
HAL Id: cea-01498146
https://cea.hal.science/cea-01498146

Submitted on 29 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Triggering the boiling crisis: a study of the dry spot
spreading mechanism

Vladislav S Janeček, Vadim S. Nikolayev

To cite this version:
Vladislav S Janeček, Vadim S. Nikolayev. Triggering the boiling crisis: a study of the dry spot
spreading mechanism . Interfacial Phenomena and Heat Transfer, 2014, 2, pp.363 - 383. �10.1615/In-
terfacPhenomHeatTransfer.2015012273�. �cea-01498146�

https://cea.hal.science/cea-01498146
https://hal.archives-ouvertes.fr


Interfacial Phenomena and Heat Transfer, 2 (4): 363–383 (2014)

TRIGGERING THE BOILING CRISIS: A STUDY OF THE
DRY SPOT SPREADING MECHANISM
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In this article we describe the boiling crisis (departure from nucleate boiling) as a transition between two regimes of
bubble growth: “bubble departure” and “bubble spreading,” which occur for small and large heat fluxes, respectively.
The threshold heat flux is the critical heat flux (CHF). Our assumptions are based on existing experimental observations.
The boiling crisis is assumed to be triggered by spreading of dry spots under individual bubbles that occurs due to the
apparent contact angle growth, when the apparent contact angle attains 90◦. Such a mechanism is studied via numerical
simulation of the single bubble growth. The apparent contact angle is obtained from the hydrodynamic modeling of
the vicinity of the triple contact line (microregion). The microregion model is based on the lubrication approximation
extended to treat high interface slopes. The microregion model is compared to previous experimental and numerical data
obtained for moderate heater superheating values. The macroregion is modeled within a simplified 2D quasistationary
approach that neglects the fluid motion. The CHF obtained from such a formulation is calculated as a function of gravity
level and the heater wetting properties. The results agree qualitatively with existing experimental data.
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1. INTRODUCTION

When, during boiling, the supplied heat flux exceeds a critical value (the critical heat flux, CHF) the vapor bubbles
on the heating surface abruptly form a film that thermally insulates the heater from the liquid. The heat transfer is
blocked and the temperature of the heater rapidly grows. This transition is known under the names of “boiling crisis”
(BC) and “departure from nucleate boiling.”

In the engineering literature, the term “critical heat flux” (CHF) is often used both as a synonym to the term
“boiling crisis” (BC) and as a particular heat flux value. To avoid the ambiguity, we use the term CHF only to designate
the threshold heat flux.

Correct CHF estimation requires a clear understanding of the physical phenomena that trigger it. Among several
dozens of existing models of BC [see Buyevich (1999); Dhir (1998); Theofanous et al. (2002) for their discussion and
classification], the Zuber model is the only one that can be considered as a physical theory, the others being based on
multiple assumptions which are merely empirically based without a solid scientific justification. According to Zuber’s
model, vapor columns form at nucleation sites on the heater. The vapor moves upward while the liquid moves to the
bottom of column where the evaporation occurs. This counter-flow motion induces the Kelvin–Helmholtz instability,
which is supposed to cause destabilization of the whole system and formation of a vapor film on the heater. This
transition occurs when the vapor velocity exceeds a threshold resulting in the following famous expression:

qCHF ∼ H[σg(ρL − ρV )ρ2V ]1/4, (1)
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NOMENCLATURE

BC boiling crisis Greek Symbols
BEM boundary element method α thermal diffusivity, [m2/s]
Bo Bond number =g(ρL − ρV )R2

0/σ ∆p vapor–liquid interface pressure jump
CHF critical heat flux (also as a subscript) = pV − pL, [Pa]
CL contact line ∆T microregion wall superheating, [K]
Fo Fourier number =α∆t/R2

0 ∆t time step, [s]
Ja Jakob number =q0R0/(αLHρV ) δ arc length, [m]
e⃗ unit vector directed along an axis γ Marangoni coefficient, [N/(m K)]
n⃗ internal to the bubble unit normal µ liquid shear viscosity, [Pa s]

vector to its surface Ω boundary separating domains
cp liquid specific heat, [J/(kg K)] ϕ local slope angle of the liquid-gas interface
G correction coefficient, see Appendix ψ reduced temperature
g gravity acceleration, [m/s2] ρ density, [kg/m3]
H latent heat, [J/kg] σ surface tension, [N/m]
h height of the interface in the θ contact angle

microregion, [m] ξ reduced curvilinear coordinate
J mass evaporation flux, [kg/(m2 s)] ζ reduced heat flux
j volume heat supply, [W/m3]
K curvature, [m−1] Subscripts and Superscripts
k heat conductivity, [W/(m·K)] app apparent
L bubble contour half length, [m] d dry
ls hydrodynamic slip length, [m] dep at bubble departure
Q integrated heat flux, [W/m] i vapor–liquid interface
q heat flux, [W/m2] inf atx → ∞
R bubble radius, [m] L liquid
r local wedge coordinate (Fig. 2), [m] M of point M, cf. Fig. 2
Ri interfacial thermal resistance, [(K m2)/W] macro macroregion
s curvilinear coordinate, [m] micro microregion
T temperature, [K] r recoil
t time, [s] S solid heater
U volume flux, [m3/s] sat saturation
u local slope of the liquid-gas interface V vapor

