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Central loops in random planar graphs

Benjamin Lion and Marc Barthelemy∗

Institut de Physique Théorique, CEA, CNRS-URA 2306, F-91191, Gif-sur-Yvette, France

Random planar graphs appear in a variety of context and it is important for many different
applications to be able to characterize their structure. Local quantities fail to give interesting
information and it seems that path-related measures are able to convey relevant information about
the organization of these structures. In particular, nodes with a large betweenness centrality (BC)
display non-trivial patterns, such as central loops. We first discuss empirical results for different
random planar graphs and we then propose a toy model which allows us to discuss the condition
for the emergence of non-trivial patterns such as central loops. This toy model is made of a star
network with Nb branches of size n and links of weight 1, superimposed to a loop at distance ` from
the center and with links of weight w. We estimate for this model the BC at the center and on the
loop and we show that the loop can be more central than the origin if w < wc where the threshold
of this transition scales as wc ∼ n/Nb. In this regime, there is an optimal position of the loop that
scales as `opt ∼ Nbw/4. This simple model sheds some light on the organization of these random
structures and allows us to discuss the effect of randomness on the centrality of loops. In particular,
it suggests that the number and the spatial extension of radial branches are the crucial ingredients
that control the existence of central loops.

PACS numbers: 89.75.Fb, 89.75.-k, 05.10.Gg and 89.65.Hc

INTRODUCTION

Random planar graphs – random graphs that can be
drawn on the 2d plane with no edge crossing [1] – pervade
many different fields from abstract mathematics [2, 3], to
theoretical physics [4], botanics [5, 6], geography and ur-
ban studies [9]. In particular, planar graphs are central
in biology where they can be used to describe veination
patterns of leaves or insect wings and which display an in-
teresting architecture with many loops at different scales
[5–8]. In the study of urban systems, planar networks are
extensively used to represent, to a good approximation,
various infrastructure networks [9] such as transportation
networks [10] and streets patterns [11–29]. Understand-
ing the structure and the evolution of these networks
is therefore interesting from a purely graph theoretical
point of view, but could also have an impact in different
fields where these structures are central.

Most previous studies characterize different aspects of
these graphs, either purely topological (degree distribu-
tion, clustering, etc.) or geometrical (angles, segment
length, face area distribution, etc.). Due to spatial con-
straints, most local information such as the degree distri-
bution, the clustering or the assortativity have however
a trivial behavior [9]. In addition the important infor-
mation about these random planar graphs is in fact not
in their adjacency matrix only but also in their geom-
etry described by the spatial distribution of nodes and
relevant meaures should combine topology and geome-
try. Despite the large number of studies on these graphs,
there is still a lack of a non-local high-level metrics that
allow for understanding and comparing these graphs with
each other. However, a promising direction is given by
path-based quantities such as the simplicity [27, 30] or

as we will discuss here, the betweenness centrality (BC)
[31]. The BC was introduced to quantify the importance
of a node (or an edge) in a network, but it also proved
to be a very interesting tool in the study of random pla-
nar graphs. Already in [17], interesting spatial patterns
of nodes with large BC were observed. More recently,
it has been shown that the most salient aspects of the
structural changes during the evolution of the street net-
work of Paris [26] is revealed by the spatial distribution
of the nodes with the largest BC. These different results
therefore point to the fact that high centrality nodes form
non-trivial patterns, and among them, the emergence of
loops. All these different results point to the fact the
BC, which is relatively simple, is a good candidate for
monitoring and understanding the organization of ran-
dom planar graphs. In this study we will focus on the
apearance of loops made of links with large BC and we
will propose a simple toy model that allows us to discuss
the conditions for the appearance of such patterns.

The emergence of rings in largely urbanized areas is a
common fact and the study presented here gives a topo-
logical light on this phenomenon. Our study echoes pre-
vious work where congestion effect at a central hub could
be so high that avoiding the ring is beneficial [32, 33].
Here, in contrast, we do not take into account congestion
and discuss the conditions necessary for a loop to become
more interesting in terms of time cost.

THE BC FOR PLANAR GRAPHS

Basic results on planar networks can be found in any
graph theory textbook (see for example [1] and for use-
ful algorithms see [34]) and we will very briefly recall the
definition of these objects. Basically, a planar graph is a
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graph that can be drawn in the plane in such a way that
its edges do not intersect. Not all drawings of planar
graphs are without intersection and a drawing without
intersection is sometimes called a plane graph or a pla-
nar embedding of the graph. In real-world cases, these
considerations actually do not apply since the nodes and
the edges represent in general physical objects. More
precisely, we will focus here on the case of planar graphs
embedded in 2d space, which typically describes systems
such as the road and street network.

Definition of the BC and variants

The betweenness centrality counts the fraction of
shortest paths going through a given node (or link) and
is given by [31]

g(v) = N
∑
s6=t

σst(v)

σst
(1)

where v is a node, σst is the number of shortest paths
from s to t and σst(v) those paths going through v. In
general the summation is on s 6= t and s 6= v, t 6= v and
this is the convention that we will adopt in this paper.
The constant N is the normalisation and we will use here
N = 1/(N − 1)(N − 2) which counts the number of pairs
and ensures that g(v) ∈ [0, 1]. For edges, the definition
of the BC is similar to Eq. 1.

