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Abstract

The pre-equilibrium evolution of a quark-gluon plasma produced in a heavy-ion collision is
studied in the framework of kinetic theory. We discuss the approach to local thermal equilibrium,
and the onset of hydrodynamics, in terms of a particular set of moments of the distribution function.
These moments quantify the momentum anisotropies to a finer degree than the commonly used ratio
of longitudinal to transverse pressures. They are found to be in direct correspondence with viscous
corrections of hydrodynamics, and provide therefore an alternative measure of these corrections in
terms of the distortion of the momentum distribution. As an application, we study the evolution
of these moments by solving the Boltzmann equation for a boost invariant expanding system, first
analytically in the relaxation time approximation, and then numerically for a quark-gluon plasma
within the small angle approximation to the collision kernel.
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I. INTRODUCTION

The evolution of the quark-gluon plasma (QGP) produced in high energy heavy-ion col-
lisions is well described by the equations of relativistic hydrodynamics including viscous
corrections (see [1] for a recent review). The success of such hydrodynamic descriptions
suggests that that the system of quarks and gluons which emerge shortly after the collisions
is brought close to local equilibrium on a relatively short time scale, a process commonly
referred to as thermalization. Understanding the detailed mechanisms by which such a ther-
malization occurs remains a theoretical challenge. At very early times, one may argue that
the dynamics is dominated by classical color fields and the system evolution is governed
by the classical Yang-Mills equations [2, 3]. At a time scale of order 1/Q,, where Q) is
the saturation momentum, the system may be sufficiently dilute for kinetic theory to be-
come applicable [4]. Kinetic theory naturally fills the gap between the dynamics of classical
field and that of dissipative fluids, and it offers the possibility to follow in details how the
pre-equilibrium system evolves into a state of quasi local equilibrium well accounted for by
viscous hydrodynamics. This is the framework that we shall consider in this work (see e.g.
[5-9] for some recent representative works, and more specifically [10, 11] for the analysis of
the onset of hydrodynamics in a weakly coupled system using kinietic theory).

The transition from kinetic theory to hydrodynamics is commonly achieved by taking
suitable moments of the kinetic equations, with lower moments encompassing conservation
laws and higher moments various dissipative effects. For some particular geometries, it is
possible to recast the solution of the Boltzmann equation in terms of an infinite hierarchy of
equations for a particular set of moments of the distribution function (see e.g. [12]). Provided
this infinite hierarchy can be limited to the first few moments, this technique could represent
a convenient alternative to the direct solution of the kinetic equation. Aside from this aspect,
there is another interest in using moments. Defined in terms of integrals of the phase-space
distribution function with suitable weights, the moments allow us to focus on the relevant
(typically long wavelength) information, and wash out the irrelevant (short wavelength) one
from the distribution function, thereby automatically implementing a strategy akin to that
of effective field theories.

In this paper, we introduce a specific set of moments, defined as weighted integrals of the
momentum distribution function f(p), £, o fp p? Py, (cos ) f(p), where Py, is a Legendre
polynomial, and cosf = p,/p with p, the longitudinal momentum of a particle with total
momentum p. These moments capture the deviation of the momentum distribution from an
isotropic distribution and are therefore damped as the system approaches local equilibrium.
They are tailored to take into account the (strong) effect of the longitudinal expansion.
In addition, these moments are found to be in correspondence with viscous corrections in
hydrodynamics, order by order in a gradient expansion. They can therefore provide an
alternative view of the viscous corrections, in terms of the damping of high multipoles
of the momentum distribution as the system approaches local equilibrium. Their relative
magnitudes can be used as an indicator of the onset of hydrodynamics. In this work, we shall
provide a description of the evolution of these moments, obtained by solving the Boltzmann
equation for a longitudinally expanding system. The usefulness of these moments as a
practical tool in solving the kinetic equation will be addressed in a separate publication.