= dh/dx w wetted
V bubble 2D half volume, [m2] x, y components of a vector
x, y coordinates, [m] 0 at t = 0 or y = 0

whereH is the latent heat,ρL (ρV ) is the density of the liquid (gas) phase,σ is the surface tension, andg is the gravity
acceleration. Equation (1) was first obtained by Kutateladze (1950) out of dimensional analysis. While this expression
seems more or less compatible with the experimental data sets, Zuber’s model itself is questionable. Indeed, the
vapor column morphology of boiling is quite rarely observed while the BC occurs inevitably for all morphologies of
boiling, for pool as well as for flow boiling. Besides, many experimental results, in particular those obtained in low
gravity (Kim et al., 2002), cannot be fitted by Eq. (1). Other physical phenomena should then be responsible for the
triggering of BC. A strong dependence of CHF on the wetting properties and the surface state of the heater (Dhir,
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1998) suggests a phenomenon at the level of the triple (vapor–liquid–solid) contact line rather than a phenomenon
related to the bulk hydrodynamics. Until the mid 1990s, it was considered that a thin liquid film (macrolayer) covers
continuously the heater, thus separating it from the bubbles. Recent advance in the optical and infrared observation
techniques of BC through the transparent heater with rapid cameras evidenced an important role of growth of the dry
heater area; see, e.g., Gong et al. (2014); Kandlikar (2001); Kannengieser et al. (2014); Theofanous et al. (2002).
More and more researchers in this field consider the dry area growth to be the key phenomenon; see, e.g., Gong et al.
(2014); Kannengieser et al. (2014); Nikolayev and Beysens (1999); Yagov (2014).

It is important to understand how the drying impacts the BC triggering. Either it is triggered by the growth of
dry spots under individual vapor bubbles (Nikolayev and Beysens, 1999; Nikolayev et al., 2001) that coalesce later
or BC occurs as a result of a collective phenomenon of the avalanche-like multiple bubble coalescence (Lloveras
et al., 2012). This is still an open question. A thorough analysis (Bricard et al., 1997) of this second scenario has
shown a necessity of the repetitive (at least 30–40 times) formation of aggregates of 2–3 coalesced bubbles at the
same neighboring nucleation spots. This is not a likely event because in order to coalesce, (i) the bubbles need to grow
close to each other, which is prohibited by their thermal interaction (Kenning and Del Valle, 1981; Pasamehmetoglu
and Nelson, 1991), and (ii) the strong lubrication forces between their interfaces need to be overcome (Yiantsios and
Davis, 1991), which means that either the bubbles are densely crowded or strongly pinned at their nucleation sites.
More recent experimental studies (Chatpun et al., 2004; Golobic et al., 2011) corroborate these considerations. In
the present paper we develop the first scenario that has been suggested theoretically (Nikolayev and Beysens, 1999)
and confirmed by observation of growth of individual dry spots through the transparent heater (Chung and No, 2003;
Kandlikar and Steinke, 2002; Kannengieser et al., 2014) or via infrared visualization (Jung et al., 2014). It is however
very difficult to observe experimentally the dynamics of BC (Theofanous et al., 2002) because of fast motion of
the liquid–gas interfaces and temperature gradients that cause strong optical aberrations (Cooper and Chandratilleke,
1981). To our knowledge, the dynamics of BC that clearly showed its progression has been observed only at nearly
critical pressure where the weak heat diffusion slows down the boiling process and where the CHF value is small
(Nikolayev et al., 2006a,b) so that hindering the optical observations violent fluid motion is absent. Such experiments
had, however, to be performed in the weightlessness to avoid the gravity flattening of all gas–liquid interfaces. The
gravity influence (appearing mainly because of the surface tension decrease) is progressively stronger as the critical
pressure is approached. In these experiments, it has been shown that the spreading of dry spots under individual
bubbles precedes their coalescence and gives rise to the fast heater temperature increase. The “vapor spreading”
scenario has thus been evidenced.

The main cause of the dry spot growth is the increase of the apparent contact angle; see, e.g., Ajaev (2005);
Moosman and Homsy (1980); Nikolayev (2010); Raj et al. (2012); Stephan and Hammer (1994); Wayner et al. (1976).
For bubbles in boiling, the relation between the apparent contact angle and the size of the dry spot was evidenced both
experimentally (Chung and No, 2003; Kandlikar and Steinke, 2002) and by numerical simulation (Kunkelmann and
Stephan, 2009; Mukherjee and Dhir, 2004; Nikolayev et al., 2001; Son et al., 1999). It has been shown (Garrabos
et al., 2001; Nikolayev et al., 2006b) that at nearly critical pressure where the hydrodynamic flow is very slow, the
vapor recoil is the main cause of the apparent contact angle increase because of its relative strength with respect to the
surface tension. Far from the critical pressure, their balance (Nikolayev et al., 2006b) leads to an expression similar to
Eq. (1).

A somewhat different experimental approach (Gong et al., 2011) aimed to study the dynamics of formation and
spreading of a single dry spot in a liquid film. The film geometry is more relevant in the flow boiling where BC occurs
via the dryout of such a film (called sometimes macrolayer) that forms between the heater and the moving vapor
slugs. This scenario is actually similar to that considered here because the dry spot growth occurs due to the same
microscopic reason: the increase of the apparent contact angle. In this work we address the case of the pool boiling
where the bubble geometry is relevant.