It is important to stress here that the BC could in
fact be defined for any type of paths. The most common
choice is the shortest path but we will use the more gen-
eral case of weighted shortest path, which corresponds
to the quickest path if the weight of a link represents
time. For numerical calculations, we implemented the
now standard algorithm of Brandes [35].

Regular lattice

In a one-dimensional lattice of size n, the BC of a site
0 ≤ x ≤ n is given by

g(x) = x(n− x) (2)

and the maximum thus corresponds to the barycenter of
all nodes (see Fig.1) (in the two-dimensional case we ob-
tain a similar behavior). When we introduce disorder -
by removing or rewiring links - the BC becomes impor-
tant at nodes that can be far away from the barycenter
(see Fig.1). In the extreme case where space doesn’t play
a role anymore such as in scale-free networks, the average
BC per degree classes g(k) scales as [36]

g(k) ∼ kη (3)

where η is an exponent that depends on the structure
of the graph. Even if there are fluctuations around this
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FIG. 1: Betweenness centrality for a one-dimensional lattice.
(Left) When there is no disorder, the barycenter is the most
central nodes. (Right) In the case of a disordered network,
degree becomes relevant and the most central nodes have large
degrees.

scaling it shows here that essentially the degree controls
the BC in these graphs.

Percolation: giant component

A simple way to construct a random planar graph is to
consider a regular lattice where each link has a probabilty
f to be removed (and p = 1 − f to be present). Above
the percolation threshold (p ≥ pc), the system displays
a giant component which connects a non-zero fraction of
the nodes. We can study the BC on this giant compo-
nent and filter them for different threshold g∗: we keep
only links with centrality g such that g > g∗. We show
in Fig. 2 the set of links that belong to the giant compo-
nent and with BC larger than g∗ and represent the BC
with a color code (from dark blue to yellow). and we ob-

 100000
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FIG. 2: Links belonging to the giant component obtained
for percolation with f = 0.15 and with normalized BC larger
than g∗ = 0.05gmax. We observe that the links with a very
large BC form a non-trivial pattern and are not necessarily
close to the center. The largest loop is here highlighted with
a double line.

serve that the set of most central links forms a non-trivial
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pattern where the distance to the center is not the main
determinant (Fig. 2). In particular, we observe the pres-
ence of very central links that are not close to the center
and that depend on the particular disorder configuration.

We can go further in the analysis of the structure of
the percolating cluster by analyzing the ratio

η =
g(r, θ)

maxr′<r,θ′∈[0,2π] g(r, θ′)
(4)

which compares the BC at one point with the maximum
BC of nodes in the region closer to the origin. For a
percolating cluster obtained at p = 0.8 (well above the
percolation threshold) and on a lattice 100× 100, we ob-
serve a very broad distribution of η. For values larger
than one we obtain on average η ' 3 and a very large
dispersion of order 103. We can observe the points for
which we have a ratio η > 1 and plot (Fig. 3) the dis-
tribution of the distance to the center for these points
(normalized by the maximum distance dmax). This fig-

FIG. 3: Distribution of the distance (normalized by the
maximum distance on the lattice) to the center for nodes with
a ratio η > 1. These results were obtained for p = 0.8 on a
100 × 100 lattice and averaged over 30 configurations.

ure 3 shows that the location of nodes with a very large
BC (at least larger than the BC of the nodes closer to the
center) can be of order the system size. This shows that –
depending on the disorder – the ‘central’ area composed
of the geometrical center and its surroundings are com-
posed of nodes with a relatively small BC. This reinforces
the need to understand in which cases the monotoneous
decrease of the BC with the distance to center can be
strongly modified by fluctuations.

Real-world planar graphs

Streets and roads form a network where nodes are in-
tersections and links are segment roads, and which is pla-

nar (or almost planar, to a good approximation). This
network is now fairly well characterized and due to spatial
constraints, the degree distribution is peaked, the clus-
tering coefficient and assortativity are large, and most of
the interesting information lies in the spatial distribution
of betweeenness centrality [9]. Many studies [13–26, 29]
considered different aspects of this network and observed
non-trivial structures in the BC spatial distribution. In
particular, in [17] it has been observed that the distri-
bution of the BC can display non-trivial spatial patterns
and in [26] the authors showed that during the evolution
of the street network of Paris (France) most ‘standard’
measures were unable to detect the important structural
changes that occurred in the 19th century, while in con-
trast, the spatial distribution of the BC displayed dra-
matic changes.