This paper is organized as follows. The moments £,,, and their usefulness in a boost
invariant setting, are introduced in Section II. In this section, we also present some of the
major results obtained in this work, concerning the correspondence between the £,,’s and the



transport coefficients used in second order viscous conformal hydrodynamics [13]. Relations
to higher order viscous corrections are also derived. Then, in Section III, we discuss the
evolution of the moments in the pre-equilibrium stage towards local equilibrium using kinetic
theory. To do so we solve the Boltzmann equation in a boost invariant setting, using two
different approximations for the collision kernel. In the first case, we use the relaxation time
approximation, with a constant relaxation time, and obtain analytical solutions that allow
us to verify the general relations to viscous hydrodynamics established in Section II. Then,
in Section III B, we consider a more realistic setting: we use QCD matrix elements and solve
the corresponding Boltzmann equation in the small scattering angle approximation in order
to study the evolution of the moments. Summary and conclusions are given in Section IV.

II. FORMULATION OF MOMENTS IN EXPANDING SYSTEMS

In this section, after a brief review of the main features of expanding boost invariant
systems, we define a set of moments of the distribution function that are suited to the
description of such systems. We show that, near the hydrodynamic regime, these moments
are in correspondence to the viscous corrections that emerge from a gradient expansion.

A. Kinetic theory in a boost invariant expanding system

The quark-gluon plasma produced in the very early stages of a heavy ion collision experi-
ences a strong expansion along the collision axis (referred to as the longitudinal direction). A
simple description of the system (Bjorken flow) is obtained when one assumes boost invari-
ance in the longitudinal direction and translational invariance in the transverse directions
[14]. Tt becomes then convenient to use in place of the usual space-time coordinates, the
proper time 7 = v/t2 — 22 and the space-time rapidity tan~'(z/t) , where z is the longitudi-
nal coordinate and t the time. In fact, boost invariance makes it possible to focus on a slice
of the fluid located around the plane z = 0, where 7 = t. There, the distribution function
depends only on time and the three components of the momentum, f(¢, pr, p.), and it obeys
the kinetic equation

ot t Op.

OF 291 _ ey, (2.1)

with C the collision term?.
Averages of various physical quantities with the phase space distribution function play
an important role in this paper, and we shall denote them with double brackets?

((...>>E/p...f, /pz/%, (2.2)

For instance, the energy density is given by e(t) = ((p°)?)) = {(p*), where we have used
po = p, assuming massless particles.

I For simplicity, we consider in this section a single-species system. In Sect. III B we shall introduce distinct

distributions for quarks and gluons and take proper care of degeneracy factors.
2 Throughout this paper, we use bold lower case letters to denote a three vector, such as p, with the

magnitude of the vector denoted by the corresponding normal lower case letter, e.g., |p| = p.



By multiplying Eq. (2.1) by p?, and integrating over momentum, we obtain,

de  e(t) +Pu(t)

- 2.
% ; 0, (2.3)

where we have used the fact that the collisions conserve energy, so that the contribution of
the collision term vanishes. The quantity Py, is the longitudinal pressure,

d(te(t)

Prt) = (p2) = — (2.4)

dt
We define similarly the transverse pressure
L, o 1 2 2 1 d(t%e(t))
= == = —— 2.
Pr= i = 5 [0E ) = 5 T (2.5

where in the last equality, we have used e(t) = P, + 2P and Eq. (2.3).

In the hydrodynamic regime, i.e. when local equilibrium is achieved, the pressure is
isotropic and simply related to the energy density, P = P, = Pr = ¢/3, and Eq. (2.3)
becomes a closed equation for the energy density. It yields e(t) ~ 1/t4/3 ~ T* with T(t) the
local temperature. Before reaching this regime, viscous corrections need to be taken into
account. The first order correction involves the shear viscosity 7, and yields a relaxation
equation for the difference of the pressures

Pr—Pp = 2?. (2.6)

Viscous corrections are accompanied by an entropy increase, given in leading order by the
equation (with T's = e + P, where s is the entropy density and T the temperature)
d(ts)  4n
dt 3T’

(2.7)

Note that ¢s represents the total entropy in a (expanding) covolume, or equivalently the
entropy density in the transverse plane. In the absence of viscosity, this is contant.

Our purpose in this paper is to explore specific features of the approach to the hydro-
dynamical regime, studying in particular how the deviations of the momentum distribution
from an isotropic distribution are damped.

