G. C. Delgado, G. Economics, C. O. Of-nanomaterials-hendren, X. Mesnard, J. Droge et al., Estimating Production Data for Five Engineered Nanomaterials as a Basis for Exposure Assessment Industrial Production Quantities and Uses of Ten Engineered Nanomaterials in Europe and the World Celebrating the Next Decade of Nanoscience and Nanotechnology Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends Biomedical Surface Science: Foundations to Frontiers, press. (5) Cao, G. Nanostructures & Nanomaterials. Synthesis, Properties and Applications (9) Kasemo, B. Biological Surface Science. Surf. Sci, pp.137-144, 2002.

O. Salata, Applications of Nanoparticles in Biology and Medicine, J. Nanobiotechnology, vol.6, issue.103, pp.1-6, 2004.

M. Ferrari, Cancer nanotechnology: opportunities and challenges, Nature Reviews Cancer, vol.62, issue.3, pp.161-171, 2005.
DOI : 10.1038/nrc1566

W. R. Sanhai, J. H. Sakamoto, R. Canady, and M. Ferrari, Seven challenges for nanomedicine, Nature Nanotechnology, vol.4, issue.5, pp.242-244, 2008.
DOI : 10.1038/nnano.2008.114

M. Regnier, B. Metz, W. Tilstra, C. Hendriksen, W. Jiskoot et al., Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant, Vaccine, vol.30, issue.48, pp.30-6783
DOI : 10.1016/j.vaccine.2012.09.020

. Oecd, Nanomaterials in Waste Streams. Current Knowledge on Risks and Impacts

C. Buzea, I. I. Pacheco, and K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases, vol.2, issue.4, pp.17-71, 2007.
DOI : 10.1116/1.2815690

URL : http://arxiv.org/abs/0801.3280

I. Linkov and J. Steevens, Nato Science for Peace and Security Series -C: Environmental Security. Nanomaterials: Risks and Benefits, 2009.

P. R. Gil, A. Elder, and W. J. Parak, Correlating Physico-Chemical with Toxicological Properties of Nanoparticles : The Present and the Future, pp.5527-5531, 2010.

A. A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.40, issue.19, pp.1-16
DOI : 10.1007/s11051-013-1692-4

I. L. Gunsolus and C. L. Haynes, Analytical Aspects of Nanotoxicology, Analytical Chemistry, vol.88, issue.1, pp.451-479
DOI : 10.1021/acs.analchem.5b04221

M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall et al., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proceedings of the National Academy of Sciences, vol.67, issue.8, pp.105-14265, 2008.
DOI : 10.1021/ac00104a020

I. Lynch, T. Cedervall, M. Lundqvist, C. Cabaleiro-lago, S. Linse et al., The nanoparticle???protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century, Advances in Colloid and Interface Science, vol.134, issue.135, pp.134-135, 2007.
DOI : 10.1016/j.cis.2007.04.021

M. P. Monopoli, D. Walczyk, A. Campbell, G. Elia, I. Lynch et al., Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles, J. Am. Chem. Soc, issue.8, pp.133-2525, 2011.

I. Lynch, A. Salvati, and K. A. Dawson, Protein-nanoparticle interactions: What does the cell see?, Nature Nanotechnology, vol.3, issue.9, pp.546-547, 2009.
DOI : 10.1038/nnano.2009.248

C. A. Shaw, G. M. Mortimer, Z. J. Deng, E. S. Carter, S. P. Connell et al., Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages, Nanotoxicology, vol.10, issue.7, pp.5390-5391
DOI : 10.1080/10473289.2007.10465322

R. Guadagnini, B. Halamoda-kenzaoui, L. Walker, G. Pojana, Z. Magdolenova et al., tests, Nanotoxicology, vol.17, issue.1, pp.13-24, 2010.
DOI : 10.1021/la904758j

L. Landgraf, C. Christner, W. Storck, I. Schick, I. Krumbein et al., A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles, Plasma Protein Corona Enhances the Biocompatibility of Au@Fe3O4 Janus Particles, pp.77-88, 2015.
DOI : 10.1016/j.biomaterials.2015.07.049

N. J. Butcher, G. M. Mortimer, and R. F. Minchin, Drug delivery: Unravelling the stealth effect, Nature Nanotechnology, vol.37, issue.4, pp.310-311, 2016.
DOI : 10.1038/nnano.2016.6