Using the road network obtained from city extracts
(the data has been obtained from the Mapzen website
[37]), we compute the BC distribution for different cities
shown in Fig. 4. For all these real-world cases, we observe

(d)

(b)(a)

(c)

FIG. 4: We show for real-world networks the links e with a
BC larger than a certain threshold g(e) > g∗ and we highlight
the largest loop. (a) Dresden, Germany (g∗ = 0.11). (b)
Paris, France (g∗ = 0.315). (c) Los Angeles, USA (g∗ = 0.05).
(d) Shanghai (g∗ = 0.07).

that indeed non-trivial structures appear and in partic-
ular we observe the appearance of loops made of central
links and of different sizes. We can test the stability of
these loops, by filtering these networks for different val-
ues of the BC threshold g∗ and compute the perimeter
of the main loop. The results for Dresden, Los Angeles,
and Paris are shown in Fig. 5. We observe on this plot
the presence of various plateaus at intermediate values
of g∗ suggesting that these loops are indeed very central
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FIG. 5: Perimeter P (g∗) of the main loop (normalized by
perimeter of the loop at g∗ = 0) for the road network of
Dresden, Los Angeles, and Paris.

and stable.

In general, boundary effects can be important and can
affect the measures done on spatial networks [38]. In gen-
eral, the choice of boundaries has an impact on quantities
such as the BC [39] and we briefly discuss this problem
here. We measure the area enclosed in the largest loop
on the same network but at different scales (ie. with dif-
ferent boundaries, going from central Paris to almost the
whole Ile-de-France region) and the results are presented
in Fig. 6. In this figure, we observe that at least the area
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 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

P
(g

* )/
P

(0
)

g*

(a) (b)

g*

A(
g*
)/A

(0
)

FIG. 6: (a) Normalized area A(g∗) defined by the largest
loop for different boundary conditions on the Paris road net-
work. The lowest curve corresponds to the largest size and for
decreasing size the curves are shifted to larger values of the
area. (b) Different boundaries corresponding to the curves of
(a).

of the largest loop remains relatively stable. Further sys-
tematic studies are however certainly needed in order to
understand which patterns are stable and which ones are
not, and what are the conditions on the boundaries in
order to ensure stability of the main spatial patterns.

Summary: stylized facts

These different examples discussed above show that
the introduction of disorder in planar graphs induce in
general the formation of non-trivial structures made of
links with a large BC. In particular, we observe the ap-
pearance of loops made of links that can have a BC larger
than the barycenter. In other words, disorder can invert
the typical behavior observed for regular lattice where
the BC is decreasing monotonously from the barycenter.
In the following, we propose a toy model which allows to
discuss and to understand under which conditions a loop
can become more central than the spatial center.

THEORETICAL APPROACH: A TOY MODEL

As discussed above, we observe that non-trivial objects
such as loops can be very central in random graphs. It
is important to understand the formation of these struc-
tures and the conditions for their existence. In particular,
it seems that randomness can induce very large perturba-
tion in the spatial distribution of the BC and where the
barycenter is not the most central node. Equivalently,
the BC could not be a simple decreasing function of the
distance to the barycenter anymore. In order to under-
stand this phenomenon, we propose here a simple toy
model. We first construct a star network composed of
Nb branches, where each branch is composed of n nodes.
We then add a loop at distance ` from the center (see
Fig. 7 for a sketch of this graph). We also consider here
a more general case where the links are weighted and in
this simplified model we assume that links have a weight
equal to one and the loop segment between two consecu-
tive branches has a weight given by w. The purely topo-
logical case then corresponds to the case w = 1. We then
compute the BC using weighted shortest paths. This gen-
eralization allows us to discuss for example the impact of
different velocities on a street network. In this case, w
can be seen as the time spent on the segment and the
weighted shortest path is then the quickest path.

Here, we want to discuss under which conditions the
loop will be more central than the ‘origin’ at the center
in this simplified network. Intuitively, for very large w,
it is always less costly to avoid the loop, while for w → 0,
loops are very advantageous. The two main quantities of
interest are therefore the centrality at the center denoted
by g0(`, n, w) and the centrality, denoted by gC(`, n, w),
at the intersection C of the branch and the loop. We
then compute the difference δg = g0 − gC and will study
under which condition it can be negative.
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0

C(l)
w

w

w

w

w

T(n) N  =5b
n=11
l=6

FIG. 7: Representation of the toy model discussed here. The
number of branches is here Nb = 5, the number of nodes on
each branch is n = 11 and the loop is located at a distance
` = 6 from the center 0. The node C is at the intersection of
a branch and the loop and T is the terminal node of a branch.

Exact and approximated formulas

The interest of this toy model lies in the fact that we
can estimate analytically the BC for the center g0(`, w)
and for the intersection nodes on the loop gC(`, w). For-
mally we can write these quantities as

g0(`, n, w) = g0(`, n,∞)− (a01 + a02 + a03)

gC(`, n, w) = gC(`, n,∞) + (aC1 + aC2 + aC3 ) (5)

where the aix are positive. We distinguish two parts in
these centralities. First, we estimate the BC when there
is no loop which is represented by the case where w →∞.
This part is modified by the presence of the loop that
under certain conditions can be more interesting for con-
necting pairs of nodes. We can understand the signs in
Eq. 5, by noting that the presence of the loop will de-
crease the centrality at the center and increase the cen-
trality at C. The different terms axi (where x = 0, C and
i = 1, 2, 3) count the paths (that avoid 0) connecting two
nodes that lie on different parts of their branch. We di-
vide the nodes on a branch in two parts - the lower part
comprises all nodes that are ‘below’ the loop 0 < s < `
and the upper part is the rest ` < s ≤ n. When both
nodes are on the upper part of the branches we obtain
ax1 ; the paths connecting an upper part to a lower part
are described by ax2 and when both nodes lie on a lower
part, we obtain the coefficient ax3 . For more details and
the calculation of these coefficients, we refer to the ap-
pendix.