B. Thermalization, isotropization and moments

Quite generally, the effect of collisions is to wash out the anisotropy of the momentum
distribution, leading eventually to a spherically symmetric distribution. In the case of ex-
panding boost invariant systems, this effect is counterbalanced by the strong longitudinal
expansion. The competition between the two effects is commonly investigated in terms of the
ratio between the longitudinal pressure Py, and the transverse pressure Pr, local equilibrium
being established when Py /Pr = 1. As an illustration, and anticipating on the discussion of
Section III B, we show in Fig. 1 the typical evolution of Pr,/Pr obtained from the numerical
solution of the Boltzmann equation, with leading order QCD matrix elements, and the small
scattering angle approximation. The trend towards isotropization is clearly visible. However,
this is a slow process, and complete local thermal equilibrium is not reached in the time span
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FIG. 1. (Color online) Time evolution of the pressure ratio Pr/Pr obtained from the numerical
solution of the Boltzmann equation in the small angle approximation, for a pure gluon system
(solid line) and a quark-gluon plasma (QGP, dotted line). Here 75 is a natural microscopic time
scale, proportional to the inverse of the saturation momentum Qs (see Section III B for details).

of the simulation, with quark production delaying the approach to equilibrium even further
as compared to the case of a purely gluonic plasma. Such a slow approach to isotropy of
the momentum distribution seem to be quite generic for a longitudinally expanding system
undergoing Bjorken flow [11]. However, it has also been realized that the complete isotropy
of the pressures, characterized by Pr/Pr = 1, may not be necessary for hydrodynamics to
be applicable, since viscous corrections can accommodate rather large differences between
Pr, and Pr. This was first revealed by strong coupling calculations [15], where it was shown
that viscous hydrodynamics can handle pressure ratios Pr/Pr 2 0.5. This has been later
verified in a number of calculations (see Ref. [11] and references therein).

In this paper, in order to describe more details of the isotropization of an expanding
quark-gluon plasma, we introduce the following moments of the distribution function

L, = (p*Pon(cosh))) = /p2P2n(cos 0)f(p), (2.8)

p

where P, is a Legendre polynomial of order 2n, and cos @ = p,/p. For an expanding system
with Bjorken geometry, odd order moments vanish as a consequence of the invariance of
the distribution function under parity. There are two distinct advantages of these moments.
First, except for the n = 0 moment which corresponds to the energy density, as already
mentioned, all higher order moments defined in Eq. (2.8) naturally quantify the details of
the longitudinal momentum anisotropy. For instance, the information concerning Py, /Py is
contained in the n = 1 moment,

L1 = (p*Py(cos b)) = P — Pr. (2.9)
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More precisely, £; — 0 is equivalent to Py /Pr — 1. Similarly, the moments L,, of higher
order are associated to finer structures of the momentum anisotropy of the distribution
function. Second, the moments defined in Eq. (2.8), with the specified weight p?, are closely
related to hydrodynamics through Landau’s matching condition

™ = (p'p")), (2.10)

of which the moment £; provides the simplest illustration (see Eq. (2.6)). These moments
are therefore expected to acquire a physically transparent meaning at late times when the
system approaches the hydrodynamic regime. Note that one may generalize the definition
in Eq. (2.8) to space-time symmetries other than the boost invariant setup considered in
this paper. For a system with spatial SO(3) rotational symmetry, for instance, one could
replace the Legendre polynomials with associated Legendre polynomials to further charac-
terize momentum anisotropies in the azimuthal direction.

C. The moments £, in the hydrodynamic regime

We now analyze more precisely the correspondence of the moments (2.8) to viscous hy-
drodynamics. At this point covariant notation is helpful. Four vectors are denoted by
normal upper case letters. Thus, for instance, U, is the fluid four-velocity, normalized so
that U? = —1. The operator A, = g,, + U,U,, with g, the metric tensor®, projects on
the space orthogonal to U*. The energy momentum tensor is written as

T" = (e + P)U*U" + Pg"” + ot (2.11)

where 7 represents the viscous corrections. In leading order, 7# = —no*”, where 7 is the
shear viscosity, and o = 2(V*U") , with V# = A#9,. Here, and in the following, single
brackets (...) around a tensor implies that the tensor has been made symmetric, traceless
and transverse to U*. For simplicity, we assume throughout this work that the fluid is made
of massless constituents, so that conformal symmetry implies that the energy-momentum
tensor is traceless, T = 0.

