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Background: Nuclear short-range correlations (SRCs) are corrections to mean-field wave functions connected
with the short-distance behavior of the nucleon-nucleon interaction. These SRCs provide corrections to lepton-
nucleus cross sections as computed in the impulse approximation (IA).
Purpose: We want to investigate the influence of SRCs on the one-nucleon (1N ) and two-nucleon (2N )
knockout channels for muon-neutrino induced processes on a 12C target at energies relevant for contemporary
measurements.
Method: The model adopted in this work corrects the impulse approximation for SRCs by shifting the complexity
induced by the SRCs from the wave functions to the operators. Due to the local character of the SRCs, it is argued
that the expansion of these operators can be truncated at a low order.
Results: The model is compared with electron-scattering data, and two-particle two-hole responses are presented
for neutrino scattering. The contributions from the vector and axial-vector parts of the nuclear current as well as
the central, tensor, and spin-isospin parts of the SRCs are studied.
Conclusions: Nuclear SRCs affect the 1N knockout channel and give rise to 2N knockout. The exclusive
neutrino-induced 2N knockout cross section of SRC pairs is shown and the 2N knockout contribution to the QE
signal is calculated. The strength occurs as a broad background which extends into the dip region.

DOI: 10.1103/PhysRevC.94.024611

I. INTRODUCTION

One of the major issues in neutrino-scattering studies
is the contribution of two-body currents to the measured
quasielastic-like neutrino-nucleus (νA) cross section. A thor-
ough knowledge of this contribution is necessary for a rigorous
description of νA cross sections at intermediate (0.1–2 GeV)
energies. A genuine quasielastic (QE) calculation, where the
W boson interacts with a single nucleon which leads to a
one-particle one-hole (1p1h) excitation, does not accurately
describe recent measurements of neutrino (ν) and antineutrino
(ν) cross sections [1–7]. Since typical νμA measurements
do not uniquely determine the nuclear final state as only
the energy and momentum of the muon are measured, the
absorption of the W boson by a single nucleon is only one of
the many possible interaction mechanisms. In addition one
must consider coupling to nucleons belonging to short-range
correlation (SRC) pairs and to two-body currents arising from
meson-exchange currents (MECs). This leads to multinucleon
excitations, of which the two-particle two-hole (2p2h) ones
constitute the leading order. Several theoretical approaches
have analyzed the role of multinucleon excitations in the νA
cross sections by comparing their results with experimental
data [8–26]. A complete theoretical model should in principle
include short-range and long-range nuclear correlations, MEC
and final-state interactions (FSIs). In this work, we focus on
the influence of nuclear SRCs on inclusive QE cross sections.
Different models which account for multinucleon effects in
νA and νA reactions have been developed [27]. These are the
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microscopic models of Martini et al. [10] and Nieves et al. [13]
and the superscaling approach (SuSA) [12]. Summarizing, the
models by Martini et al. and Nieves et al. take nuclear finite-
size effects into account via a local density approximation
and a semiclassical expansion of the response function, but
ignore the shell structure which is taken into account in
Refs. [28,29]. Long-range RPA correlations are taken into
account in Refs. [10,13,28,29]. In the 2p2h sector, the two
models are based on the Fermi gas, which is the simplest
independent-particle model (IPM). Both approaches consider
two-body MEC contributions. The nucleon-nucleon SRCs are
included by considering an additional two-body current, the
correlation current. With the introduction of the correlation
contributions, the interference between correlations and MECs
naturally appears. In the SuSA approach, a superscaling
analysis of electron scattering results is used to predict νA
cross sections [30]. The effects of SRCs and MECs in the
1p1h sector are effectively included via the phenomenological
superscaling function. In [23], the SuSA model is combined
with MECs in the 2p2h sector, by using a parametrization of
the microscopic calculations by De Pace et al. [31]. The corre-
lations and correlations-MEC interference terms are absent in
the 2p2h channel. A relativistic Fermi gas (RFG) based model
that accounts for MECs, correlations, and interference in the
1p1h and 2p2h sector for electron-nucleus (eA) scattering has
been developed by Amaro et al. [32,33], and has recently been
extended towards νA scattering [34]. Other approaches have
also been developed. In ab initio calculations of sum rules
for neutral currents on 12C [35,36], the nuclear correlations,
and the MEC contributions are inherently taken into account.
The authors conclude that the presence of two-body currents
significantly influences the nuclear responses and sum rules,
even at QE kinematics. Recent work on electron scattering
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by Benhar et al. [37] and Rocco et al. [38] has generalized
the formalism based on a factorization ansatz and nuclear
spectral functions to treat transition matrix elements involving
two-body currents.

In this paper, we present a model which goes beyond the
IPM by implementing SRCs in the nuclear wave functions.
This work is a first step in an extension towards the weak
sector of the model developed by the Ghent group, which
accounts for MEC as well as SRCs, for photoinduced
[39] and electroinduced [40,41] 1p1h and 2p2h reactions.
The model describes exclusive 16O(e,e′pp) [42,43], semi-
exclusive 16O(e,e′p) [44,45] as well as inclusive 12C(e,e′)
and 40Ca(e,e′) [46] scattering with a satisfactory accuracy.
Several groups studied two-body effects in exclusive eA
interactions [47–49], but so far have not presented results
for weak interactions. The continuum and bound-state wave
functions in this work are computed using a Hartree-Fock (HF)
method with the same Hamiltonian. This approach guarantees
that the initial and final nuclear states are orthogonal. This is
of great importance in view of the evaluation of multinucleon
corrections to the cross section. The influence of SRCs is
examined by calculating transition matrix elements of the
one-body nuclear current between correlated nuclear states.
Our approach translates into the calculation of transition
matrix elements of an effective operator, which consists of a
one- and a two-body part, between uncorrelated nuclear wave
functions. The influence of the central, tensor, and spin-isospin
correlations is studied.