L. Vroman, When Blood Is Touched, Materials, vol.13, issue.4, pp.1547-1557, 2009.
DOI : 10.1067/mtc.2001.112530

URL : http://doi.org/10.3390/ma2041547

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Advanced Drug Delivery Reviews, vol.61, issue.6, pp.61-428, 2009.
DOI : 10.1016/j.addr.2009.03.009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3683962

T. Zoungrana, G. Findenegg, and W. Norde, Structure, Stability, and Activity of Adsorbed Enzymes, Journal of Colloid and Interface Science, vol.190, issue.2, pp.437-448, 1997.
DOI : 10.1006/jcis.1997.4895

W. Norde and J. P. Favier, Structure of adsorbed and desorbed proteins, Colloids and Surfaces, vol.64, issue.1, pp.87-93, 1992.
DOI : 10.1016/0166-6622(92)80164-W

M. Lundqvist, I. Sethson, and B. H. Jonsson, Protein Adsorption onto Silica Nanoparticles:?? Conformational Changes Depend on the Particles' Curvature and the Protein Stability, Langmuir, vol.20, issue.24, pp.10639-10647, 2004.
DOI : 10.1021/la0484725

E. Sanfins, J. Dairou, S. Hussain, F. Busi, A. F. Chaffotte et al., -Acetyltransferase Enzymes, ACS Nano, vol.5, issue.6, pp.4504-4511, 2011.
DOI : 10.1021/nn103534d

URL : https://hal.archives-ouvertes.fr/hal-01122677

W. Norde and C. I. Anusiem, Adsorption , Desorption and Re-Adsorption of Proteins on Solid Surfaces. Colloids And Surfaces, pp.66-992, 1992.

W. Norde, My voyage of discovery to proteins in flatland ???and beyond, Colloids and Surfaces B: Biointerfaces, vol.61, issue.1, pp.1-9, 2008.
DOI : 10.1016/j.colsurfb.2007.09.029

C. Mathé, S. Devineau, J. C. Aude, G. Lagniel, S. Chédin et al., Structural Determinants for Protein adsorption/non-adsorption to Silica Surface, PLoS ONE, vol.55, issue.11, pp.1-13, 2013.
DOI : 10.1371/journal.pone.0081346.s003

A. A. Vertegel, R. W. Siegel, and J. S. Dordick, Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme, Silica Nanoparticle Size Influences the Structure and Enzymatic Activity of Adsorbed Lysozyme, pp.6800-6807, 2004.
DOI : 10.1021/la0497200

R. Cukalevski, M. Lundqvist, C. Oslakovic, S. Linse, and T. Cedervall, Structural Changes in Apolipoproteins Bound to Nanoparticles, Langmuir, vol.27, issue.23, pp.14360-14369, 2011.
DOI : 10.1021/la203290a

S. Devineau, J. M. Zanotti, C. Loupiac, L. Zargarian, F. Neiers et al., Myoglobin on Silica: A Case Study of the Impact of Adsorption on Protein Structure and Dynamics, Langmuir, vol.29, issue.44, pp.29-13465
DOI : 10.1021/la4035479

M. Lundqvist, P. Nygren, H. Jonsson, and K. Broo, Induction of Structure and Function in a Designed Peptide upon Adsorption on a Silica Nanoparticle. Angew. Chemie -Int, pp.8169-8173, 2006.

J. Kim, J. W. Grate, and P. Wang, Nanostructures for enzyme stabilization, Chemical Engineering Science, vol.61, issue.3, pp.61-1017, 2006.
DOI : 10.1016/j.ces.2005.05.067

M. N. Gupta, M. Kaloti, M. Kapoor, and K. Solanki, Nanomaterials as Matrices for Enzyme Immobilization, Artificial Cells, Blood Substitutes, and Biotechnology, vol.131, issue.2, pp.98-109, 2011.
DOI : 10.1016/S1748-0132(08)70014-8

E. P. Cipolatti, M. J. Silva, M. Klein, V. Feddern, M. M. Feltes et al., Current status and trends in enzymatic nanoimmobilization, Journal of Molecular Catalysis B: Enzymatic, vol.99, pp.56-67, 2014.
DOI : 10.1016/j.molcatb.2013.10.019

N. O. Fischer, C. M. Mcintosh, J. M. Simard, and V. M. Rotello, Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors, Proceedings of the National Academy of Sciences, vol.25, issue.1, pp.99-5018, 2002.
DOI : 10.1146/annurev.bb.25.060196.000415