Hydrodynamics effectively applies to systems whose evolution is dominated by long wave-
length modes. Corrections to ideal hydrodynamics are then naturally searched for in a gra-
dient expansion. The successive terms in such an expansion can be obtained by applying
the Chapman-Enskog technique.

As an illustration of the method, let us repeat the derivation of Eq. (2.6) within the
relaxation time approximation for the collision term. Assuming that the viscous correction
corresponds to a small deviation ¢ f of the phase-space distribution function from its local
equilibrium value f.q, we linearize the Boltzmann equation and obtain, in covariant notation,

vl

Trel

PrO,(fuq + 1) = P 2.12)
where 7, is the relaxation time. Note that P - U reduces to —P? in the local rest frame
of a fluid cell. We shall allow the relaxation time to depend on the energy of the particle,
i.e, we assume Ty = Tyel(P - U/T'), where T is the local temperature (which enters the local

3 We use the Minkowski metric signature (—, +, +,+). More generally we refer to [16, 17] for more details

on the notation.



equilibrium distribution). Various ansatz have been considered in the literature, in particular
a so-called “linear” ansatz, corresponding to a constant relaxation time, and a “quadratic”
ansatz, corresponding to a linear dependence of 7, on the energy [18]. The origin of this
terminology is that, in the first case, 0f/feq ~ p/T, while 0f/feq ~ (p/T)* when 7 is
linear in p. Note that the present analysis does not rely on the specific dependence of the
relaxation time upon energy.

To proceed, we find it convenient to define

_TQTrel<P . U/T)

C, = A (2.13)

so that

T2
PH0,(fuq +6f) = =0 (2.14)

Since the local equilibrium distribution is a function of P - U/T, the effect of the operator
P"9,, when acting on fq is to generate the structure P*P"o,,, i.e.,

PrPYg,,
Pua,ufeq(P ’ U/T) = _féqT#

where the prime on f., indicates a derivative with respect to P-U/T. Ignoring the derivative
of 0 f in the left hand side of Eq. (2.14), one then identifies the first order viscous correction
to the phase-space distribution function

+0(V?), (2.15)

= PrPYo
_ / % 2
0f = Cofeqa—5g5— +OV), (2.16)
as well as the first viscous correction to the energy momentum tensor,
T = —not = /P“P”df. (2.17)
P
A simple calculation then allows us to determine the shear viscosity [16]
1 479 gl
=—— : 2.1
n 15T3 /p' p Cpfeq ( 8)

In the case of Bjorken flow, the contraction of the irreducible tensors in Eq. (2.16) is easily
calculated in terms of the Legendre polynomials. One gets

Papﬂo.aﬁ — i |: 2 1

3t |77 2

4
p?p] = QpQPg(cos 9). (2.19)

By using this expression in Eq. (2.16), and the expression (2.18) of the shear viscosity, one
can then calculate the n = 1 moment, Eq. (2.9), and obtain Eq. (2.6).

The higher order corrections are obtained iteratively along the same line. In the second
order correction ¢ f® needed to the calculation of the transport coefficients of conformal
viscous hydrodynamics [13], the following new tensor structures appear [16, 17],

P*PYP*P(0,,00p) , P*P'P*(0,,Va)nT, P*P*P"(Vo0,,), P'PY(0,0,),
P*PY (5, ), P*PY(U"9,0.,) . (2.20)



For Bjorken flow, the vorticity tensor Q" = 1 [V#U” — V*U*| vanishes. One can also prove
that contractions of irreducible tensors of odd ranks do not contribute due to parity. Finally,
the relevant structures in Eq. (2.20) are those arising from the contraction of irreducible
tensors of even ranks,

PHPYPOPP(5,,005) 35%P4(cos9), (2.21a)
8 2
P“P”(au’\a,,,\) :§%P2(cos 0), (2.21b)
4 2
P'P"(Do) = — g%Pg(COS@) . (2.21¢)

One can thus rewrite the viscous corrections to the phase space distribution up to second
order in the gradient expansion in terms of Legendre polynomials,

o 2 8 P 8
Sf = [_ ol <3tT> + XpCpp (W) — %, C,p (W) + .. .‘|P2<COS 6)
~! N~ 8
+ {chp]f (W) +.. .}P4(cos o) +..., (2.22)

where, for convenience, we have defined the dimensionless variables x, = éqép and p = p/T.
Ellipses in the brackets of Eq. (2.22) stand for terms of higher power in 1/¢T.