In this work, we will refer to the double differential cross
section as a function of the energy transfer and lepton scattering
angle as the inclusive quasielastic A(νμ,μ−) cross section.
Both one-nucleon (1N ) and two-nucleon (2N ) knockout con-
tribute, as do other processes, such as meson production, which
are not included in this work. A second topic addressed in this
paper is that of exclusive A(νμ,μ−NaNb) reactions, where,
next to the scattered μ−, two outgoing nucleons are detected.
Up to now the theoretical papers studying multinucleon
excitations in νA scattering [10–26] have considered only
inclusive processes. The semi-exclusive A(νμ,μ−N ) reactions
detect only one of the outgoing nucleons, but the residual
nuclear system is excited above the 2N emission threshold.
From the experimental side, the ArgoNeuT Collaboration
recently published the first results of exclusive neutrino
interactions, where a clear back-to-back knockout signal was
detected in a subset of the events [50]. Experiments using
liquid argon detectors such as MicroBooNE [51] and DUNE
[52] or scintillator trackers such as MINERvA [53] and NOvA
[54] will also be able to measure exclusive cross sections.

This paper is organized as follows. In Sec. II we describe
the formalism used to account for SRCs in lepton-nucleus
scattering. In Sec. III we address 12C(e,e′) 1N knockout and
describe the influence of SRCs. In Sec. IV 2N knockout
cross sections are studied. First the exclusive 12C(νμ,μ−NaNb)
cross sections are examined, showing a clear back-to-back
dominance. Next, the exclusive 2N knockout cross section is
used to calculate the semi-exclusive and the inclusive cross
sections. The inclusive 12C(e,e′) cross section with 1N and
2N knockout is presented as a benchmark. Finally, in Sec. V,
we present results for inclusive 12C(νμ,μ−) cross sections.

II. SHORT-RANGE CORRELATIONS AND
NUCLEAR CURRENTS

Different techniques to correct IPM wave functions for
correlations have been developed over the years. We follow
the approach outlined in Refs. [40,41,55,56]. Upon calculating
transition matrix elements in an IPM, the nuclear wave
functions are written as Slater determinants |�〉. The correlated
wave functions |�〉 are constructed by applying a many-body
correlation operator Ĝ to the uncorrelated wave functions |�〉,

|�〉 = 1√N Ĝ|�〉, (1)

with N = 〈�|Ĝ†Ĝ|�〉 the normalization constant. In deter-
mining Ĝ, one is guided by the basic features of the one-boson
exchange nucleon-nucleon force which contains many terms.
Its short-range part, however, is dominated by the central (c),
tensor (tτ ), and spin-isospin (στ ) components. To a good
approximation, Ĝ can be written as

Ĝ ≈ Ŝ
⎛⎝ A∏

i<j

[1 + l̂(i,j )]

⎞⎠, (2)

with Ŝ the symmetrization operator and

l̂(i,j ) = −gc(rij ) + fστ (rij )(�σi · �σj )(�τi · �τj )

+ ftτ (rij )Ŝij (�τi · �τj ), (3)

where rij = |�ri − �rj | and Ŝij is the tensor operator

Ŝij = 3

r2
ij

(�σi · �rij )(�σj · �rij ) − (�σi · �σj ). (4)

This paper uses the central correlation function gc(rij ) by
Gearhaert and Dickhoff [57] and the tensor ftτ (rij ) and
spin-isospin correlation functions fστ (rij ) by Pieper et al. [58].
For small internucleon distances, ftτ and fστ are considerably
weaker than gc. At medium internucleon distances (rij �
3 fm), l̂(rij ) → 0. In momentum space ftτ dominates for
relative momenta 200–400 MeV/c [41]. Transition matrix
elements between correlated states |�〉 can be written as matrix
elements between uncorrelated states |�〉, whereby the effect
of the SRCs is implemented as an effective transition operator
[40,41,56]

〈�f|Ĵ nucl
μ |�i〉 = 1√NiNf

〈�f|Ĵ eff
μ |�i〉. (5)

In the IA, the many-body nuclear current can be written as a
sum of one-body operators

Ĵ nucl
μ =

A∑
i=1

Ĵ [1]
μ (i). (6)

The effective nuclear current, which accounts for SRCs, can
be written as

Ĵ eff
μ ≈

A∑
i=1

Ĵ [1]
μ (i) +

A∑
i<j

Ĵ [1],in
μ (i,j ) +

⎡⎣ A∑
i<j

Ĵ [1],in
μ (i,j )

⎤⎦†

,

(7)
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with

Ĵ [1],in
μ (i,j ) = [Ĵ [1]

μ (i) + Ĵ [1]
μ (j )

]̂
l(i,j ). (8)

The effective operator consists of one- and two-body terms.
The superscript “in” refers to initial-state correlations. In the
expansion of the effective operator, only terms that are linear in
the correlation operators are retained. In Ref. [56] it is argued
that this approximation accounts for the majority of the SRC
effects.

III. SRC CORRECTIONS TO INCLUSIVE
ONE-NUCLEON KNOCKOUT

In this section we describe electron and charged-current
(CC) muon-neutrino (νμ) induced 1N knockout:

e(Ee,�ke) + A → e′(Ee′ ,�ke′ ) + (A − 1)∗ + N (EN, �pN ),

νμ

(
Eνμ

,�kνμ

)+ A → μ(Eμ,�kμ) + (A − 1)∗ + N (EN, �pN ).

Throughout this work we will refer to the initial lepton as l
and the final state lepton as l′. The four-momentum transfer,
qμ = (ω,�q), is

ω = El − El′ , �q = �kl − �kl′ , (9)

and Q2 = �q 2 − ω2. In the 1N knockout channel, we calculate
the inclusive responses and integrate over �N . The double
differential A(e,e′) cross section is written as

dσ

dEe′d�e′
= σ Mott[ve

LWCC + ve
T WT

]
. (10)

For CC A(νμ,μ−) interactions, one has

dσ

dEμd�μ

= σWζ [vCCWCC + vCLWCL + vLLWLL

+ vT WT ∓ vT ′WT ′], (11)

the − (+) sign refers to neutrino (antineutrino) scattering. The
prefactors are defined as

σ Mott =
(

α cos(θe′/2)

2Ee sin2(θe′/2)

)2

, (12)

σW =
(

GF cos(θc)Eμ

2π

)2

, (13)

with α the fine-structure constant, θe′ the electron scattering
angle, GF the Fermi constant, θc the Cabibbo angle, and the
kinematic factor ζ ,

ζ =
√

1 − m2
μ

E2
μ

. (14)

The functions v contain the lepton kinematics and the response
functions W the nuclear dynamics. The W are defined as
products of transition matrix elements Jλ,

Jλ = 〈�f|Ĵλ(q)|�i〉. (15)