The exact expressions for the centralities g0 and gC

are however difficult to handle analytically, essentially
because they are expressed as sums of complicated argu-
ments (see appendix). In order to derive analytical pre-
dictions we will propose in the following a simple approx-
imation scheme that allows to obtain the correct scalings
for the most important quantities.

In the derivation of the exact expression of the centrali-
ties Eq. 5, we have to distinguish different cases according
to the value of

χ ≡ min

(
Nb − 1

2
,

[
2`

w

])
(6)

compared to j−1 (the brackets [·] denote here the integer
part, ie. the lowest nearest integer) which denotes the
number of loop segments between the first branch and the
branch j. This essentially amounts to compare the cost
of the path between a node on the lower part (with 0 <
s < `) of the first branch B1 to a node on the lower part
(0 < t < `) of another branch Bj . If [2`/w] > j − 1 the
cost of the path which goes through 0 is larger than going
directly via the loop (given by (j − 1)w) and therefore
produces a negative contribution to g0. We see that this
discussion allows to distinguish for a given value of w
‘near’ from ‘far-away’ branches (Fig. 8). The nearest

branches are then defined by the condition j − 1 ≤ χ
and the remote branches by χ < j − 1 ≤ (Nb − 1)/2
(for simplicity we assume here that Nb is odd and by
symmetry we can discuss only one half for the branches
from j = 2 to j = (Nb − 1)/2). We will then use the

C(l)

w

w

T(n)

Far-away
branches

Near
branches

Near
branches

FIG. 8: Schematic representation of the approximation used
to compute the centrality g0(w) at the center 0.

following simplification: we will assume that for the χ
near branches, going through the center is always the
best choice for s < ` and t < ` while for all other paths
(from or to an upper path) it is beneficial to go through
the loop. This leads then to

gnear = χ
(`− 1)(`− 2)

2
(7)
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For the (Nb−1)/2−χ far-away branches, we consider that
for all nodes s, t ∈ J1, nK, the paths are going through the
center leading to

gfar =

(
Nb − 1

2
− χ

)
n2 (8)

Taking into account the factor 2 for not counting twice
the same path, we obtain for g0(w) = Nb(gnear + gfar)
the following expression

g0(w) ≈ Nb
{(

Nb − 1

2
− χ

)
n2 + χ

(`− 1)(`− 2)

2

}
(9)

We note that this approximation recovers both exact lim-
its

g0 '

{
Nb

(Nb−1)
2

(`−1)(`−2)
2 for w → 0

n2Nb
(Nb−1)

2 for w →∞
(10)

In the following it will also be useful to consider the limit
`, n → ∞ with x = `/n fixed which gives for g0(x, χ) =
g0(`, n, w)/n2 (up to terms of order 1/n)

g0(x, χ) ≈ Nb
{(

Nb − 1

2
− χ

)
+

1

2
χx2

}
(11)

where the only dependence on w is now encoded in χ,
hence the change of argument for clarity.

We can produce the same type of arguments for the
BC on the loop. First the value without the loop is easy
to compute and we obtain

gC(`, n, w =∞) = (n− `) [`+ n(Nb − 1)] (12)

which simply counts the number (n− `) of nodes ‘above’
C and all the others (C being excluded). Similar argu-
ments as above then give the following result (we also
changed here the argument of the function from w to χ)

gC(`, n, χ) = gC(`, n, w =∞)

+ 2χ
[
(n− `+ 1)(`− 1) +

(`− 1)(`− 2)

2

]
+
χ(χ− 1)

2

[
(n− `+ 1)2

+ 2(n− `+ 1)(`− 1) +
(`− 1)(`− 2)

2

]
(13)

where χ is given by Eq. 6. In particular the term pro-
portional to χ counts all the paths between the lower
part of the branch containing C and all the nodes of a
branch close enough. The second term (proportional to
χ(χ− 1)) counts the paths going from a branch Bj with
j ∈ [1, χ−1] to the other branches j′ = 1, 2, . . . , j−1. The
sum of all these contributions gives the factor χ(χ−1)/2.
The counting factor is not trivial here and comes from
evaluating all the paths from a node s in a branch j to a

node t on a branch j′ (j and j′ are different from 1) such
that

s+ t > |`− s|+ |`− t|+ w∆j (14)

The left hand side of this inequality corresponds to the
distance through the center and w∆j is the distance on
the loop (for the exact expression of the centrality and
how to recover this approximate formula, we refer the
interested reader to the appendix).