An attempt has already been made (Nikolayev et al., 2001) to simulate numerically the spreading of a dry spot
under a vapor bubble. However, in the evaluation of the apparent contact angle, the effect of the viscous pressure drop
caused by the fluid flow near the triple contact line was neglected with respect to the vapor recoil effect. The action of
these two effects is similar. However oura posterioriestimations (Janeček, 2012) have shown that for the pressures
(at least 20%) lower than the critical pressure, the viscous pressure drop cannot be ignored because its effect may be
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comparable and even larger than that of the vapor recoil at low pressures. Recently, a contact line model accounting
for these both effects has been developed by us (Janeček and Nikolayev, 2012, 2013). One of the purposes of the
present study is to extend our contact line model for high apparent contact angles. Then its coupling with a simple
quasistatic bubble growth model is performed. Unlike the existing studies where the microregion was implemented
as a subgrid model, a rigorous coupling between the micro and macro regions is proposed here. We also present a
parametric analysis of the CHF obtained in the framework of such a simulation applied to the proposed BC scenario.

2. PROBLEM STATEMENT

The dry spot formed on the heater under the vapor bubble depends on its shape defined by its apparent contact angle
θapp. Underθapp we mean the contact angle defined on a scale comparable to the bubble size (Fig. 1). This scale is
called hereafter “macroscopic” to distinguish it from the microscopic scale of the contact line (CL) phenomena. The
apparent contact angle may differ from its equilibrium (usually small) valueθmicro as will be shown below. It depends
on the local heater temperature at the CL position that varies with time. Therefore,θapp changes (usually, increases)
during the bubble growth.

2.1 Boiling Crisis Scenario

Based on the experimental observations discussed above, the CHF can be calculated as follows. At low heat fluxes
θapp remains low throughout the bubble growth on the heater; the bubble grows and departs. At some heat flux, the
apparent contact angle may attain 90◦ during the bubble growth. Such an event is very important for several reasons.
First, the dry area attains its maximum value with respect to the bubble size, which leads to the heater temperature
rise. Second, the bubble adhesion to the heater increases, which facilitates the bubble coalescence. Third, and the most
important, the dry areas under bubbles coalesce simultaneously with the bubble volume coalescence, which leads to
the fast heater temperature rise.

In the opposite caseθapp < 90◦, the coalescence of bubble volumes does not result in immediate dry spot co-
alescence and growth; the heater continues to be cooled under the newly formed bubble (because of the latent heat
consumption) even after the coalescence of bubble volumes. The dry spot coalescence is slow because large viscous 
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FIG. 1: Vapor bubble on the heater surrounded by liquid. The macroregion(a) and microregion(b) are shown.
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dissipation in the thin liquid film appearing in the CL vicinity and pinning at solid surface defects causes the slowness
of the CL motion.

All these reasons suggest that the triggering of BC occurs whenθapp becomes larger than 90◦ while the bubble
grows on the heater. Therefore we postulate that CHF corresponds to the situation whereθapp attains 90◦ exactlyat
the moment of bubble departure. Such an assumption is confirmed by the direct optical observations of Kannengieser
et al. (2014).

Note that, within the quasistatic bubble shape considered below, the above criterion is equivalent to the equality
of the dry spot radius and the bubble curvature radius at bubble departure. This latter criterion was adopted by Yagov
(2014).

To prove an occurrence of such a phenomenon, a numerical simulation of growth of a single bubble is performed.
The difficulty of such a task is its multiscale nature: the scales ranging from mm (bubble size) to nm (microscopic
scale of the CL phenomena) need to be solved. For this reason, the computational domain is decomposed into two
parts (cf. Fig. 1): (i) a region of vapor and liquid in the vicinity of CL called microregion and (ii) the rest of the
simulation domain including both liquid and solid parts, called macroregion. The problems in these two regions are
solved separately and coupled with an iterative procedure. By using the above assumption, the CHF will be determined
and its dependence on some system parameters will be studied.

2.2 Macro Region

We consider the growth of a vapor bubble with free interface attached to the semi-infinite (y < 0) solid heater in the
semi-infinite (y > 0) liquid domain in 2D; see Fig. 1. Since the bubble is axially symmetrical, only a half of the whole
domain atx > 0 may be considered.

2.2.1 Thermal Part of the Problem

The heat transfer due to convection is neglected in this model problem; only the heat conduction in the liquid is
accounted for. This corresponds to the slow bubble growth at high pressures and allows us using the boundary element
method (BEM), which simplifies this problema priori complicated because of the free bubble interface. Although
such a model is quite rough (its deficiencies will be evident from the results), it is useful to illustrate how the coupling
with the microregion model is performed to obtain the CHF from a numerical simulation. The vapor is assumed to
be thermal insulator. Because of the assumed absence of hydrodynamic motion in the macroregion, the pressure is
uniform both in the vapor and in the liquid. In the macroregion, the bubble interface is thus isothermal atTsat.

A spatially homogeneous inside the solid heater volume heating (e.g., by the electric current that passes through
the metal heater) is considered. The transient heat conduction equations for the solid and liquid domains,

∂TS

∂t
= αS∇2TS +

αS

kS
j(t), y < 0, (2)

∂TL

∂t
= αL∇2TL, y > 0 (3)

will be solved. The boundary and initial conditions are defined similarly to Nikolayev et al. (2001). The case of
saturated boiling is considered, which means that the temperature in the liquid far from the heater isTsat, the saturation
temperature for the given system pressure. The homogeneous initial temperatureTsat is assumed both in the solid and
in the liquid. The temperature and heat flux continuity boundary conditions are imposed at the macroregion part of
the solid–liquid interface,ΩL and the solid–liquid portion of the boundary with the microregion (cf. Fig. 1).