Here, |�f〉 and |�i〉 refer to the final and initial correlated
nuclear state and Ĵλ are the spherical components of the
nuclear four-current in the IA. The results presented in this

work consider 12C as target nucleus. For 12C(e,e′) two 1p1h
final states are accessible,

|�f〉1p1h = |11C ,n〉, |11B ,p〉, (16)

while for CC neutrino scattering only one 1p1h final state is
accessible,

|�f〉1p1h = |11C ,p〉. (17)

The expressions for the kinematic factors and the response
functions are given in Appendix A. As explained in Sec. II,
we replace the one-body nuclear current Ĵλ in (15) with the
effective nuclear current Ĵ eff

λ , which accounts for SRCs. This
results in a coherent sum of a one- and a two-body contribution
to the Jλ,

Jλ ≈ J (1)
λ + J (2)

λ , (18)

where

J (1)
λ =

A∑
i=1

〈
�

(A−1)
f (JR,MR); �pNms

∣∣Ĵ [1]
λ (i)

∣∣�gs
〉
, (19)

J (2)
λ =

A∑
i<j

〈
�

(A−1)
f (JR,MR); �pNms

∣∣Ĵ [1],in
λ (i,j )

∣∣�gs
〉

+
A∑

i<j

〈
�

(A−1)
f (JR,MR); �pNms

∣∣[Ĵ [1],in
λ (i,j )

]†∣∣�gs
〉
,

(20)

with |�gs〉 the ground-state Slater determinant of the target nu-
cleus. The bra states have an on-shell nucleon with momentum
�pN and spin ms and a residual A − 1 nucleus with quantum
numbers JR,MR , which can either be the ground state or a low
lying excited state.

We work in the so-called spectator approach (SA), where
the nucleon absorbing the boson is the one that becomes
asymptotically free. The nucleon in the continuum, however,
is still under influence of the potential of the A − 1 system:
the outgoing waves are no plane waves. This distortion

A{
Na

Nb

X

distortion

}A − 2

FIG. 1. Graphical presentation of a 2p2h excitation induced by
SRCs (dashed area) with distortion effects (dashed lines) from the
A − 2 spectator nucleons. The boson X can be either a γ ∗ or a W+

in this work.
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h

X

p

Σh′

h

X

p

FIG. 2. Diagrams considered in the 1p1h calculations reported in
this paper. The left diagram shows the 1p1h channel in the IA and the
right diagram shows the SRC corrections (dashed oval).

effect of the residual nuclear system on the continuum
nucleon is accounted for by computing the continuum and
bound-state wave functions using the same potential [61],
as shown in Fig. 1 in the case of 2N emission. The wave
functions are constructed through a HF calculation with an
effective Skyrme-type interaction [62]. The single-particle
wave functions are calculated in a nonrelativistic framework.
Relativistic corrections are implemented in an effective fashion
as explained in Refs. [63,64]. This can be achieved by the
following substitution for ω in the computation of the outgoing
nucleon wave functions:

ω → ω

(
1 + ω

2mN

)
, (21)

with mN the nucleon mass. The HF wave functions used in
this model successfully describe the low energy side of the
quasielastic νA and νA cross sections using a continuum
random phase approximation (CRPA) with relativistic lepton
kinematics [28,29,65,66].

When adopting a multipole expansion, the calculation of
the amplitudes (19) can be reduced to the computation of

1p1h matrix elements of the form

〈ph−1|Ô(1)
JM (q)|�0〉 = (−1)jp−mp

(
jp J jh

−mp M mh

)
× 〈p∣∣∣∣Ô(1)

J (q)
∣∣∣∣h〉, (22)

with |�0〉 the single-particle vacuum and Ô(1)
JM a multipole

operator as defined in Appendix B. The evaluation of the
two-body part of the matrix elements (20) reduces to (Ĵ ≡√

2J + 1)

〈ph−1|Ô(2)
JM (q)|�0〉

=
∑
h′

∑
J1J2

Ĵ1Ĵ2(−1)−jp+j ′
h−J2−M

(
jp J jh

mp −M −mh

)

×
{
jp J jh

J2 j ′
h J1

}〈
ph′; J1

∣∣∣∣Ô(2)
J (q)

∣∣∣∣hh′; J2
〉
as, (23)

with Ô(2)
JM a two-body operator, defined as in Eq. (8). The

sum
∑

h′ extends over all occupied single-particle states of the
target nucleus. The antisymmetrized reduced matrix element
is defined as〈

ab; J1

∣∣∣∣Ô(2)
J (q)

∣∣∣∣cd; J2
〉
as

= 〈ab; J1

∣∣∣∣Ô(2)
J (q)

∣∣∣∣cd; J2
〉− (−1)jc+jd−J2

× 〈ab; J1

∣∣∣∣Ô(2)
J (q)

∣∣∣∣dc; J2
〉
. (24)

The reduced matrix elements accounting for correlations are
discussed in Appendix B. The diagrams corresponding with
the matrix elements in Eqs. (22) and (23) are shown in Fig. 2.

The influence of SRC currents on the 1p1h 12C(e,e′)
responses is shown in Fig. 3 and compared with data. The
form factors used in the electron scattering calculations are
the standard dipole form factors and a Galster parametrization
for the neutron electric form factor [67]. The predictions are
compared with Rosenbluth separated cross section data for a
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FIG. 3. The ω dependence of the longitudinal (WCC) and transverse (WT ) responses for the 1p1h contribution to 12C(e,e′). Results are
shown for three values of the momentum transfer q. The data are from Refs. [59,60].
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fixed momentum transfer. The IA calculations overestimate
the longitudinal responses, while the transverse responses are
slightly underestimated for ω values beyond the QE peak. The
differences can be attributed to long-range correlations [29].
These results are in line with other predictions using similar
approaches [60,68]. The two-body corrections from SRCs in
the 1p1h channel result in a small increase of the longitudinal
and a marginal increase of the transverse response function.