One recognizes in Eq. (2.22) a gradient expansion, with 0 f expressed in powers of 1/tT.
The latter quantity may be viewed as a measure of the Knudsen number, that is, as the
ratio between a microscopic and a macroscopic length scale characterizing the fluid. Here
the typical microscopic length scale is the inverse of the temperature, while the macroscopic
length scale can be taken as the inverse of the local expansion rate, which, for a medium
system expanding according to Bjorken flow, is simply the time ¢. The expansion (2.22)
is also an expansion in Legendre Polynomials, the term multiplying Ps,(cosf) having a
gradient expansion starting with a leading contribution of order n, that is, ~ 1/(¢tT)".4

More explicitly, the evolution of the moments of order n = 1 and n = 2 can be expressed
in terms of the transport coefficients that enter (conformal) viscous hydrodynamics:

_ 4 5
and
4
Ly = 2 — (A + 1) + O(1/%) (2.24)

where 7., and A; are second order transport coefficients [13]. In obtaining the above re-
sults, we have used the following expressions of these transport coefficients in kinetic theory
(generalizing Eq. (2.18) for the shear viscosity)

A T
NTr = T p XpCp (2.25a)
2T [
M+ 0T = 105 pﬁx;c (2.25b)

4 Note that the expansion (2.22) contains also terms proportional to Py(cosf). These terms are not shown

explicitly since they are not related to momentum anisotropies, which is our primary concern.



Again, we emphasize that the momentum dependence of the relaxation time only affects the
values of these transport coefficients, as given by Eqgs. (2.25), but it does not alter the form
of relations such as those given in Eq. (2.23) and Eq. (2.24).

Viscous corrections in hydrodynamics get more complicated in higher orders, which makes
it more involved to derive an explicit correspondance between transport coefficients and the
p?-moments associated with higher order Legendre polynomials. Nevertheless, it is possible
to generalize the analyses in Egs. (2.23) and (2.24) to higher orders, at least for the leading
terms. Indeed, it can be shown that, after linearizing the Boltzmann equation in order to
construct the gradient expansion, there is a term with highest power in momentum which
appears on the left hand side of the Boltzmann equation as a result of applying P*0, to
feq(P - U/T) iteratively. This highest power appears also as the leading contribution to the
coefficient of the Legendre polynomial Ps,(cos) in ¢ f, through contraction of irreducible
tensors,

2n
PP DO - O apan) X }z_nP%(COS 0). (2.26)
Therefore, one has
1
L, = X ot O(1/t"1). (2.27)

The coefficient ¢, is expected to be identified to some combinations of transport coeffi-
cients of order n, since 1/t" represents an n-th order contribution in the gradient expansion
with a definite angular structure. For a conformal and classical gas, ¢, can be analytically
determined when the relaxation time is linear in p/T (quadratic ansatz),

2n)!
(42 +>1)!!F(2” +9(3)

n T4—n
2m2

en = (=1)" (2.28)

One may regard Eq. (2.28) as an analytical prediction of the n-th order transport coefficient
of a conformal system, with 1/s a constant input. In particular, one easily verifies that
¢ = —2n, as expected. More details regarding Eq. (2.26) and Eq. (2.28) are given in
Appendix A.