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC122714

P. Pandey, S. P. Singh, S. K. Arya, V. Gupta, M. Datta et al., Application of Thiolated Gold Nanoparticles for the Enhancement of Glucose Oxidase Activity, Langmuir, vol.23, issue.6, pp.3333-3337, 2007.
DOI : 10.1021/la062901c

C. Czeslik, C. Royer, T. Hazlett, and W. Mantulin, Reorientational Dynamics of Enzymes Adsorbed on Quartz: A Temperature-Dependent Time-Resolved TIRF Anisotropy Study, Biophysical Journal, vol.84, issue.4, pp.2533-2541, 2003.
DOI : 10.1016/S0006-3495(03)75058-9

C. Motzkus, F. Gaie-levrel, P. Ausset, M. Maille, N. Baccile et al., Impact of batch variability on physicochemical properties of manufactured TiO2 and SiO2 nanopowders, Impact of Batch Variability on Physicochemical Properties of Manufactured TiO2 and SiO2 Nanopowders, pp.39-53, 2014.
DOI : 10.1016/j.powtec.2014.06.055

URL : https://hal.archives-ouvertes.fr/hal-01281482

F. Schrurs and D. Lison, Focusing the Research Efforts (58) Perutz, M. F. Preparation of Haemoglobin Crystals, Nat. Nanotechnol. J. Cryst. Growth, vol.2012, issue.21, pp.546-548, 1968.
DOI : 10.1038/nnano.2012.148

W. Jelkmann and C. Baufer, What is the best method to remove 2,3-diphosphoglycerate from hemoglobin?, Analytical Biochemistry, vol.75, issue.2, pp.382-388, 1976.
DOI : 10.1016/0003-2697(76)90092-0

E. Antonini and M. Brunori, Hemoglobin and Myoglobin in Their Interactions with Ligands, Frontiers of Biology, 1971.

E. Krause, M. Beyermann, M. Dathe, S. Rothemund, and M. Bienert, Location of an Amphipathic .alpha.-Helix in Peptides Using Reversed-Phase HPLC Retention Behavior of D-Amino Acid Analogs, Analytical Chemistry, vol.67, issue.2, pp.252-258, 1995.
DOI : 10.1021/ac00098a003

G. Böhm, R. Muhr, and R. Jaenicke, Quantitative analysis of protein far UV circular dichroism spectra by neural networks, "Protein Engineering, Design and Selection", vol.5, issue.3, pp.191-195, 1992.
DOI : 10.1093/protein/5.3.191

B. Giardina and G. Amiconi, [23] Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectrophotometric procedures, Methods Enzymol, vol.76, pp.417-427, 1981.
DOI : 10.1016/0076-6879(81)76133-0

I. Langmuir, THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM., Journal of the American Chemical Society, vol.40, issue.9, pp.1361-1403, 1918.
DOI : 10.1021/ja02242a004

R. D. Johnson and F. Arnold, The temkin isotherm describes heterogeneous protein adsorption, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1247, issue.2, pp.1247-293, 1995.
DOI : 10.1016/0167-4838(95)00006-G

M. J. Mura-galelli, J. C. Voegel, S. Behr, E. F. Bres, and P. Schaaf, Adsorption/desorption of human serum albumin on hydroxyapatite: a critical analysis of the Langmuir model., Proceedings of the National Academy of Sciences, vol.88, issue.13, pp.88-5557, 1991.
DOI : 10.1073/pnas.88.13.5557

R. A. Latour, The langmuir isotherm: A commonly applied but misleading approach for the analysis of protein adsorption behavior, Journal of Biomedical Materials Research Part A, vol.112, issue.3, pp.949-958
DOI : 10.1002/jbm.a.35235

L. T. Zhuravlev, The surface chemistry of amorphous silica. Zhuravlev model, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.173, issue.1-3, pp.1-3, 2000.
DOI : 10.1016/S0927-7757(00)00556-2

S. V. Patwardhan, F. S. Emami, R. J. Berry, S. E. Jones, R. R. Naik et al., Chemistry of Aqueous Silica Nanoparticle Surfaces and the Mechanism of Selective Peptide Adsorption, Journal of the American Chemical Society, vol.134, issue.14, pp.134-6244
DOI : 10.1021/ja211307u

M. A. Brown and A. Goel, Abbas, Z. Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface. Angew. Chemie -Int, pp.55-3790, 2016.