IV. SRC CONTRIBUTION TO TWO-NUCLEON
KNOCKOUT

For 2N knockout, the following interactions are considered:

e(Ee,�ke) + A → e′(Ee′ ,�ke′ ) + (A − 2)∗

+Na(Ea, �pa) + Nb(Eb, �pb), (25)

νμ

(
Eνμ

,�kνμ

)+ A → μ(Eμ,�kμ) + (A − 2)∗

+Na(Ea, �pa) + Nb(Eb, �pb). (26)

Electroinduced 2N knockout has three possible final states,

|�f〉2p2h = |10Be ,pp〉, |10B ,pn〉, |10C ,nn〉, (27)

while CC neutrino reactions have two possible final states,
|�f〉2p2h = |10B ,pp〉, |10C ,pn〉. (28)

The two-body transition matrix elements are given by

Jλ =
A∑

i<j

〈
�

(A−2)
f (JR,MR); �pama; �pbmb

∣∣Ĵ [1],in
λ (i,j )|�gs〉

+
A∑

i<j

〈
�

(A−2)
f (JR,MR); �pama; �pbmb

∣∣[Ĵ [1],in
λ (i,j )

]†|�gs〉,

(29)

where two outgoing nucleons are created along with the
residual A − 2 nucleus. Only the two-body part of the effective
nuclear current contributes to the 2N knockout cross section. In
2N knockout from finite nuclei, we follow the same approach
as in the 1N knockout calculations: adopt the SA and neglect
the mutual interaction between the outgoing particles.

The diagrams considered in the 2N knockout calculations
presented in this paper are shown in Fig. 4. In the adopted mul-
tipole expansion, the calculation of the transition amplitudes
(29) is reduced to the calculation of 2p2h matrix elements of
the form

〈papb(hh′)−1|Ô(2)
JM |�0〉 =

∑
J1M1

∑
JRMR

(−1)JR+MR+1

Ĵ1

〈
jamja

,jbmjb

∣∣J1M1
〉〈JR − MR,JM|J1M1〉

× 〈jhmh,j
′
hm

′
h|JRMR〉〈papb; J1

∣∣∣∣Ô(2)
J

∣∣∣∣hh′; JR

〉
as. (30)

Note that the reduced matrix elements in Eqs. (23) and (30) have exactly the same structure. All the differential cross sections
for 2N knockout presented below are obtained by incoherently adding the possible final states. With 12C as a target nucleus, 2N
knockout from all possible shell combinations is considered.

A. Exclusive 2N knockout cross section

The exclusive A(e,e′NaNb) cross section in the laboratory frame, can be written as a function of four response functions:

dσ

dEe′d�e′dTad�ad�b

= σ Mottf −1
rec

[
ve

LWCC + ve
T WT + ve

T T WT T + ve
T LWT C

]
, (31)

with recoil factor

frec =
∣∣∣∣1 + Eb

EA−2

(
1 − �pb · (�q − �pa)

p2
b

)∣∣∣∣. (32)

Ten response functions contribute to A(νμ,μ−NaNb) reactions:

dσ

dEμd�μdTad�ad�b

= σWζf −1
rec [vCCWCC + vCLWCL + vLLWLL + vT WT + vT T WT T + vT CWT C + vT LWT L

∓ (vT ′WT ′ + vT C ′WT C ′ + vT L′WT L′)]. (33)

The kinematic functions v and response functions W are
defined in Appendix A and Ta refers to the kinetic energy of
particle a. The azimuthal information of the emitted nucleons
is contained in WT T , WT C , WT L, WT C ′ , and WT L′ , while all
the response functions depend on θa and θb.

In Fig. 5 the result of an exclusive 12C(νμ,μ−NaNb)
cross section is shown (Na = p, Nb = p′,n). We consider
in-plane kinematics, with both nucleons emitted in the lepton
scattering plane. A striking feature of the cross section is the

dominance of back-to-back nucleon knockout, reminiscent of
the “hammer events” seen by the ArgoNeuT Collaboration
[50]. This feature is independent of the interacting lepton and
the type of two-body currents, whether they are SRCs or MECs
(see Refs. [39–41]).

For 2N knockout reactions, momentum conservation can
be written as

�P12 + �q = �pa + �pb, (34)
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h h′

X

pa pb h h′

X

pa pb

FIG. 4. Diagrams considered in the 2N knockout calculations.

where �P12 is the initial center-of-mass (c.o.m.) momentum
of the pair. Referring to Fig. 5, it is clear that most strength
is residing in a region with P12 < 300 MeV/c. This behavior
can be understood in a factorized model [40,69–71], that shows
that the SRC dominated part of the 2N knockout cross section
is proportional to the c.o.m. distribution of close-proximity
pairs.

B. Semiexclusive 2N knockout cross section

In this section, we compute the contribution of exclusive
2N knockout A(l,l′NaNb) to the semi-exclusive A(l,l′Na)
cross section with the residual nuclear system (A − 1)∗
excited above the 2N emission threshold. This involves an
integration over the phase space of the undetected ejected
nucleons. In the case where the detected particle is a proton
(Na = p, Nb = p′ or n) one has

dσ

dEl′d�l′dTpd�p

(l,l′p)

=
∫

d�p′
dσ

dEl′d�l′dTpd�pd�p′
(l,l′pp′)

+
∫

d�n

dσ

dEl′d�l′dTpd�pd�n

(l,l′pn). (35)

One could calculate the exclusive cross section over the
full phase space of the undetected nucleons and perform
a numerical integration. We use the method outlined in
[40] and exploit the fact that the exclusive 2N knockout
strength resides in a well-defined part of phase space. For
each particular semi-exclusive kinematic setting (dTpd�p)
the exclusive (l,l′pNb) cross section is restricted to a small
part of the phase space of the undetected particle (d�b), as
shown in Fig. 5. In this limited part of the phase space, the
momentum of the undetected particle �pb varies very little,
which allows one to set �pb ≈ �p ave

b . The average momentum
( �p ave

b ) is determined by imposing quasideuteron kinematics,

�p ave
b = �q − �pp. (36)

As seen from Eq. (34), this average momentum is equivalent
to the case where the c.o.m. momentum of the initial pair
is zero, or equivalently where the residual nucleus has zero
recoil momentum (frec = 1). After the introduction of the
average momentum, the integration over d�p′ and d�n in
Eq. (35) can be performed analytically [40].