Following Nikolayev et al. (2001), the volume heat supply in the solid phase is chosen in the formj(t) ∼ t−1/2,
which results in the time constant heat flux far from the bubbleq(x → ∞, y = 0), denotedq0 hereafter. This particular
choice will allow us avoiding the influence of the varying in time heat flux on the bubble growth;q0 can thus be used
as a control parameter. It can be shown (Nikolayev et al., 2001) that

TS(x → ∞, y = 0) = Tsat +
2q0
kL

√
αLt

π
. (4)
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Note that the heat flux to the liquid varies along the heater at a scale that corresponds to the heat diffusion length.

2.2.2 Vapor Bubble Evolution Description

The simulation starts with a small spherical bubble with the contact angleθmicro andR = R0. The bubble growth is
controlled by the supplied to it heat,

HρL
dV

dt
= Qmacro +Qmicro; (5)

Qmacro =

∫
Ωi

qiLdΩ, whereqiL = −kLn⃗ · ∇TL|Ωi

is the local heat flux from the liquid defined at the macroregion partΩi of the gas–liquid interface.
The bubble interface is free and is defined at each time moment by the normal interface stress balance

Kσ = (ρL − ρV )gy +∆pmacro, (6)

where the first term on the right-hand side corresponds to the hydrostatic pressure. The left-hand side is the capillary
pressure withK, the local curvature that varies along the interface. In the macroregion, both the liquid flow and the
vapor recoil effects are neglected, which corresponds to the quasistatic approximation; the value of∆pmacro is thus
constant. This value is obtained by using the bubble volume valueV given by Eq. (5) as described below. To solve
Eq. (6),θapp needs to be prescribed. This value comes from the microregion calculation.

The bubble departure takes place when the lift-off forces acting on the bubble overcome its adhesion to the heater.
The departure occurs when the contact pressure force (i.e., the reaction force of the solid,2Rd∆pmacro in the 2D
case) becomes zero, which implies the condition (Nikolayev and Janeček, 2012)

(ρL − ρV )V depg = σ sin θapp (7)

valid in 2D. In the most interesting case for usθapp ≤ 90◦, the bubble departure occurs when∆pmacro = 0 (in some
cases, the departure may occur also whenRd = 0) so that the conditions∆pmacro ≥ 0, Rd > 0 hold throughout the
bubble growth. This means that a concave bubble profile (that corresponds toK|y=0 = ∆pmacro/σ < 0) is impossible
andRdep

d > 0 similarly to many other bubble growth simulations. Because of the bubble convexity, the conditionθapp
= 90◦ is equivalent to the conditionRd = R. Note that in reality, just before the departure,Rd may rapidly shrink to
zero or the bubble may exhibit transiently concave “bottleneck” profiles. However, such hydrodynamically controlled
phenomena cannot be described within the quasistatic macroregion model.

2.3 Microregion

Conventional microregion modeling (Ajaev, 2005; Moosman and Homsy, 1980; Stephan and Hammer, 1994; Wayner
et al., 1976) addresses the complete wetting regime, applicable only to low-energy fluids (like alkanes) on perfectly
smooth and ideally homogeneous heaters where a thin liquid film covers at equilibrium the solid at room temperature.
According to Derjaguin and Churaev (1974), at larger temperatures but still at equilibrium, the liquid film may disap-
pear in the case of water. Rednikov and Colinet (2011) showed theoretically that for finite values of the Young contact
angle but in the presence of the disjoining pressure∼ h−3, the continuous film solution becomes unstable starting
from some (small) values of superheating of the solid. The stable equilibrium solution is wedgelike; the dry solid
appears in spite of the disjoining pressure divergence ath → 0. As a result, in most practically important systems
(water on metal heaters) and temperatures, the substrate surface is partially dry at equilibrium and the dependence of
the bubble dynamics on the wetting properties (characterized by the equilibrium contact angle) is essential.

From the point of view of the numerical CL modeling, the continuous film approach isa priori less convenient
than the partial wetting approach for several reasons. (i) The former approach requires meshing of the infinite film,
which is absent in the latter. (ii) To implement the former approach one absolutely needs to introduce the disjoining
pressure function, the shape of which is highly uncertain for the fluid–substrate combinations and temperature ranges
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of interest. In the latter approach the introduction of the disjoining pressure is not mandatory [although possible; see
Ajaev et al. (2010); Janeček and Nikolayev (2013)], the solid–fluid interaction being accounted for by the relatively
easily measurable equilibrium contact angle.

The continuous film models are popular because the presence of film relaxes the consequences of the CL geometric
singularity in both the hydrodynamic and thermal problems. The hydrodynamic CL singularity in the partial wetting
case is solved usually by introducing the hydrodynamic slip lengthls (Anderson and Davis, 1995; Nikolayev, 2010;
Oron et al., 1997). It has been shown by us (Janeček and Nikolayev, 2012) that the slip length is not absolutely
necessary for the description of evaporation. The Kelvin effect (dependence of saturation temperature on interface
curvature) alone relaxes the singularity. The slip length is however often more important than the characteristic Kelvin
length (Janěcek et al., 2013) and for this reason is considered below as the main microscopic length scale. Each of
these effects has some impact onθapp and for this reason both of them are accounted for. As a consequence,θapp is
only weakly dependent on each separate parameter like slip length, gas–liquid interfacial resistanceRi, or Marangoni
effect, which means that the model is robust.