Similarly to the case of the BC at 0, it will be conve-
nient for analyzing these expressions to consider the limit
n, ` → ∞ such that `/n = x. Up to terms of order 1/n
we then obtain for gC(x, χ) = gC(`, n, w)/n2

gC(x, χ) = (1− x)(x+Nb − 1)

+ 2χx(1− x

2
)

+
χ(χ− 1)

2
(1− x2

2
) (15)

We show in the figure 9 the comparison of the exact re-
sult with the approximations developed here. For large
values of ` the approximation is not excellent and can
certainly be improved. However as we will show in the
following, our simple approximations allow to understand
and to predict the correct scaling for the important quan-
tities `opt and wc.

Threshold value of w and optimal `

The fundamental quantity that we wish to understand
is the difference δg(x, χ) = g0(x, χ) − gC(x, χ) given by
Eqs. (11,15). We first plot this quantity versus ` for dif-
ferent values of w and we observe the result shown in
Fig. 10 This result shows that for w sufficiently small,
δg can be negative. This demonstrates the existence of
a threshold value wc such that at w = wc the minimum
is min` δg = 0. For w < wc, the minimum of δg is neg-
ative and we can define an optimal value `opt which cor-
responds to this smallest value of δg. The quantity `opt
thus gives the position of loop that maximizes the differ-
ence between the BC of the loop and the center.

In order to estimate this optimal value `opt, we note
(using the expression Eq. 6 for χ) that the difference
δg(x, χ) gives

δg(x, χ) =

{
δg(x, 2`w ) for ` ∈ [0, (Nb−1)w

4 ]

δg(x, Nb−1
2 ) for ` ∈ [ (Nb−1)w

4 , 2n]
(16)

In order to discuss to estimate analytically both the
threshold wc and the optimal value `opt, we will use equa-
tions Eqs. (11,15) and study the approximate difference
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FIG. 9: Comparison between the exact result and the ap-
proximation for g0(w) (a) and gC(w) (b) (the BC are here
normalized). The parameter values are here Nb = 21, n = 60
and ` = 30. (c) Relative error between the exact value and
approximation for g0 and gC for Nb = 21, n = 60, w = 30,
` = 30.

δg(x, χ) = g0(x, χ)− gC(x, χ) given by

δg(x, χ) = Nb

[
Nb − 1

2
− χ+

1

2
χx2

]
− (1− x)(x+Nb − 1)− 2χx(1− x

2
)

− χ(χ− 1)

2
(1− x2

2
) (17)

We first study the derivative with respect to ` of this
difference in the domain ` < [(Nb− 1)w/4]. After simple
calculations we obtain that for large Nb and n (we treat

FIG. 10: δg(`) versus ` (for Nb = 15 and n = 60 here) and
for different values of w in the range [0, 12.5]. For values less
than a threshold (wc ≈ 4 shown here by a dotted line) there
is a minimum that is negative.

here ` as a continuous variable) dδg/d` < 0 in the do-
main considered. A similar calculation shows that in the
domain (Nb − 1)/4 < ` < 2n, the function δg(`, n, χ) is
increasing with ` (at least for Nb large enough). These
results thus show that the minimum of δg is actually
reached at the intersection of the two curves and which
occurs for

`opt =
(Nb − 1)w

4
(18)

This expression for `opt is actually independent from the
exact form of δg as long as it is decreasing for ` < `opt
and increasing above `opt which we verified numerically.
We compare the theoretical prediction Eq. (18) with nu-
merical results in Fig. 11, and we see that for Nb large
enough (here, typically Nb > 10) this prediction is in
excellent agreement with data.

We can understand this value of `opt with the following
simple argument. If ` is small most paths connecting
nodes from different branches will go through 0 and we
expect δg > 0. When ` is increasing more paths will
go through the loop and will increase the value of gC .
However, when ` is too large, paths connecting the (large)
fraction of nodes located on the lower branches will go
through 0 again. In order to get a sufficient condition
on `opt, we consider the path between the node C on
the branch B1 and the corresponding node C ′ on the
furthest branch (Nb− 1)/2. The optimal value for `opt is
then such that the cost of the path from C to C ′ through
0 and which is 2` is equal to the cost on the loop which is
given by w(Nb − 1)/2. This immediately gives the result
`opt ≈ w(Nb − 1)/4.

The threshold quantity wc is obtained by imposing
that the minimum of δg(` = `opt) is equal to zero. Us-
ing the approximate form Eq. 17, we can show that
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FIG. 11: Comparison between the theoretical prediction
(Eq. 18) and numerical results for `opt (for w < wc). For
large value of Nb the prediction is excellent. We note that
`opt exists for w < wc and wc decreases with Nb which im-
plies that the range over which we can see a linear behavior
is decreasing as 1/Nb (here n = 40).

the minimum is actually obtained for ` = `opt and for
χ = (Nb − 1)/2. We thus have to consider the quantity
δg(`opt, n, χ = (Nb−1)/2) which for large Nb is behaving
as large Nb

δg(`opt) ≈
N2
b

8

[
5

2

(
wNb
4n

)2

− 1

]
(19)

(details of this calculation are given in appendix) and we
therefore obtain

wc ≈ κ
n

Nb
(20)

where κ = 4
√

2
5 in this approximation. We can under-

stand the scaling for wc with the simple following argu-
ment. Indeed, a necessary condition on w is that `opt
must be less than n. This gives the condition

w < w̃c = 4
n

Nb
(21)

