u2. We see that only particular combina-

tions of gauge shifts α
(v)
i are determined. We also note

that Ji1,{u2,1}/d
(1)
i1

and J{u1,1},i2/d
(2)
i2

are independent of
the graph in the second and first amplitude, respectively.

Combining Eqs. (7), (8) and (9), the additional contact
term in a N2MC with two four-point amplitudes is

E4×4
G = −2

∑

i1,i2

α
(1)
i1

α
(2)
i2

= −2
J{1,1},1J1,{1,1}

d
(1)
1 d

(2)
1

. (10)

The two denominators cancel against the numerator,
yielding a local expression.

Similar but more involved analysis gives formulae cor-
recting any cut of a naive double copy. Unlike the ex-
ample above, the nontrivial constraints between Js, as
well as the requirement that generalized gauge transfor-
mations should not modify gravity amplitudes, require
nontrivial disentangling. At the N2MC level the extra
term corresponding to a five-point contact term is

E5G = −
1

3

15∑

i=1

J{i,1}J{i,2}

d
(1,1)
i d

(1,2)
i

, (11)

where the sum runs over all 15 cubic graphs of the five-

point amplitude and d
(1,1)
i and d

(1,2)
i are the two prop-

agators of graph i. This formula is a symmetric loop-
generalization of the one given in Ref. [25] for tree am-
plitudes.

At the N3MC level, the extra terms are more involved.
For example, the correction terms relevant to three four-
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FIG. 3: The three diagrams whose kinematic numerators con-
tribute to J{1,1},1. The thick shaded (red) cross marks the
off-shell legs participating in the dual Jacobi relation. The
shaded (red) dot indicates the off-shell leg of the second am-
plitude factor.

point amplitude cuts are:

E4×4×4
G = 2

J
(1)
1,1J

(2,3)
1 + J

(2)
1,1J

(1,3)
1 + J

(3)
1,1J

(1,2)
1

d
(1)
1 d

(2)
1 d

(3)
1

(12)

−
∑

i3

2J
(1)
1,i3

J
(2)
1,i3

d
(1)
1 d

(2)
1 d

(3)
i3

−
∑

i2

2J
(1)
i2,1

J
(3)
1,i2

d
(1)
1 d

(2)
i2

d
(3)
1

−
∑

i1

2J
(2)
i1,1

J
(3)
i1,1

d
(1)
i1

d
(2)
1 d

(3)
1

,

where we used the shorthand notations J
(1)
1,i3
≡ J{1,1},1,i3 ,

etc., and J
(1,2)
i3

≡
∑

i1
Ji1,{1,1},i3 , etc. As in Eq. (8), we

have suppressed the second upper index on d
(v,j)
i because

it takes a single value. We have also derived general for-
mulae for cuts with 4× 5 and 6-point amplitude factors,
which we will present together with the N = 8 super-
gravity five-loop four-point integrand [26].

One subtlety is that, in special cuts, momentum con-
servation can force on shell an internal propagator of a
tree amplitude, leading to a 1/0 divergence. This is asso-
ciated with bubble on external leg or tadpole diagrams,
which in dimensionally regulated massless theories inte-
grate to zero. In N = 8 supergravity the simplest pre-
scription is to take such contributions to vanish whenever
a corresponding numerator vanishes and, if the cancella-
tion occurs between terms (which can leave finite pieces
behind) to take advantage of the asymmetry of the for-
mulæ to choose a labeling that avoids this situation.

Locality and dimension counting imply that contact
terms become simpler as the level increases. For exam-
ple, the contact-term numerators at the N6MCs level in
the five-loop four-point amplitude of N = 8 supergrav-
ity are just a linear combination of s2, st and t2. Thus,
in practical calculations, it is more efficient to determine
the high-level contact terms by numerically evaluating
the generalized cuts.

Examples— The three-loop four-point amplitude of
N = 8 supergravity is well studied [3, 4, 27, 28] and serves
as a useful illustration. We will reconstruct it here from
the corresponding N = 4 sYM amplitude of Ref. [27]
whose numerators are displayed in Table I with the mo-
mentum labeling in Fig. 2(a)-(i) (corresponding to the
one of Ref. [3]). As in the normalization of Ref. [3], an
overall factor of stAtree

4 is removed. Following our pro-
cedure, the N = 8 supergravity numerators of diagrams

TABLE I: A non-BCJ form of the three-loop four-pointN = 4
sYM diagram numerators from Ref. [27]. We define τij =
2pi · pj , s = (p1 + p2)

2, t = (p2 + p3)
2 and u = (p1 + p3)

2.

Graph N = 4 sYM numerators.