As in the studies cited above, we adopt the “one-sided” description, according to which the vapor pressure is
assumed to be spatially homogeneous. This assumption is justified by the smallness of both density and viscosity of
the vapor. The relation for the liquid–vapor interface temperature

T i = Tsat

[
1 +

∆p

HρL
+

J2

2Hρ2V

]
+RiqiL (8)

is based on linearized Clausius–Clapeyron formula enhanced for the interfacial resistanceRi (Anderson and Davis,
1995; Nikolayev, 2010; Stephan and Hammer, 1994) which accounts for the molecular kinetics effects. The vapor
recoil contribution (the third term) has been derived in Anderson et al. (2007).

The lubrication theory accounts for the Navier slip boundary condition (Nikolayev, 2010) at the solid wall (y = 0)
and the Marangoni effectdσ/ds = −γdT i/ds at the liquid–vapor interface, whereγ = −dσ/dT . Together with the
liquid layer heighth (conventional in the lubrication approximation) we operate with the arc lengthδ = rϕ related to
h = r sinϕ (see Fig. 2) via the expression

h = δ
sinϕ

ϕ
.

The main idea of hydrodynamic approach is based on the fluid flow in a wedge with a sink localized at the CL
(see the Appendix). Such an approximation is justified for a strongly curved meniscus with a high slope because the
evaporation is strongly localized at the CL. One obtains the following expression for the volume fluxU(s) flowing
through the vertical cross section of liquid film confined between the heated substrate and the gas–liquid interface,

µG(ϕ)U =
dσ

ds

(
δ2

2
+ δls

)
+

(
δ3

3
+ δ2ls

)
d∆p

ds
, (9)

 x

s

y

 
h

r

 

M

 xmicro0

 L

FIG. 2: Detailed sketch of the (highlighted) liquid part of microregion. The BEM nodes are shown with open circles.
The arc lengthδ, meniscus heighth, local wedge coordinater and local slope angleϕ are shown for the same point.
θapp is associated withϕ at the point M.
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where the identityd∆p/ds = −dpL/ds is used and the CL is assumed to be immobile (the flow generated by the
CL motion is thus neglected). Apart from the replacement ofh by δ andx by s, Eq. (9) differs from the standard
lubrication approach (Oron et al., 1997) by a correction factorG(ϕ). G comes from the generalization (Mathieu,
2003) of lubrication approximation for high interface slopes, see the Appendix;G(ϕ) → 1 for smallϕ so that such
an approach reduces to the standard lubrication theory whenθapp is small.

By using the fluid mass conservation law,U can also be expressed via the mass evaporation fluxJ at the gas–liquid
interface (assumed positive at evaporation),

U = − 1

ρL

∫ s

0

Jds, (10)

which can be rewritten as
dU

ds
= − J

ρL
, (11)

whereJ is obtained below from the heat transfer part of the microregion problem.
The gas–liquid interface shape is determined from the microregion counterpart to Eq. (6)

σ
dϕ

ds
= ∆p+ pr, (12)

wherepr = J2ρ−1
V is the vapor recoil pressure; the gravity effect is negligible and∆p varies along the vapor–liquid

interface because of the liquid flow. Theh differential equation reads

dh

ds
= sinϕ. (13)

The heat conduction in microregion is considered to be stationary due to the small thermal inertia of the thin
liquid wedge. The temperature distribution is defined to be linear along the arc lengthδ (see Fig. 2) as suggested by
the rigorous thermal analysis of straight wedge (Anderson and Davis, 1994),

qiL = kL
Tsat +∆T − T i

δ
. (14)

Like Stephan and Hammer (1994); Wayner et al. (1976), and Son et al. (1999), we neglect the variation of heater
temperature in the microregion;∆T is thus a parameter. As mentioned above, its value is matched to the macroregion
problem.

Since the vapor heat conductivity is neglected, the interfacial heat balance readsqiL = HJ . By combining it with
Eqs. (8) and (14), one obtains the equation

J =
∆T −∆pTsat/(HρL)

H(Ri + h/kL)
− Tsat

2H4ρ2V

[∆T −∆pTsat/(HρL)]
2

(Ri + h/kL)3
, (15)

under an assumption that the vapor recoil term in Eq. (8) is small (which has been verifieda posteriori). The last
equation closes the set (9, 11–13) for four unknown functions ofs: h,ϕ,∆p, andU . This set of ordinary differential
equations is of the fourth order and requires thus four boundary conditions. In the partial wetting case considered here,
two of them are geometrical constraints defined at the CL,

h(s → 0) = 0, ϕ(s → 0) = θmicro. (16)

The third is the matching of the microregion pressure jump ats = sM with its macroregion value, cf. Fig. 1(b). By
using the fact that the pressure jump in macroregion∆pmacro ∼ σ/R is negligibly small with respect to its value in
the vicinity of CL, the condition

∆p(sM ) = 0 (17)
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is applied. The microregion size∆xmicro ≃ sM (cf. Fig. 2) is determined by the criterion that its influence on the
apparent contact angleθapp = arctanu(sM ) is negligible (within the given precision). This criterion can always be
satisfied because the the meniscus slope tends toθapp ass → ∞.