IIT. EVOLUTION OF THE £, MOMENTS IN EXPANDING SYSTEMS

We now demonstrate how the £, moments evolve in the pre-equilibrium stage of heavy
ion collisions by calculating them using kinetic theory. To do so, we solve the Boltzamnn
equation (2.1) for a boost invariant system. In line with the color-glass picture (CGC) [19],
we take an initial momentum distribution function of the form

f<t07pT7pz) = fO('-) (Qs Y €2p§ +p§") ) (31)

where fy is a free parameter characterizing the typical initial gluon occupation number,
and @ is the saturation momentum. We assume that the kinetic description applies at an
initial time ¢y ~ 1/Qs. In this work, we choose a value fy = 0.1, for which the approach to
equilibrium occurs smoothly, without encountering Bose-Einstein condensation [7, 8]. The
parameter £ controls the initial momentum anisotropy. For £ > 1, one has initially Py /Pr <

9



1. Throughout this work, we take for definiteness a fixed value, £ = 1.5, corresponding to
an initial momentum anisotropy Pr/Pr ~ 0.5. One may check that, initially, the moments
calculated form the momentum distribution (3.1) are ordered such that |L,1| < |Ln].
Furthermore, all odd order moments are negative, while even order moments are positive.

We shall present the results of two calculations. We start with the simple case where
the collision term is written in the relaxation time approximation. For a constant value of
the relaxation time (linear ansatz), an analytical solution to the Boltzmann equation can
be obtained [20]. For a somewhat more realistic analysis, we then proceed to the numerical
solution of the Boltzmann equations for quarks and gluons, considering 2-to-2 scatterings
among gluons and quarks within a small scattering angle approximation [8].

A. Relaxation time approximation

The Boltzmann equation (2.1), with the relaxation time approximation for the collision
term, reads

f(tapTvpz) - feq
Trel 7

P p: 9 (3.2)

a - ?8p2:| f(tapT7pz) = -

We only require here energy conservation °, so that the local equilibrium distribution function
feq 1 @ Bose-Einstein distribution with a vanishing chemical potential,

1
feq(pT,pz) - eXp(\/m/T) _1 . (3?))

For a constant 7., the solution to Eq. (3.2) can be written formally as,

_t=tg Pt e
f(t,pr,p.) =e 7 f(to, pr, p:t/to) +/ - e el foq (szT +P§(t/t')27t,) . (34)
t

o 'rel

We recognize in the first term in the right hand side of Eq. (3.4) a contribution that represents
free-streaming from the initial condition f(to, pr,p.), Eq. (3.1). The time dependence of the
temperature 7" in fo, in the second term is fixed by the condition of energy conservation

2
o) = [ #rltrrn) = [Phattr) = 5T (35)
p P
This relation, together with Eq. (3.4), completely determines the solution. The resulting
energy density exhibits the expected transition from the early free streaming regime, where
e(t) ~ 1/t (see below), to the hydrodynamic regime at late times where e(t) ~ 1/t*/3. The
evolutions with time of the energy density and the pressures obtained from Eq. (3.4) are
illustrated in Fig. 2, and compared to the solution of first order viscous hydrodynamics
(which we also refer to as Navier-Stokes hydrodynamics). As shown by this figure, the
energy density is well accounted for by viscous hydrodynamics for times ¢t 2 157,,. This
is also the case for the pressure, although in this case, the existence of significant viscous
corrections at the latest times is attested by the fact that the longitudinal pressure is not
yet equal to the transverse pressure, Pr/Pr ~ 0.9 at t = 50 Q; .

5 If one would also require conservation of the number of constituents, the local equilibrium distribution

would also depend on a chemical potential [21]. This situation will be considered in the next subsection.
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FIG. 2. (Color online) Evolution of the energy density (left), and longitudinal and transverse pres-
sures (right), obtained by solving the Boltzmann equation with the relaxation time approximation,
Eq. (3.4), full lines. Both quantities are rescaled by a factor t4/3 so that they approach constant
values in the ideal hydrodynamical regime. The initial difference between the longitudinal and the
transverse pressures is due to the parameter £ in the initial distribution function. The symbols
represent the corresponding solutions of the Navier-Stokes hydrodynamics, started at time ¢ = 50
(in units of Q;!) and evolved backwards in time.

The moments can be calculated from the distribution function given in Eq. (3.4). Consider
first the free-streaming regime (7, — 00). In this case, one has

es_ JoQs [ to to
£’ = Aany (5) 7 <5> (36)

where F,,(z) is a function defined from the following integral (0 <z < 1)

Fulz) = / dy [1— (1 - 2% P, ([1— 0 e ) . (3.7)

! — a?)y?]