The results are shown in Fig. 6 for three kinematics relevant
for ongoing experiments. The differential cross section was
studied versus missing energy Em = ω − Tp − TA−1 and
proton angle θp for φp = 0◦.

dσ/dEμdΩμdEbdΩbdΩa(10−45cm2/MeV2)

nn + np (initial pairs)
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90

180
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1

1.5

2

2.5

FIG. 5. The 12C(νμ,μ−NaNb) cross section (Na = p,Nb = p′,n)
at Eνμ = 750 MeV,Eμ = 550 MeV,θμ = 15◦ and Tp = 50 MeV for
in-plane kinematics. The bottom plot shows the (θa,θb) regions with
P12 < 300 MeV/c.

We observe that the peak of the differential cross section
shifts towards higher Em as one moves towards higher θp,
where higher missing momenta are probed. For semi-exclusive
calculations, �P12 can no longer be reconstructed, since the
angular information of one of the particles is missing.
However, a Monte Carlo (MC) simulation allows one to locate
the region where P12 < 300 MeV/c is accessible. The bottom
panel of Fig. 6 shows the result of such a calculation for θμ =
15◦. This demonstrates that semi-exclusive cross sections are
dominated by pairs with small initial c.o.m. momentum.

Studying the different contributions separately, it can be
seen that the tensor contribution is localized at small θp,
whereas the contribution from the central correlations spans
a wider region of the proton scattering angle, as shown for
semi-exclusive A(e.e′p) in [41]. This feature does not change
when looking at neutrino scattering, as it is a result of the
fact that the central correlation function dominates at high
(>400 MeV/c) missing momenta, which are reached at larger
θp. From this behavior it is expected that central correlations
dominate at high pm while the tensor correlations dominate
for intermediate pm.

It is worth remarking that, at the selected kinematics, the
contribution from MECs is expected to overshoot the strength
attributed to SRCs [41].

C. Inclusive cross section

The 2N knockout contribution to the inclusive cross section
can be calculated using the same approach. An integration over
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FIG. 6. Semi-exclusive 12C(νμ,μ−p) cross section for Eνμ =
750 MeV, Eμ = 550 MeV, and three muon scattering angles for
in-plane kinematics (φp = 0◦). The bottom panel shows the (θp,Em)
area with P12 < 300 MeV/c for θμ = 15◦.

the phase space dTpd�p of the second particle is performed.
For Eq. (35) this results in

dσ

dEl′d�l′
(l,l′) =

∫
dTpd�p

dσ

dEl′d�l′dTpd�p

(l,l′p).

(37)

Performing the angular integration, it follows that five re-
sponses {T T ,T C,T L,T C ′,T L′} cancel since they are odd
functions of �p; the other five responses are integrated
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2p2h SRC

FIG. 7. The ω dependence of the 12C(e,e′) cross section at Ee =
680 MeV and θe′ = 60◦. The results are compared with data from
Ref. [59].

analytically. Integration over the outgoing nucleon kinetic
energy Tp is performed numerically.

The results of such a calculation for 12C(e,e′) are shown
in Fig. 7 and compared with data. The effect of the SRCs
on the 1p1h channel is very small. This is because, at the
selected scattering angle, the cross section is dominated by
the transverse response. As discussed above, the influence of
the SRCs on the transverse response was considerably smaller
than in the longitudinal response in the 1p1h channel.

The 2p2h contribution to the cross sections appears as a
broad background that extends into the dip region of the cross
section. The majority of the strength in the 2p2h signal stems
from the tensor correlations at small ω; the central correlations
gain in importance with growing energy transfers.

V. DOUBLE DIFFERENTIAL NEUTRINO
CROSS SECTIONS

In the forthcoming, the results for quasielastic 12C(νμ,μ−)
cross sections with 1N and 2N knockout are presented. For
neutrino interactions, the BBBA05 parametrization for the Q2

dependence of the vector form factors is used [72]. For the axial
form factor GA, the standard dipole form with MA = 1.03 GeV
is used.

The SRC induced 2p2h responses for CC neutrino inter-
actions at fixed momentum transfer are shown in Figs. 8
and 9. The Coulomb (RCC) and transverse (RT ) response
functions are presented to illustrate results for the time and
space components of the nuclear current, while maintaining
a correspondence with electron scattering. In general, the ω
dependence of the 2p2h responses does not show a distinct
peak as the 1p1h responses do, but continues to grow with
increasing ω. The reason for the broadening of the peak around
ω = Q2

2mN
for the 1p1h responses is the initial momentum of the

interacting nucleon in the direction of the interacting neutrino,
which lies within the interval (−kF , + kF ), with kF the Fermi
momentum. For 2p2h responses, the pairs initial momentum
P12 is the scaling variable. Momentum conservation poses no
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FIG. 8. The 2p2h SRC response functions RCC and RT for 12C(νμ,μ−) at q = 400 MeV/c. The contributions of the three different SRC
types (SRC = c + tτ + στ ) are shown for the vector (V) and axial (A) parts of the nuclear current.

limits on the initial momenta of the separate particles, only on
the momentum of the pair. The 2p2h responses of SRC pairs
appear as a broad background ranging from the 2N knockout
threshold to the maximum energy transfer, where ω = q.
Furthermore, the responses rise steadily with increasing ω,
which is the result of the growing phase space. A similar,
steadily increasing behavior of the 2p2h responses for electron
scattering is seen in Refs. [31,73–76] where the influence of
MECs was studied.

The separate contributions of the central (c), tensor (tτ ),
and spin-isospin (στ ) correlations are shown in Fig. 8, for the
vector and axial parts of the nuclear current. The tensor part
yields the biggest contribution for small ω transfers, while
the importance of the central part increases with ω. This is

directly related to the central and tensor correlation functions
in momentum space. In the axial part of the transverse
response, the spin-isospin contribution is of size similar to
the central and tensor correlations, while in the other channels
(Coulomb and vector-transverse) the spin-isospin contribution
is considerably smaller than the other two. This can be
understood by looking at the operators of the spin-isospin
correlation and the axial-transverse current. Both have a �σ · �τ
operator structure which strengthens the contribution. This
dominance of the axial part over the vector part increases
the importance of the spin-isospin correlations for neutrino
compared to electron scattering.