The fourth boundary condition

∆p(s → 0) =
HρL∆T

Tsat
(18)

can be derived from Eq. (15) and the equationJ(s → 0) = 0 (Janěcek and Nikolayev, 2012), valid when the flow
appearing because of the CL motion is neglected.

2.4 Coupling of Micro and Macro Regions

The micro and macro regions are coupled by matching the following parameters:

i. Interface slope (θapp) at the microregion–macroregion junction of the vapor–liquid interface.

ii. Temperature at the part of the boundaryΩL with the microregion, cf. Fig. 2. The macroregion node temperature
is made equal to0.5[TM + TL(∆xmicro, y = 0)] calculated in the microregion model. The heat flux cannot
be matched atΩL because the asymptotic nature of the microregion treatment requires it to be fixed to zero.
This mismatch appears also because of different spatial dimensions of micro (1D) and macro (2D) problems.
However the error introduced by the mismatch is very small as the macroregion flux overΩL is verified to be
much smaller thanQmicro/∆xmicro. To preserve the energy conservation, the flux contribution is included in
Eq. (28) below.

iii. Superheating∆T of the microregion part of the solid–liquid macroregion boundary, cf. Eq. (15) and Eq. (26)
below.

iv. Heat powerQmicro taken from the solid to the microregion through its solid-liquid boundary. Within the
macroregion model,Qmicro is the integral ofqS over it. Since this part is implemented as a single BEM ele-
ment of the length∆xmicro, Qmicro is simply the nodeqS value times∆xmicro. This condition corresponds to
Eq. (27) below.

Qmicro is the total heat supplied from the microregion to the vapor–liquid interface,

Qmicro =

∫ sM

s=0

qiL(s)ds. (19)

This value is important to the macroregion heat transfer problem for two reasons. First, its contribution to the bubble
volume is not negligible, cf. Eq. (5). Second, as mentioned above, this value defines the heat flux boundary condi-
tion at the microregion part of the solid–liquid interface. These quantities are important to be matched accurately
between both regions by an iterative procedure. Sinceθapp andQmicro depend only on∆T (besides the fixed system
parameters), it is possible to tabulate them and use a fitting procedure instead of recalculating them at each iteration.

Note that the coupling proposed here is more rigorous than that used by other authors, e.g., Kunkelmann and
Stephan (2009), where the microregion is not considered as a separate cell but as a subgrid model for the macroscopic
simulation domain. Only two parameters (θapp andQmicro) were coupled in their work. The difference ofQmicro and
the calculated (within macroscopic simulation) energy balance was used as an internal to this cell source of energy.
As a result, the boundary conditions were less rigorous, in particular that for the heat and mass exchange at the solid–
liquid and liquid–vapor microregion interfaces which turned out to be homogeneously distributed over the cell area
much larger than that of the actual microregion.
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3. PROBLEM SOLVING

3.1 Macroregion

By introducing fixed scales for time (∆t, time step), length (R0), heat flux (q0), and pressure (σ/R0), all other
variables can be made dimensionless. The dimensionless temperature isψ = (TS,L−T inf

S,L )kL/(q0R0), whereT inf
S,L =

TS,L(x → ∞, y, t). The values at infinity are subtracted to eliminate the necessity of integration over the domain
boundaries situated at infinity. The dimensionless heat transfer problem statement is (the tilde means the corresponding
dimensionless quantity)

∂ψL,S

∂t
= FoL,S∇2ψL,S , (20)

ψL,S |t=0 = 0, (21)

ψL|Ωi = −T̃ inf
L (ỹ, t̃), (22)

ζL|Ωw = ζS |Ωw , (23)

ζL|Ωd
= −1, (24)

whereζL = ∂ψL/∂n⃗, ζS = kS/kL ∂ψS/∂n⃗, and

T̃ inf
L (ỹ, t̃) = 2

√
FoLt̃
π

exp

(
− ỹ2

4FoLt̃

)
− ỹ erfc

(
ỹ

2
√

FoLt̃

)
. (25)

The boundary conditions at the boundaries with microregion (cf. Section 2.4) are defined as follows:

ψL|ΩL
= ∆T̃ ỹ/ỹM − T̃ inf

L (ỹ, t̃), (26)

ζS |y=0 = Q̃micro/∆x̃micro − 1. (27)

The dimensionless bubble volume equation reads

dṼ

dt̃
= FoLJa

[
Q̃micro +

∫
(Ωi∪ΩL)

(ζinf − ζL) dΩ

]
, (28)

whereζinf = nyerfc
[
ỹ/
(
2
√

FoLt̃
)]

.