This threshold w̃c is a priori larger than the exact value,
as we imposed here a necessary condition, but allows to
understand in a simple way the scaling of wc with n and
Nb. We test the scaling for wc by plotting (Fig. 12)
wcNb versus n and which should be linear. We indeed
observe a reasonable agreement with the linear behavior
predicted by our analysis, where the differences are prob-
ably due to the small values of Nb used for the numeri-
cal calculations. The linear fit however gives a prefactor
κemp ≈ 0.66 which is far from the value obtained within
our simple approximation scheme. The important fact is
that our approximation is able to predict the correct scal-
ing and it could maybe be possible to find more refined

0 10 20 30 40 50 60
n

0

10

20

30

40

50

w
cN

b

Nb=5
Nb=7
Nb=11
Nb=21
Nb=31
Linear fit

FIG. 12: Value of wcNb versus n. The collapse is reasonably
good and is in agreement with our theoretical result Eq. 20.
We observe plateaus that are due to the discrete values of `
and n. The straight line is a linear fit which gives κemp ≈ 0.66
(r2 = 0.96).

approximations in order to get a better estimate for the
prefactor κ. Finally, we note here that wc is independent
from ` which can be understood by the fact that wc gives
a condition for the existence of `opt < n.

Finally, we note that when wc > 1, the case w = 1
displays then a negative minimum and we can observe
a very central loop. This case is particularly interesting
as it corresponds to the ‘topological’ case for which the
distance is the minimum number of hops. This will then
happen when there are few branches, or if the branches
are large enough.

DISCUSSION

The main purpose of this paper is to shed light on the
appearance of non-trivial patterns made of very central
nodes (or links) in real-world planar graphs. In particu-
lar, we focused on the existence of very central loops that
are commonly observed in random planar graphs. We
proposed a toy model that shows that indeed a loop at a
certain distance from the center can be more central than
the physical center itself. The condition for the existence
of such a phenomenon is that the weight on the loop has
to be small enough and in this toy model we showed the
existence of a threshold value wc. This threshold depends
on the size and number of radial branches, highlighting
their crucial role. This result allows us to understand
the appearance of very central loop even in the topolog-
ical case where the shortest topological distance is used
for computing the BC: if the extension of the network is
large compared to the number of radial branches, wc can
be larger than one wc > 1 and central loops for w = 1
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can be observed. In ordered systems – such as lattices
– the effective number of branches is too large leading
to a very small wc and therefore prohibits the appear-
ance of central loops in the ‘topological’ case (w = 1). In
real-world planar graphs where randomness is present,
the absence of some links can lead to a small number
of ‘effective’ radial branches which in the framework of
the toy model implies a large value of wc and therefore a
large probability to observe central loops.

In the case of roads, if we assume that the weight is
inversely proportional to the velocity, our result predicts
that the velocity on the loop has to be large enough in
order to be very central and faster than going through the
center. A possible direction of future studies could then
to include more precisely different velocities and also to
include congestion effects.

More generally, further studies are needed in order to
understand the variety of patterns induced by random-
ness in planar graphs, and we believe that this study is
a step towards this direction.
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APPENDIX

BC at the center

Complete formula

The general expression for the BC at the center is

g0(w) = n2Nb(Nb − 1)/2− (a01 + a02 + a03) (22)

In order to analyze this quantity, we separate the
branches into two parts. The first part is composed of
nodes at a distance lower than l from the center (the
‘lower’ part of the branch), and the second part consists
in nodes that are at a distance greater or equal than l
from the center (the ‘upper’ part of the branch). When
there is no loop, the total number of shortest paths going
through the center is (Ntot denotes the total number of
nodes)

g0(w =∞) =

(
Ntot − 1

2

)
−
(
n

2

)
·Nb

= n2Nb(Nb − 1)/2 (23)

This expression gives the betweenness centrality at the
center without the loop, and we can calculate g0(w)
by removing from g0(∞) all the shortest paths that go

through the loop and not through the center. This can be
computed by distinguishing different types of paths: the
quantity a01 counts the number of shortest paths going
through the loop and connecting nodes both located on
the upper part of branches; the quantity a02 counts these
paths connecting an upper part to a lower one; and a03
counts the paths connecting nodes both located in lower
parts of branches.

We note that due to the symmetry of this network, it
is enough to consider paths from a given branch to the
others and to multiply at the end of the calculation by
the number of branches.