The strength attributed to the different initial pairs is shown
in Fig. 9. The contributions are shown for the central, tensor,
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FIG. 9. Same as Fig. 8. The contributions of the initial pn and nn pairs are shown for the three different SRC types.
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scattering angle θμ. The top panels show the combined 1p1h and 2p2h cross sections. The middle panels show the correction of the SRCs on
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and spin-isospin parts for the SRCs. In the Coulomb response
with central correlations, the contribution of initial nn pairs
is roughly four times the contribution of the initial pn pairs.
As the central correlation operator does not contain an isospin
operator, it treats both protons and neutrons on an equal level.
The factor 4 can be explained by noting that the W+ boson
only interacts with the neutrons in the initial pair, so that the
nn matrix elements contain twice as many terms as the matrix
elements for pn pairs. The tensor part is clearly dominated by
pn pairs, as expected from its isospin structure.

Finally, in Fig. 10 we present the results for inclusive
cross sections with 1N and 2N knockout for three different
scattering angles. We have chosen an incoming neutrino energy
of 750 MeV, which corresponds roughly with the peak of
the MiniBooNE and T2K fluxes. The influence of SRCs on
the 1p1h double differential cross section results in a small
reduction, instead of the increase seen for electron scattering.
The reason for this opposite behavior is related to the isospin
part of the matrix elements and the different strength of the
electric and magnetic form factors for electrons and neutrinos.
Even when considering exclusively the vector part of the
neutrino cross section, and treating the nucleons in the isospin
formalism, the SRC correction for neutrinos has an opposite
effect compared to electrons. The SRC correction is due to an
interference between one-body and two-body matrix elements,
where the sign of the isospin matrix element can result in either
an increase or a decrease.

For the 2p2h part of the cross section, the contributions of
the central, tensor, and spin-isospin parts of the correlations are
shown separately. The tensor part is most important at small
energy transfers but the relative importance of the central part
grows for larger ω, similar to what is seen in the responses
separately. The contribution of the spin-isospin correlations
consists largely of the axial-transverse channel, as discussed
earlier.

Comparing the position of the peak in the 1p1h and 2p2h
channels, it is clear that the peak of the two-body channel
occurs at higher ω than the QE peak for small scattering angles.
The difference decreases at higher scattering angles. For θμ =
60◦ we remark that the reduction of the 1p1h channel and the
contribution of the 2p2h channel have an opposite effect of
similar size. The net effect of the short-range correlations on
the inclusive signal is therefore rather small.

VI. SUMMARY

In this work, we have presented a model which accounts
for SRCs in νA scattering. The technique was originally
developed for exclusive (e,e′pp) and semiexclusive (e,e′p)
scattering off 12C and 16O [40,41] and was compared with data
[42–45]. Here, we have extended the model to the weak CC
interaction by including contributions from the axial vector
current, which are absent in electromagnetic interactions.
Starting from HF nuclear wave functions, correlated nuclear
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wave functions are constructed. The correlations are taken
into account by replacing the one-body nuclear current with
an effective current. The expansion can be truncated at the
two-body level owing to the local character of SRCs. This
formalism can be used for all target nuclei, for instance 40Ar
which plays a major role in many recent and future neutrino
experiments.

The framework allows for the calculation of 1N and
2N knockout cross sections. The contribution of the 2N
knockout channel to the inclusive cross section is calculated
by integrating over the phase space of the undetected nucleons.
The integration over the solid angles of the two outgoing
nucleons is performed analytically, the integration over their
kinetic energy is performed numerically. The 12C(e,e′) results
are compared with data. For neutrino scattering off 12C, the
impact of the central, tensor, and spin-isospin correlations were
shown separately. The influences of the vector and axial-vector
currents and the initial nucleon pair were studied as well.

The exclusive 2N knockout of SRC pairs shows a clear
back-to-back signature which resembles the “hammer events”
seen by the ArgoNeuT collaboration [50]. The SRCs have a
small influence on the 1N knockout channel and the SRC
induced inclusive 2N knockout strength extends into the
dip region of the double differential cross section. The 2N
knockout strength from the vector and axial parts of the
currents are of the same order of magnitude. For small ω
values, the tensor correlations yield the biggest contribution
while the importance of the central part increases with
increasing ω. This is a direct reflection of the properties of the
central and tensor correlation functions in momentum space.
The relative strength of the spin-isospin correlations for νA
scattering is larger compared to eA scattering.

It is normally assumed that, in the 2p2h channel, the
majority of the cross section strength in the dip region comes
from the MECs. Our results suggest an important role of the
SRC induced 2N knockout. We conclude that SRCs and MECs
should be considered consistently to fill the gap between theory
and experiment. The study of these MECs for νA processes is
currently in progress.
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APPENDIX A: CROSS SECTION

For eA interactions, the kinematic factors in Eqs. (10) and
(31) are defined as

ve
L = Q4

q4
, (A1)

ve
T = Q2

2q2
+ tan2 θe′

2
, (A2)

ve
T T = − Q2

2q2
, (A3)

ve
T L = − Q2

√
2q3

(Ee + Ee′) tan2 θe′

2
. (A4)

For νA interactions, the factors in Eqs. (11) and (33) are given
by (see, e.g., Appendix A of [77])

vCC = 1 + ζ cos θμ, (A5)

vCL = −
(

ω

q
(1 + ζ cos θμ) + m2

μ

Eμq

)
, (A6)

vLL = 1 + ζ cos θμ − 2Eνμ
Eμ

q2
ζ 2 sin2 θμ, (A7)

vT = 1 − ζ cos θμ + Eνμ
Eμ

q2
ζ 2 sin2 θμ, (A8)

vT T = −Eνμ
Eμ

q2
ζ 2 sin2 θμ, (A9)

vT C = − sin θμ√
2q

ζ
(
Eνμ

+ Eμ

)
, (A10)

vT L = sin θμ√
2q2

ζ
(
E2

νμ
− E2

μ + m2
μ

)
, (A11)

vT ′ = Eνμ
+ Eμ

q
(1 − ζ cos θμ) − m2

μ

Eμq
, (A12)

vT C ′ = − sin θμ√
2

ζ, (A13)

vT L′ = ω

q

sin θμ√
2

ζ. (A14)

The nuclear response functions are identical for eA and νA
interactions:

WCC = |J0|2, (A15)

WCL = 2
(J0J †
3 ), (A16)

WLL = |J3|2, (A17)

WT = |J+1|2 + |J−1|2, (A18)

WT T = 2
(J+1J †
−1), (A19)

WT C = 2
[J0(J †
+1 − J †

−1)], (A20)

WT L = 2
[J3(J †
+1 − J †

−1)], (A21)

WT ′ = |J+1|2 − |J−1|2, (A22)

WT C ′ = 2
[J0(J †
+1 + J †

−1)], (A23)

WT L′ = 2
[J3(J †
+1 + J †

−1)], (A24)

with Jλ defined as in Eq. (15).