(a)-(d) s2

(e)-(g) s(p25 + τ45)

(h) s(τ26 + τ36)− t(τ17 + τ27) + st

(i) s(p25 + τ45)− t(p25 + τ56 + p26)− (s− t)p26/3

(a)–(l) are squares of the correspondingN = 4 sYM ones:

NN=8
(x) = n2

(x) , x ∈ {a, . . . , i} . (13)

Contact diagrams can appear only at the N2MC level.
There are a total of 62 possible independent such con-
tact terms. Of these, all but the four diagrams (j)-(m)
in Fig. 2 vanish. As an example, consider the contact di-
agram in Fig. 2(l), composed of two four-point vertices.
We obtain it from Eq. (10). First, we identify the nine
cubic diagrams that contribute to it (some are vanish-
ing) and pick one whose numerator we label as n1,1; we
choose diagram (c) in Fig. 2. The two J-functions are
calculated by relabeling the appropriate numerators to
the labels of Fig. 3. For example, J{u1,1},1 is obtained
from the N = 4 sYM numerators of the three diagrams
shown in Fig. 3,

n1,1 = s2, n2,1 = s(t+τ26+τ36), n3,1 = s(u−τ36) , (14)

corresponding to relabeling of diagrams (c) and (g) in
Fig. 2. Summing and applying momentum conservation
gives J{1,1},1 = sτ26. Similarly, J1,{1,1} = sτ37. With
these labels, the two off-shell inverse propagators are τ26
and τ37, so that from Eq. (10) the N = 8 supergravity
contact term numerator for diagram (l) is

NN=8
(l) = −2

J{1,1},1J1,{1,1}

τ26τ37
= −2s2 . (15)

The other three independent contact terms correspond-
ing to diagrams (j), (k) and (m), can similarly be ob-
tained from Eq. (11), with the result

NN=8
(j) = − 1

9 (s− t)2 , NN=8
(k) = NN=8

(m) = −2s2 . (16)

All nonvanishing contact terms are relabelings of these.
We have also computed the four-loop four-point am-

plitude of N = 8 supergravity using the contact-term
method described above. The results are included as a
mathematica attachment [29]. Power counting dictates
that this N = 8 amplitude can have no contact terms
beyond level k = 4, which we checked explicitly.
Generating contact-term diagrams by collapsing the

propagators of the cubic-contributions in all possible
ways, we find the result is surprisingly simple. The vast
majority of contacts, 2353 of 2621, vanish outright due
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to vanishing J ’s. (In this count, we drop cuts where a
leg of a tree-amplitude is directly sewn to another one of
the same tree, since these do not appear in N = 8 super-
gravity.) Even the nonvanishing 268 contact terms are
remarkably simple. For example, as for the three-loop
cut (l), we evaluated the four-loop contact term given by
the second cut in Fig. 1 (corresponding to the 48th N2MC
in the attachment [29]) using Eq. (10) and found that its
numerator is (−2s4). All remaining contact terms are
included in the attached file [29].

By five loops, even promising methods may prove inef-
fective due to a combinatorial proliferation of terms. We
therefore perform extensive checks at five loops to en-
sure that the methods presented here remain practical.
For example, starting from the N = 4 sYM expression in
Ref. [30], we find that the overwhelming fraction of con-
tact terms through N6MCs are zero, such as the rather
nontrivial third cut in Fig. 1. This is consistent with
lower loops and enormously simplifies the construction
and structure of the N = 8 supergravity five-loop four-
point amplitude, to be described elsewhere [26].

Conclusions and Outlook— Some open problems remain.
The power counting of the gravity integrands given by
our modified double-copy construction depends on the
choices of numerators in the sYM amplitude; generic rep-
resentations of the latter typically lead to higher-than-
optimal power counting of the former. For example, the
known five-loop N = 4 sYM integrand is of this type.
Gauge-theory integrands designed to minimize the power
count in the double copy, in particular of its naive part,
are therefore desirable; finding them is an important
problem.

Although we focused here on N = 8 supergravity and
N = 4 sYM, the construction generalizes in the obvious
way to different gauge and other theories with adjoint
matter which obey BCJ duality, and thus to all gravi-
tational and non-gravitational [14] double-copy theories
obtained from them. If the two theories in the double
copy are distinct, the contact terms are obtained by sim-
ply replacing in our expressions JiJj → (JiJ̃j + J̃iJj)/2,

where J and J̃ are the violations of the kinematic Jacobi
relations in each theory.

Similar ideas to the ones presented in this Letter should
hold in all double-copy theories whose single-copies in-
clude fields in the fundamental representation of the
gauge group [6, 8]. Our results suggest that it may be
possible to generically convert any gauge-theory classical
solution to a gravitational one without choosing special
generalized gauges. We expect that the ideas presented
in this paper will be useful not only for investigating
the ultraviolet behavior of perturbative quantum gravity
but also for understanding general physical properties of
gravity theories.
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