This function has the following limits: F,(x) — 7P5,(0)/2 as * — 0, and F,o(x) — 0 as
x — 1. Thus, for asymptotically large t, t > t,/¢, F,.(x) reduces to a constant, and the
moments decay as 1/t. When t = t;/£, the moments with n # 0 vanish, which implies in
particular that they vanish at ¢ = ¢, if there is no initial momentum anisotropy (£ = 1). The
energy density is given by the zeroth moment, with F,(0) = 7/2 and Fy(1) = 2. To within
the slowly varying function Fy(to/Et), the energy density exhibits the expected behavior in
1/t. Tt can also be verified that the longitudinal pressure drops rapidly, as ~ 1/t2, so that
at times t > to /¢, the distribution function is peaked around p, = 0, and the energy density
is dominated by transverse degrees of freedom.
For a finite 71, Eq. (3.4) leads to

todt et/ t
L(t) = 6_(t—t0)/7'r91£71:;5 + 6€(4)/ € T(t/)4 v J—"n(t//t), (3.8)
o (2m)2 T t
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FIG. 3. (Color online) Time evolution of the first few moments (n = 1,--- ,4, from top to bottom)
normalized by the energy density, and obtained by solving the Boltzmann with the relaxation time
approximation. The unit of time is Q;!, and both the relaxation time 7] and the initial time g
are set equal to Q; 1, i.e., el = Q5! = to. The dashed lines are the corresponding moments for
the free streaming solution, Eq. (3.6). We observe that by the time ¢ 2 157, all moments but £
vanish.

where ((n) is the Riemann-zeta function. In this equation, the first term represents the
contribution of the free-streaming of the initial distribution. This is suppressed in a time
scale T, i.e., when collisions start to play a significant role. One thus expects the evolution
of the moments to exhibit a transition between the free-streaming regime at short time,
t < Ty, and the late time regime, dominated by collisions and represented by the second
term in Eq. (3.8).

Figure 3 displays the evolution of the absolute values of the normalized moments |£,,/Lo|
up to n = 4 (recall that £; and L3 are negative). Also shown are the moments of the
pure free-streaming solution, Eq. (3.6), which saturate at late times to their corresponding
asymptotic values determined by F,(0), namely,

|L50] et (2n — D!
| £5°] (2n)!!

(3.9)

Note that this limit is independent of the initial pressure anisotropy paramater £. Clearly,
the isotropization of the momentum distribution, signaled by the vanishing of the moments,
can only be achieved by the collisions. Indeed the effect of the collisions starts to be visible
around the time scale (t — ty) ~ Ty Where they begin to compete with the free streaming
and later drive the momentum distribution to isotropy. Another effect of the collisions is
to reduce the overall magnitude of the higher moments. As can be seen on Fig. 3, while
the free streaming moments evolve towards comparable (within a factor 2) values at late
times, the hierarchy of moments present in the initial condition is preserved but after a time
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FIG. 4. (Color online) Evolution of the moment £; obtained from the solution of the Boltzmann
equation in the relaxation time approximation, plotted in terms of the ratio —tL£q/2s, with s
the entropy density. According to Eq. (2.23), this ratio can be identified, in the hydrodynamics
regime and in leading order, to n/s. Three values of the relaxation time are considered T =
0.3,1,3 (in units of Q; 1), with the same initial condition (Eq. (3.1)) in the three cases. The solid
lines represent the analytical expression 7/s = %T Trel Obtained in the (constant) relaxation time
approximation, with the tempearture T' determined from Eq. (3.5). Note an unrealistic feature of
this approximation which forces 1/s to vanish at large time. These curves confirm that viscous
hydrodynamics can provide an accurate description for ¢ 2 15 7.

t 2 15 74 only the moment £; remains significant. At this time the evolution of the system
is well accounted for by viscous hydrodynamics. °

This is confirmed by a more detailed study of the late-time evolution of the moments in
Eq. (3.8). First we consider the moment £;. According to Eq. (2.23), the ratio between this
moment and the entropy density, more precisely —tL;/2s, approaches n/s in the hydrody-
namic regime. This ratio is plotted in Fig. 4, where we purposely rescaled the time in Fig. 4
by 1/7e so that they evolve on the same time scale. As time increases, —tL/2s indeed
approaches the kinetic theory expectation: n/s = %T Trel, and reaches it for ¢ 2 15 7).