By following Nikolayev et al. (2001), the bubble shape equation (6) is written in the parametric form by choosings
as an independent variable, see Fig. 1(a). The dimensionless coordinates (x̃, ỹ) for a given point on the bubble interface
are then functions ofξ = s/L that vary along the bubble half-contour from 0 to 1;ξ = 0 andξ = 1 correspond to the
point M of matching of the micro and macro regions and to the topmost point of the bubble, respectively. Equation (6)
is thus equivalent to the set of ordinary differential equations

dx̄

dξ
= cosϕ, (29)

dȳ

dξ
= sinϕ, (30)

dϕ

dξ
= L̃(∆p̃macro + Bo ỹ), (31)

where the rescaled with̃L variablesx̄ = x̃/L̃, ȳ = ỹ/L̃ are introduced. The boundary conditions for Eqs. (29)–(31)
are

x̃|ξ=1 = 0, ϕ|ξ=1 = π,

ỹ|ξ=0 = 0, ϕ|ξ=0 = θapp. (32)
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We checked that the error introduced by the replacement ofỹM by zero in the third boundary condition is negligible.
Only three boundary conditions are necessary to solve Eqs. (29)–(31). The fourth serves to find the unknown length
L via an iteration procedure. The value of∆p̃macro is independent ofξ and is determined with the help of the the
Ṽmacro ≈ Ṽ value known from Eq. (28) as follows.

The equation for̃Vmacro is slightly modified with respect to that of Nikolayev et al. (2001). By using the identity
div(xe⃗x) = 1 (which is evident corollary of the divergence definition), the bubble volume can be expressed as

V =

∫
(Vmacro)

dV =

∫
(Vmacro)

div(xe⃗x)dV = −
∫

(Ωi∪Ωd)

xnxdΩ. (33)

The last equality is obtained with the Gauss integral theorem. Sincenx = 0 atΩd,

Ṽ = L̃2

1∫
0

x̄ȳ′dξ. (34)

To obtain∆p̃macro, the direct application of Eq. (34) would require an additional iteration loop. To avoid it, we follow
an idea of Polevikov (2001). By integrating Eq. (31) along the bubble contour, the pressure jump is obtained directly,

∆p̃macro =
π− θapp

L̃
− Bo

1∫
0

ỹdξ, (35)

where the bubble half-length is expressed with Eq. (34).
The macroscopic heat transfer problem (20)–(27) is solved similarly to Nikolayev et al. (2001) by the constant

element BEM (Nikolayev and Beysens, 2002) well suitable to the free interface problems. Due to the vanishing
values ofψ, ζ at infinity, one does not need to integrate over the liquid and solid boundaries situated at infinity. The
meshing of the sub-contoursΩw, Ωd, andΩi [cf. Fig. 1(a)] follows the exponential law with the smallest element size
(≈ ∆xmicroθapp) located in the vicinity of the boundaryΩL (cf. Fig. 2).

In principle, the boundaryΩw continues to infinity. In the numerical treatment, a finite size has to be chosen. One
can verify that growing vapor bubble perturbs the temperature field described byTS,L(x → ∞, y, t) only locally and
the size of the perturbed domain scales as the thermal diffusion length. The size ofΩw may thus be bounded by the
value4

√
αSt based on the largest of the thermal diffusivities. We verified that the increase ofΩw beyond this value

does not influence the results.
Both the part of the solid–liquid boundary whithin the microregion andΩL [cf. Fig. 1(b)] are taken as single

elements.

3.2 Microregion

Characteristic physical scales in the microregion differ strongly from those in the macroregion. Other scales thus
need to be used to make the quantities dimensionless. We usels, σ/ls, and∆T as the characteristic scales for lengths,
pressures, and temperatures. The hat signifies the corresponding reduced quantities. The dimensionless counterparts of
the equations of Section 2.3 are not reproduced here because they are quite cumbersome; see Janeček (2012) for more
details. The smallness ofh in the vicinity (and at) the CL is at the origin of numerical difficulties in the microregion
modeling. The smallness of coefficients at the derivatives in Eq. (9) leads to the poor determination of the matrix (i.e.,
smallness of its diagonal elements) generated after discretization and causes numerical instabilities. In order to avoid
this difficulty, the following change of variables (Janeček and Nikolayev, 2012; Nikolayev, 2010) is applied:

ŝ = exp(η), (36)

δ̂ = χ exp(η). (37)
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The problem is solved forχ and∆p̂ as functions ofη. The pointŝ = 0 corresponds toη→ −∞ and a minimal value
ηmin of η needs to be chosen in such a way thatδ(ηmin) is smaller than the smallest length scale of the microregion
problem. The valueηmin = −9 is found to be sufficiently small throughout the calculation. The size of the domain
∆xmicro = 1µm is sufficiently large to calculateθapp within 1% accuracy.

An equidistant mesh of 250 elements is used for the domainη ∈ (ηmin, ln∆x̂micro). In thes representation,
such a mesh is increasingly dense whens → 0. The nonlinearity is treated with the iteration method, where nonlinear
terms are replaced by their counterparts from the previous iteration. The degree of nonlinearity grows with the heat
load. However, even for the highest superheating, the convergence is obtained within several iterations.

The simulation has been carried out for water at 10 MPa pressure on the stainless steel heater [see Nikolayev
(2010); Nikolayev et al. (2001) for their parameters], and for FC-72 (Raj et al., 2012). It is assumed that the surface is
smooth and chemically homogeneous as attainable in the state-of-the-art experiments at the partial wetting conditions;
this corresponds (Lauga et al., 2007) to the typical value ofls = 10 nm. The same slip length value is used for both
water and FC-72; theRi is calculated from an equation provided in Stephan and Hammer (1994) with accommodation
coefficient equal to 1.