APPENDIX B: MATRIX ELEMENTS

In this appendix, we summarize the expressions for the
2p2h transition matrix elements with an effective two-body
operator which accounts for SRCs. The standard expressions
for the multipole operators and the nuclear currents are used
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(see, e.g., Ref. [78])

Ĵ0(q) = +
√

4π
∑
J�0

iJ Ĵ M̂Coul
J0 (q), (B1)

Ĵ3(q) = −
√

4π
∑
J�0

iJ Ĵ L̂
long
J0 (q), (B2)

Ĵ±1(q) = −
√

2π
∑
J�1

iJ Ĵ
[
T̂ elec

J±1(q) ± T̂
magn
J±1 (q)

]
. (B3)

Here, the Coulomb operator is defined as

M̂Coul
JM (q) =

∫
d �x[jJ (qx)YJM (�x)]ρ̂(�x). (B4)

Introducing the operator

Ôκ
JM (q) =

∑
M1,M2

∫
d �x〈J + κM11M2|JM〉

× [jJ+κ (qx)YJ+κM1 (�x)]ĴM2 (�x), (B5)

the longitudinal, electric and magnetic transition operators are
written as

L̂
long
JM (q) = i

∑
κ=±1

√
J + δκ,+1

Ĵ
Ôκ

JM (q), (B6)

T̂ elec
JM (q) = i

∑
κ=±1

(−1)δκ,+1

√
J + δκ,−1

Ĵ
Ôκ

JM (q), (B7)

T̂
magn
JM (q) = Ôκ=0

JM (q). (B8)

Hence, matrix elements of the operator Ôκ
JM suffice to

determine the strengths of the longitudinal, electric, and
magnetic transition operators. In the matrix elements, we used
the shorthand notation a ≡ (na,la,1/2,ja). The operators ρ̂(�x)
and Ĵ (�x) in the definitions of M̂ and Ô are the time and
space component of the nuclear current operator in coordinate
space. The matrix elements accounting for the vector parts of
the nuclear current, Ĵ V

μ (�x), are given in Refs. [40] and [41] for
central and spin-dependent correlations in electron scattering
respectively. They can be translated into neutrino interactions
after a rotation in isospin space. The matrix elements for the
axial parts, Ĵ A

μ (�x), are given below. We will first consider
the matrix elements for central correlations and afterwards
those for tensor and spin-isospin correlations. The expressions
below are given for CC neutrino interactions. The τ± operator
is responsible for the flavor change induced by the W± boson.

1. Central correlations

The partial-wave components of the central correlation
function are obtained via

χc(l,ri,rj ) = 2l + 1

2

∫ +1

−1
d cos θ Pl(cos θ )gc

(√
r2
i + r2

j − 2rirj cos θ
)
, (B9)

with Pl(x) the Legendre polynomial of order l. The axial 2p2h matrix elements arising from the coupling of a one-body current
in the IA to a central-correlated pair are given by

〈ab; J1|
∣∣M̂Coul

J

[
ρ̂

[1],c
A (i,j )

]∣∣|cd; J2〉 = − GA

mNi

√
π
∑
l,L

Ĵ1Ĵ2L̂

l̂
〈L0l0|J0〉

∫
dri

∫
drjχ

c(l,ri ,rj )

×
⎛⎝〈a||τ±||c〉〈a||jJ (qri)YL(�i)||c〉ri

〈b||Yl(�j )||d〉rj

⎧⎨⎩ja jb J1

jc jd J2

L l J

⎫⎬⎭
+ 〈b||τ±||d〉〈a||Yl(�i)||c〉ri

〈b||jJ (qrj )YL(�j )||d〉rj

⎧⎨⎩ja jb J1

jc jd J2

l L J

⎫⎬⎭
⎞⎠, (B10)

〈ab; J1|
∣∣Ôκ

J

[
Ĵ

[1],c
A (i,j )

]∣∣|cd; J2〉 = GA

√
4π

∑
l,L,Jx

L̂Ĵx Ĵ1Ĵ2Ĵ

l̂

{
Ll J + κ
J 1 Jx

}∫
dri

∫
drjχ

c(l,ri,rj )

×
⎛⎝(−1)(Jx+L)〈a||τ±||c〉〈a||jJ+κ (qri)[YL(�i) ⊗ �σi]Jx

||c〉ri
〈b||Yl(�j )||d〉rj

⎧⎨⎩ ja jb J1

jc jd J2

Jx l J

⎫⎬⎭
+ (−1)(L+l+J )〈b||τ±||d〉〈a||Yl(�i)||c〉ri

〈b||jJ+κ (qrj )[YL(�j ) ⊗ �σj ]Jx
||d〉rj

⎧⎨⎩ja jb J1

jc jd J2

l Jx J

⎫⎬⎭
⎞⎠.

(B11)

The radial transition densities 〈a||ÔJ ||b〉r are defined so that they are related to the full matrix elements as 〈a||ÔJ ||b〉 ≡∫
dr〈a||ÔJ ||b〉r .
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2. Tensor correlations

The partial-wave components of the tensor correlation function are defined as

χtτ (l1,l2,ri,rj ) =
∫

dq

∫
dr q2r2j2(qr)jl1 (qri)jl2 (qrj )ftτ (r). (B12)

The axial transition matrix elements accounting for the coupling of a one-body current to a tensor-correlated pair are given by

〈ab; J1||M̂Coul
J

[
ρ̂

[1],tτ
A (i,j )

]||cd; J2〉 = GA

2
√

6√
πmNi

∑
l1,l2

∑
J3,J4

∑
L

∫
dri

∫
drj l̂1̂l2L̂Ĵ Ĵ1Ĵ2Ĵ3Ĵ4

×〈l10l20|20〉
{

1 1 2
l1 l2 J3

}
il1+l2χtτ (l1,l2,ri,rj )