The central point for calculating the centralities g0(w)
and gC(w) is to compare the length of the path through
0 and the path through the loop. For a node located at
distance s on branch 0 and a node at distance t on a
branch j (where j goes from 1 to Nb − 1), this condition
can be written as

s+ t < |`− s|+ |`− t|+ wj (24)

If this inequality is satisfied the path will go through 0
and otherwise the loop is more interesting. We thus have
to count the pair of nodes that satisfies this inequality
and for this we distinguish three different cases: s and t
in the lower part of branches, s and t in the lower and
upper parts respectively, and finally both s and t in the
upper part of branches. In the following we introduce
two quantities:

Xj = min

([
2j

w

]
,
Nb − 1

2

)
(25)

and

Pj =
1

2
θ(Nb odd)θ(

2j

w
= Xj)

+ θ(Nb even)

(
2

3
θ(
Nb
2

=
2j

w
) +

1

2
θ(
Nb
2
<

2j

w
)

)
where θ(condition) = 1 if condition is true, and is 0 oth-
erwise. This quantity Pj takes into account the fact that
the shortest path going through the center or through
the loop have the same length. If 2j/w = Xj we have
to divide by two the number of paths and Xj −Pj is the
fraction of paths going through the center. In addition,
if Nb is even and Nb/2 = 2j/w, we have 3 different paths
with the same length that connect two nodes on opposite
branches: one path through the center, another 2 paths
on each direction of the loop. In this case, there are 2/3
of paths to remove in order to get g0. in each case Xj−Pj
multiplies the total flow.

Calculation of a01 There are (n− `+ 1) nodes in the
upper part of one branch and therefore Nb(n − ` + 1)2

possible pairs between two nodes of two distincts upper
parts. The number of branches with nodes that will de-
viate from the center and will use the loop is given by
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X`. We have however to consider cases where there are
shortest paths that equivalently go through the center or
via the loop, and this is precisely what is counted by P`.
The coefficient a01 is then given by

a01 = Nb(n− `+ 1)2(X` − P`) (26)

We can recover this result by noting that for nodes s and
t belonging to the upper part of different branches B1

and Bj , the condition that the path through the center
is longer than on the loop is

s+ t > s− `+ t− `+ wj (27)

which leads to 2` > wj and a number of branches given
by [2`/w] = X`. We have an equality when 2` = wj and
this happen when X` = 2`/w and gives a factor 1/2 in
the BC.

Calculation of a02 For the a02 coefficient, only paths
between the lower part and the upper part are considered.
We consider a node (in the first branch) in the lower part
s < ` and another one in the upper part on t > ` in the
branch j. The path from s to t is deviated from zero if
the following condition is met

s+ t > |`− s|+ |`− t|+ wj

⇒ 2s > wj (28)

which means that the number of such paths is given by
the number of nodes in the upper part (n− `+ 1) times
the number of branches that satisfy this condition: j <[
2s
w

]
. We have to sum over s ∈ J1, `K and to multiply

by 2Nb which takes into account both paths (from the
upper to the lower and from the lower to the upper part
of branches) and obtain

a02 = 2Nb(n− `+ 1)

`−1∑
s=1

(Xs − Ps) (29)

(the term Ps takes into account the degeneracies of
paths).

Calculation of a03 The quantity a03 represents devia-
tion between pairs of nodes both located in the lower part
of branches. in this case, the condition on paths is

s+ t > `− s+ `− t+ wj (30)

which implies that the branches where we have a devia-
tion from 0 are such that

j <
2(s+ t− `)

w
(31)

and we then obtain

a03 = Nb

`−1∑
s=1

s−1∑
t=1

(Xs+t−` − Ps+t−`) (32)

We therefore finally obtain the exact expression

g0(w) ≈ n2Nb(Nb − 1)/2− (a1 + a2 + a3) (33)

with

a1 = Nb(n− `+ 1)2 · (X` − P`) (34)

a2 = 2Nb(n− `+ 1)

`−1∑
s=1

(Xs − Ps) (35)

a3 = Nb

`−1∑
s=1

s−1∑
t=1

(Xs+t−` − Ps+t−`) (36)

where Xj = min(
[
2j
w

]
, Nb−1

2 ) and Pj given above. The
sums entering these expressions are however difficult to
handle and we therefore resort to approximations that
are detailed in the main text.

Simplification

Another way to recover the approximation discussed
in the main text is to neglect small deviation terms (ie.
to impose Pj = 0), and we then obtain

g0(w) ≈ n2Nb(Nb − 1)/2− (a1 + a2 + a3) (37)

with

a1 = Nb(n− `+ 1)2 ·X` (38)

a2 = 2Nb(n− `+ 1)

`−1∑
s=1

Xs (39)

a3 = Nb

`−1∑
s=1

s−1∑
t=1

Xs+t−` (40)

We are still left with the sums to compute and the sim-
plest approximation we can think of (and that can be
used for gC too) is to choose Xj ≈ X` = χ leading to

a1 ≈ Nb(n− `+ 1)2χ (41)

a2 ≈ 2Nb(n− `+ 1)χ(`− 1) (42)

a3 ≈ Nbχ
(`− 2)(`− 1)

2
(43)

leading to the result Eq. 11 (in the limit n, `→∞ with
x = `/n fixed). This is obviously a very crude approxi-
mation and it could certainly be refined in order to get a
more accurate expression for g0. However, as we will see
in the next section, the expression for gC is much more
involved and we need an approximation scheme that can
be applied to both quantities g0 and gC , which seems to
be a difficult task that we leave for future studies.
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BC for the loop