D. S. Katz, S. P. White, W. Huang, R. Kumar, and D. W. Christianson, Structure Determination of Aquomet Porcine Hemoglobin at 2.8 ?? Resolution, Journal of Molecular Biology, vol.244, issue.5, pp.541-553, 1994.
DOI : 10.1006/jmbi.1994.1751

J. Meissner, A. Prause, B. Bharti, and G. H. Findenegg, Characterization of protein adsorption onto silica nanoparticles: influence of pH and ionic strength, Colloid and Polymer Science, vol.119, issue.W1, pp.293-3381
DOI : 10.1007/s00396-015-3754-x

S. Devineau, C. Mathé, V. Legros, F. Gonnet, R. Daniel et al., The nano-bio interface mapped by oxidative footprinting of the adsorption sites of myoglobin, Analytical and Bioanalytical Chemistry, vol.8, issue.30, pp.406-8037
DOI : 10.1007/s00216-014-8188-7

P. Billsten, M. Wahlgren, T. Arnebrandt, J. Mcguire, and H. Elwing, Structural Changes of T4 Lysozyme upon Adsorption to Silica Nanoparticles Measured by Circular Dichroism, Journal of Colloid and Interface Science, vol.175, issue.1, pp.77-82, 1995.
DOI : 10.1006/jcis.1995.1431

X. Shen, X. Liou, L. Ye, H. Liang, and Z. Wang, Spectroscopic studies on the interaction between human hemoglobin and CdS quantum dots, Journal of Colloid and Interface Science, vol.311, issue.2, pp.311-400, 2007.
DOI : 10.1016/j.jcis.2007.03.006

M. Mahato, P. Pal, B. Tah, M. Ghosh, and G. B. Talapatra, Study of silver nanoparticle???hemoglobin interaction and composite formation, Colloids and Surfaces B: Biointerfaces, vol.88, issue.1, pp.141-149, 2011.
DOI : 10.1016/j.colsurfb.2011.06.024

N. Choy, V. Raussens, and V. Narayanaswami, Inter-molecular Coiled-coil Formation in Human Apolipoprotein E C-terminal Domain, Journal of Molecular Biology, vol.334, issue.3, pp.527-539, 2003.
DOI : 10.1016/j.jmb.2003.09.059

T. Yonetani and M. Laberge, Protein dynamics explain the allosteric behaviors of hemoglobin, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1784, issue.9, pp.1146-1158, 2008.
DOI : 10.1016/j.bbapap.2008.04.025

J. A. Hewitt, J. V. Kilmartin, L. F. Eyck, and M. F. Perutz, Noncooperativity of the ???? Dimer in the Reaction of Hemoglobin with Oxygen, Proceedings of the National Academy of Sciences, vol.69, issue.1, pp.203-207, 1972.
DOI : 10.1073/pnas.69.1.203

S. G. Condo, M. Corda, M. T. Sanna, M. G. Pellegrint, M. P. Ruiz et al., Molecular basis of low-temperature sensitivity in pig hemoglobins, European Journal of Biochemistry, vol.368, issue.2, pp.773-776, 1992.
DOI : 10.1016/0301-4622(90)88014-J

K. Fushitani and A. Riggs, The Extracellular Hemoglobin of the Earthworm, Lumbricus Terrestris: Oxygenation Properties of Isolated Chains, Trimer, and a Reassociated Product, J. Biol. Chem, issue.16, pp.266-10275, 1991.

B. Venkatesh, G. Miyazaki, K. Imai, H. Morimoto, and H. Hori, Oxygen Equilibrium and EPR Studies on ??1??1 Hemoglobin Dimer, Journal of Biochemistry, vol.136, issue.5, pp.595-600, 2004.
DOI : 10.1093/jb/mvh166

M. Laberge, I. Kövesi, T. Yonetani, and J. Fidy, R-state hemoglobin bound to heterotropic effectors: models of the DPG, IHP and RSR13 binding sites, FEBS Letters, vol.1386, issue.3, pp.579-627, 2005.
DOI : 10.1016/j.febslet.2004.12.033

A. Kondo and J. Mihara, Comparison of Adsorption and Conformation of Hemoglobin and Myoglobin on Various Inorganic Ultrafine Particles, Journal of Colloid and Interface Science, vol.177, issue.1, pp.214-221, 1996.
DOI : 10.1006/jcis.1996.0023