×
⎛⎝〈ab||τ±(1)(�τ1 · �τ2)||cd〉

(
L J l1
0 0 0

){
L J l1
J3 1 J4

}⎧⎨⎩ja jb J1

jc jd J2

J4 J3 J

⎫⎬⎭̂l1(−1)J+1

×〈a||jJ (qri)[YL(�i)�σi(
−→∇ i − ←−∇ i) ⊗ �σi]J4 ||c〉ri

〈b||[Yl2 (�j ) ⊗ �σj

]
J3

||d〉rj

+〈ab||τ±(2)(�τ1 · �τ2)||cd〉
(

L J l2
0 0 0

){
L J l2
J3 1 J4

}⎧⎨⎩ja jb J1

jc jd J2

J3 J4 J

⎫⎬⎭̂l2(−1)J3+J4+1

×〈a||[Yl1 (�i) ⊗ �σj

]
J3

||c〉ri
〈b||jJ (qrj )[YL(�j )�σj (

−→∇ j − ←−∇ j ) ⊗ �σj ]J4 ||d〉rj

⎞⎠, (B13)

〈ab; J1||Ôκ
J

[
Ĵ

[1],tτ
A (i,j )

]||cd; J2〉 = GA

12√
π

∑
l1,l2

∑
J3,J4

∑
J5,L

∫
dri

∫
drj l̂1̂l2L̂Ĵ Ĵ1Ĵ2Ĵ3Ĵ4 (Ĵ5)2

× ̂J + κ〈l10l20|20〉
{

1 1 2
l2 l1 J3

}
il1+l2−1χtτ (l1,l2,ri,rj )

×
⎛⎝(−1)J l̂1ĵa ĵc〈ab||τ±(1)(�τ1 · �τ2)||cd〉

× 〈nala||jJ+κ (qri)[YL(�i) ⊗ �σi]J4 ||nclc〉ri
〈b||[Yl2 (�j ) ⊗ �σj

]
J3

||d〉rj

×
(

L l1 J + κ
0 0 0

){
1 J J + κ
l1 L J4

}{
1 J3 l1
J J4 J5

}⎧⎨⎩ja jb J1

jc jd J2

J5 J3 J

⎫⎬⎭
⎧⎨⎩ la 1/2 ja

lc 1/2 jc

J4 1 J5

⎫⎬⎭
+ (−1)J3+J5 l̂2ĵbĵd〈ab||τ±(2)(�τ1 · �τ2)||cd〉
× 〈a||[Yl2 (�i) ⊗ �σi]J3 ||c〉ri

〈nblb||jJ+κ (qrj )[YL(�j ) ⊗ �σj ]J4 ||ndld〉rj

×
(

L l2 J + κ
0 0 0

){
1 J J + κ
l2 L J4

}{
1 J3 l2
J J4 J5

}⎧⎨⎩ja jb J1

jc jd J2

J3 J5 J

⎫⎬⎭
⎧⎨⎩ lb 1/2 jb

ld 1/2 jd

J4 1 J5

⎫⎬⎭
⎞⎠.

(B14)

The operators
−→∇ and

←−∇ refer to the gradient operators acting to the right and left respectively.

3. Spin-isospin correlations

The partial-wave components of the spin-isospin correlation function are defined as

χστ (l,ri ,rj ) =
∫ +1

−1
d cos θ Pl(cos θ )fστ

(√
r2
i + r2

j − 2rirj cos θ
)
. (B15)
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The axial matrix elements describing the effective coupling of a virtual boson to a spin-isospin correlated nucleon pair are given
by

〈ab; J1||M̂Coul
J

[
ρ̂

[1],σ τ
A (i,j )

]||cd; J2〉 = GA

√
π

mNi

∑
l,L

∑
J3,J4

∫
dri

∫
drj

L̂Ĵ1Ĵ2Ĵ3Ĵ4

l̂

×〈l0L0|J0〉
{
J3 L 1
l J4 J

}
χστ (l,ri,rj )

×
⎛⎝〈ab|τ±(1)(�τ1 · �τ2)|cd〉

⎧⎨⎩ja jb J1

jc jd J2

J3 J4 J

⎫⎬⎭ (−1)l+J4

×〈a||jJ (qr1)
[
YL(�1)�σ1

(−→∇ 1−←−∇ 1
)⊗ �σ1

]
J3

||c〉ri
〈b||[Yl(�2) ⊗ �σ2]J4 ||d〉rj

+〈ab|τ±(2)(�τ1 · �τ2)|cd〉
⎧⎨⎩ja jb J1

jc jd J2

J4 J3 J

⎫⎬⎭(−1)l+J+J3

×〈a||[Yl(�1) ⊗ �σ1]J4 ||c〉ri
〈b||jJ (qr2)

[
YL(�2)�σ2

(−→∇ 2−←−∇ 2
)⊗ �σ2

]
J3

||d〉rj

⎞⎠, (B16)

〈ab; J1||Ôκ
J

[
Ĵ

[1],σ τ
A (i,j )

]||cd; J1〉 = GA

√
24π

∑
l,L

∑
J4,J5

∑
J6

∑
j

∫
dr1

∫
dr2

L̂Ĵ ̂J + κĴ1Ĵ2(Ĵ4)2Ĵ5Ĵ6

l̂

×
(

J + κ L l
0 0 0

){
J 1 J + κ
L l J6

}{
J6 l J
J5 J4 1

}
χστ (l,ri,rj )

×
⎛⎝〈ab|τ±(1)(�τ1 · �τ2)|cd〉〈a||jJ+κ (qr1)[YL(�1) ⊗ �σ1]J6

∣∣∣∣nclc
1
2j
〉
ri

〈b||[Yl(�2) ⊗ �σ2]J5 ||d〉rj

×
{
J6 1 J4

jc ja j

}{
1/2 j lc
jc 1/2 1

}⎧⎨⎩ja jb J1

jc jd J2

J4 J5 J

⎫⎬⎭ ĵ ĵc(−1)L+J4+J5+ja+jc+j+lc+3/2

×〈ab|τ±(2)(�τ1 · �τ2)|cd〉〈a||[Yl(�1) ⊗ �σ1]J5 ||c〉ri
〈b||jJ+κ (qr2)[YL(�2) ⊗ �σ2]J6 ||ndld

1
2j
〉
rj

×
{
J6 1 J4

jd jb j

}{
1/2 j ld
jd 1/2 1

}⎧⎨⎩ja jb J1

jc jd J2

J5 J4 J

⎫⎬⎭ĵ ĵd (−1)L+J+jb+jd+j+ld+3/2

⎞⎠. (B17)
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