Complete formula

The first term gC(w =∞) = (n−`)(n(Nb−1)+`) is the
number of shortest path passing through C when there is
no loop. The quantity (n− `) is the number of nodes in
the upper part of the branch B1 and the number of node
in the rest of the network is (n(Nb− 1) + `). Similarly as
for g0, we start from the quantity computed for w = ∞
and add the number of paths that will go through the
loop and obtain

gC(w) = (n− `)(n(Nb − 1) + `) + (aC1 + aC2 + aC3 ) (44)

The first term is considering only deviation from the
upper part of the branches to other upper parts. For all
other branches k = 2, . . . , Nb/2 (by symmetry and for Nb
even), if wk < 2`, there are ((k−1)∗(n−`+1)∗(n−`+1))
additional shortest paths going via the loop. By summing
over k and taking into account multiple paths, we obtain

aC1 = (n− `+ 1)2(
1

2
(X`−w/2 + 1)X`−w/2 − P 1

` ) (45)

The coefficient aC2 counts the paths from the upper
part of a branch to the lower part of another branch.
This path will go through the loop if wi < 2j with i
going from 1 to Nb/2 and j from 1 to ` − 1. We then
obtain

aC2 = 2(n− `+ 1)

`−1∑
j=1

(
Xj(Xj + 1)

2
− P 2

j

)
(46)

Finally, the coefficient aC3 corresponds to additional
shortest paths from lower part to lower part and going
through the loop. When wi < 2(j + k − `), with i =
1, . . . , Nb/2, j = 1, . . . , `−1, and k running from `−j+1
to ` − 1, there are (i + 1) new shortest paths added at
point C. Summing over i, we then obtain

aC3 =

`−1∑
j=1

j−1∑
k=1

(
Xj+k−`(Xj+k−` + 3)

2
− P 3

j+k−`

)
(47)

The quantities P ij , i = 1, ..., 3 correspond to the cor-
rection needed when the path going through the loop has
the same weight as the path going through 0.

For the part 1:

P 1
j =

Xj

2
θ(

2j

w
= Xj)θ(

Nb
2
6= Xj)

+
Nb/2− 1

3
θ(
Nb/2

2
=

2j

w
)θ(

Nb
2

=

[
Nb
2

]
+
Nb/2− 1

2
θ(
Nb
2
<

2j

w
)θ(

Nb
2

=

[
Nb
2

]
) (48)

For the part 2:

P 2
j =

Xj

2
θ(

2j

w
= xj)θ(

Nb
2
6= Xj)

+
2(Nb/2)

3
θ(
nb

2
=

2j

w
)θ(

Nb
2

=

[
Nb
2

]
)

+
Nb/2

2
θ(
Nb
2
<

2j

w
)θ(

Nb
2

=

[
Nb
2

]
) (49)

For the part 3:

P 3
j =

Xj + 1

2
θ(

2j

w
= Xj)θ(

Nb
2
6= Xj)

+
2Xj + 2

3
θ(
Nb
2

=
2j

w
)θ(

Nb
2

=

[
Nb
2

]
)

+
Xj

2
θ(
Nb
2
<

2j

w
)θ(

Nb
2

=

[
Nb
2

]
) (50)

Simplification

Here also, we can recover the approximate formula (Eq.
15) by using the same approximation as described above
for g0: we neglect small deviation terms (Pj = 0) and we
assume that Xj = X` ≈ χ for all j which gives

gC(w) = (n− `)(n(Nb − 1) + `) + (aC1 + aC2 + aC3 ) (51)

with

aC1 = (n− `+ 1)2
1

2
(X`−w/2 + 1)X`−w/2

≈ (n− `+ 1)2
χ(χ− 1)

2
(52)

aC2 = 2(n− `+ 1)

`−1∑
j=1

Xj(Xj + 1)

2

≈ 2(n− `+ 1)(`− 1)
χ(χ+ 1)

2
(53)

aC3 =

`−1∑
j=1

j−1∑
k=1

Xj+k−`(Xj+k−` + 3)

2

≈ χ(χ+ 3)

2

(`− 2)(`− 1)

2
(54)

where χ = min(
[
2j
w

]
, Nb−1

2 ). Summing all these terms
and taking the limit n, ` → ∞ with `/n = x fixed, we
recover the approximation Eq.15.
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Calculation of wc

We start with the expression Eq. 17

δg(x,w) = Nb

[
Nb − 1

2
− χ+

1

2
χx2

]
− (1− x)(x+Nb − 1)− 2χx(1− x

2
)

− χ(χ− 1)

2
(1− x2

2
) (55)

where χ = Nb−1
2 . In the limit Nb � (x − 1) we obtain

(keeping terms growing with Nb)

δg(x,w) 'Nb
[
Nb − 1

4
x2
]

− (1− x)Nb − 2
Nb − 1

2
x(1− x

2
)

− Nb − 1

4
(
Nb − 1

2
− 1)(1− x2

2
)

which behaves at leading order as

δg(x,w) ' N2
b

8

(
5

2
x2 − 1

)
(56)

The minimum is crossing zero at

x2 =
2

5
(57)

which implies for ` = `opt ' Nbw/4

wc '
√

2

5

4n

Nb
(58)
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