M. J. Cocco, Y. H. Kao, A. T. Phillips, and J. Lecomte, Structural comparison of apomyoglobin and metaquomyoglobin: pH titration of histidines by NMR spectroscopy, Biochemistry, vol.31, issue.28, pp.31-6481, 1992.
DOI : 10.1021/bi00143a018

D. G. Isom, C. A. Castañeda, B. R. Cannon, and B. García-moreno, Large shifts in pKa values of lysine residues buried inside a protein, Proceedings of the National Academy of Sciences, vol.77, issue.1, pp.108-5260, 2011.
DOI : 10.1002/prot.340010113

A. Myalitsin, S. Urashima, S. Nihonyanagi, S. Yamaguchi, and T. Tahara, Water Structure at the Buried Silica/Aqueous Interface Studied by Heterodyne-Detected Vibrational Sum-Frequency Generation, The Journal of Physical Chemistry C, vol.120, issue.17, pp.9357-9363, 2016.
DOI : 10.1021/acs.jpcc.6b03275

A. Rimola, D. Costa, M. Sodupe, and P. Ugliengo, Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments, Chemical Reviews, vol.113, issue.6, pp.4216-4313, 2013.
DOI : 10.1021/cr3003054

URL : https://hal.archives-ouvertes.fr/hal-00836288

O. Sire, C. Zentz, S. Pin, L. Chinsky, P. Turpin et al., Long-Range Effects in Liganded Hemoglobin Investigated by Neutron and UV Raman Scattering, FTIR, and CD Spectroscopies, Journal of the American Chemical Society, vol.119, issue.50, pp.12095-12099, 1997.
DOI : 10.1021/ja9703786

A. Kondo and H. Fukuda, Effects of Adsorption Conditions on Kinetics of Protein Adsorption and Conformational Changes at Ultrafine Silica Particles, Journal of Colloid and Interface Science, vol.198, issue.1, pp.34-41, 1998.
DOI : 10.1006/jcis.1997.5278

A. Arnone, X-ray Diffraction Study of Binding of 2,3-Diphosphoglycerate to Human Deoxyhaemoglobin, Nature, vol.50, issue.5351, pp.146-149, 1972.
DOI : 10.1038/237146a0

V. Richard, G. G. Dodson, and Y. Mauguen, Human Deoxyhaemoglobin-2,3-Diphosphoglycerate Complex Low-Salt Structure at 2??5 ?? Resolution, Journal of Molecular Biology, vol.233, issue.2, pp.270-274, 1993.
DOI : 10.1006/jmbi.1993.1505

K. Imai, Allosteric Effects in Haemoglobin, 1982.

A. Tsuneshige, K. Kanaori, U. Samuni, D. Danstker, J. M. Friedman et al., Semihemoglobins, High Oxygen Affinity Dimeric Forms of Human Hemoglobin Respond Efficiently to Allosteric Effectors without Forming Tetramers, Journal of Biological Chemistry, vol.279, issue.47, pp.279-48959, 2004.
DOI : 10.1074/jbc.M405909200

B. E. Hallaway, P. E. Hallaway, W. A. Tisel, and A. Rosenberg, Changes in conformation and function of hemoglobin and myoglobin induced by adsorption to silica, Biochemical and Biophysical Research Communications, vol.86, issue.3, pp.689-696, 1979.
DOI : 10.1016/0006-291X(79)91768-6

D. Franchi, C. Fronticelli, and E. Bucci, Folding domains as functional tools in allosteric systems: a heme-dependent domain in hemoglobin .beta. subunits, Biochemistry, vol.21, issue.24, pp.6-2960, 1982.
DOI : 10.1021/bi00267a024

J. Monod, J. Wyman, and J. P. Changeux, On the nature of allosteric transitions: A plausible model, Journal of Molecular Biology, vol.12, issue.1, pp.88-118, 1965.
DOI : 10.1016/S0022-2836(65)80285-6

M. F. Perutz, A. J. Wilkinson, M. Paoli, and G. G. Dodson, THE STEREOCHEMICAL MECHANISM OF THE COOPERATIVE EFFECTS IN HEMOGLOBIN REVISITED, Annual Review of Biophysics and Biomolecular Structure, vol.27, issue.1, pp.1-34, 1998.
DOI : 10.1146/annurev.biophys.27.1.1

T. Yonetani and K. Kanaori, How does hemoglobin generate such diverse functionality of physiological relevance?, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1834, issue.9, pp.1834-1873
DOI : 10.1016/j.bbapap.2013.04.026