Figure 5 completes the discussion and illustrates the system evolution in terms of higher
order moments. Again, we consider specified dimensionless combinations of moments which
are supposed to reduce to dimensionless ratios of higher order transport coefficients at late
times. The following combination

4L5 x Ly R A+ 0Ty
L3 n?/(e+P)

6 Note that the hydrodynamical behavior of the moments at large time, that is predicted by Eq. (2.27),

(3.10)

is only observed at times later that those considered in Figs. 3 and 4. This is however of little practical
significance, because by that time, these moments have become very small and do not affect much the

dynamics.
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plotted in Fig. 5(a) is related to second order transport coefficients A\; and 7. In a similar
way, the combinations
8L1Ls 3LoLy
52 12
that are plotted in Fig. 5(b) and (c), respectively, involve some 3rd order and 4th order trans-
port coefficients. Although these have not yet been determined in viscous hydrodynamics, it

and (3.11)
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FIG. 5. (Color online) Evolution of higher order moments, plotted in specified combinations

which correspond to dimensionless ratios of transport coefficients in hydrodynamics regime. Black
arrows indicate asymptotic values. Note that for (A1 +n7:)/(n%/(e + P)), the asymptotic value is
consistent with what was expected from kinetic theory [22].

is nevertheless interesting to estimate their ratios from the asymptotic behaviors: these are
the black arrows in Fig. 5. Note that the asymptotic value of (\; + n7,)/n*/(e + P) =~ 8.57
in Fig. 5(a) is consistent with what one expects from kinetic theory with a linear ansatz for
the relaxation time [22]. The asymptotic values of the ratios in Fig. 5(b) and (c) are found
to be approximately 1.3 and 1.0, respectively.

Actually, the combinations plotted in Fig. 5 are nothing but double ratios among three
consecutive orders of transport coefficients (to within simple numerical constants). In terms
of the ¢,’s defined in Eq. (2.27), these are

Cn—1Cn+1 Cn+1 Cn
—_— = . 3.12
c2 ( Cn )/(cn_l) ( )

Asymptotic values of these double ratios can be obtained analytically in the case of the
quadratic ansatz for the relaxation time (Eq. (2.28)), or numerically for the linear ansatz.
Results for these two cases are shown in Fig. 6 for n < 20 and n < 5, respectively,” as
filled points and open symbols. For large n, the double ratio is seen to approach unity from
above, which implies a saturation of transport coefficients of asymptotically high orders. This
behavior reflects the fact that the gradient expansion leading to viscous hydrodynamics is
only asymptotic [23, 24].

7 For the linear ansatz we limit ourselves to n < 5, since the evaluation of the double ratio is challenged by
precision in numerical integrations at asymptotic large ¢ in Eq. (3.8), which become less stable for higher

orders.
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FIG. 6. Double ratios between transport coefficients, characterized in terms from ¢,’s, for a con-
formal and classical gas. The results have been obtained analytically for the quadratic ansatz of
the relaxation time (filled points) and numerically for the linear ansatz (open symbols).

B. Quark-gluon system with small angle approximation

We now apply the analysis of the previous section to the evolution of a quark-gluon plasma
containing Ny = N, = 3 flavors of massless quarks, and introduce separate distributions for
quarks (f,) and gluons (f,). We consider QCD tree-level 2 to 2 scatterings, within the
small angle approximation. Following the strategy taken in Ref. [8], we reduce the coupled
Boltzmann equations for the gluon distribution function f, and the quark distribution f, to
coupled Fokker-Plank equations,

0
£+v-vpfg=—vp.jg+8g, (3.13a)
0
s v Vply =~V Ty 5, (3.13D)

where the currents 7, , and sources S, , are given by

5= (n@ 0N L.V,1, + A 14 1) (3.14a)

Ty =— (47a2L)Cr [Iavpfq +Ib%fq(1