The apparent contact angleθapp and the integrated heat fluxQmicro obtained from the microregion numerical
model are plotted vs. wall superheating in Fig. 3 for water at 10 MPa (which is the fluid that we consider hereafter).
One has to put a reserve on the microregion results for high slopes of the interface (θapp > 40◦) because of the
lubrication approximation in spite of its extension. The results are however coherent with those of another research
group (Kunkelmann and Stephan, 2009; Raj et al., 2012) obtained for FC-72 at∆T < 15 K. The agreement is excellent
with the theoretical data with no fitting applied. The experimental data forθapp (Raj et al., 2012) are compared also
and show reasonably good agreement. The valueθmicro = 8◦ has been chosen because it is the equilibrium contact
angle value experimentally measured by Raj et al. (2012). Note that unlike earlier studies, we need the data for larger
values of wall superheating to treat BC.

0

30

60

90

0 5 10 15 20 25 30 35 40

∆Τ (K)

θ
ap

p (
d

eg
re

es
)

Raj et al.

FC-72, θ
micro

 = 8°

water, θ
micro

 = 45°

water, θ
micro

 = 15°

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40

Q
m

ic
ro

 (
W

/m
) 

∆Τ (K)

water, θ
micro

 = 15°

water, θ
micro

 = 45°

FC-72, θ
micro

 = 8°Kunkelmann et al.

(a) (b)

FIG. 3: Apparent contact angleθapp andQmicro calculated for water at 10 MPa and two differentθmicro values
used in the bubble growth simulations. Curves calculated for FC-72 at 0.04 MPa andθmicro = 8◦ (dotted lines) are
shown for comparison with the theoretical results obtained for complete wetting by another group (Kunkelmann and
Stephan, 2009; Raj et al., 2012), black solid lines.(a) Apparent contact angle. The experimental data of Raj et al.
(2012) (whereθmicro = 8◦) are also shown.(b) Total heatQmicro transferred through the microregion.
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3.3 Algorithm

The problem is nonlinear because of nonlinear terms and especially due to the free boundary. The following iteration
algorithm is needed to determine the bubble shape and the thermal field at each time step:

1. The interface bubble shape, the bubble interface velocity (needed for the BEM calculation, [see Nikolayev et al.
(2001) for details] andQmicro are guessed to be the same as at the previous time step;

2. Discretization of the contoursΩw, Ωd, andΩi is performed;

3. Temperatures and fluxes on the contoursΩw, Ωd, andΩi are found by solving Eqs. (20)–(27) by BEM forψL,S ,
ζL,S ; the value of∆T is obtained;

4. Based on∆T , the microregion calculation is performed and new values forQ̃micro, θapp are computed;

5. New Ṽ is calculated from Eq. (28) with the trapezoidal rule;

6. Bubble shape is determined using the values ofỹ andL̃ from previous iteration. First,∆p̃macro is determined with
Eq. (35). Next, Eq. (31) is solved forϕ. The latter is used to integrate Eqs. (29), (30). Finally,L̃ is updated with
Eq. (34), and̃x = L̃x̄, ỹ = L̃ȳ are recalculated;

7. The interface velocity is calculated, and steps 2–7 are repeated until the desired accuracy ofθapp, Rd andV is
attained.

Note that CL position is determined in the step 6: CL is a part of the bubble surface.
As a rule, four iterations give 0.2% accuracy. In order to reduce the calculation time at step 4, the precalculated

values ofθapp(∆T ) andQmicro(∆T ) are interpolated by cubic splines. By performing full micro–macro coupling
procedure, we checked that this shortcut does not influence the results. There is one more reason in using the tabulation
of the microregion values for parametersQmicro andθapp. The described microregion model can provide the results
for θapp ≤ 89.8◦. Bothθapp andQmicro are extrapolated to 90◦ with a power law.

We verified that increasing the time step from 1 to 50 ms very slightly influenced the calculation accuracy without
impacting the numerical stability. This is an intrinsic property of BEM. Typically the time step∆t = 20µs was used.

4. RESULTS AND DISCUSSION

Depending on the heat load, two bubble growth regimes can be distinguished. At low heat loads [Fig. 4(a)], the bubble
volume increases until the buoyancy force becomes equal to the capillary adhesion force, which corresponds to the
bubble departure. In the beginning of growth, the dry spot increases. At some point of growth,Rd attains its maximum,
while both the bubble volume and the visible from the top bubble radiusR keep growing [cf. Fig. 5(a), 0.05 MW/m2

curves]. Therefore the quotientRd/R decreases at the end of the bubble evolution; see the 0.05 MW/m2 curve in
Fig. 5(b). This regime is called hereafter “bubble departure regime.”

At high heat loads [Fig. 4(b)], the conditionθapp = 90◦ is attained while the bubble is attached to the heater.
This is the “bubble spreading regime” that corresponds to the BC triggering. It is possible thatθapp grows beyond
90◦ in reality while the bubble remains attached. However, the present microregion model cannot describe such an
event; the simulation is stopped as soon asθapp attains 90◦. Within the present quasistatic macroregion approach, the
latter condition is equivalent toRd = R [cf. Section 2.2.2 and Fig. 5(b)]. The boundary between the bubble departure
and bubble spreading regimes corresponds to CHF. At CHF, the conditions of bubble departure andθapp = 90◦ are
satisfied simultaneously; cf. the 0.1 MW/m2 curve in Fig. 5(b).

The value of the ratioRd/R at the moment of bubble departure is plotted vs. heat flux in Fig. 6. Each point of
these curves corresponds to the terminal point of a temporal curve like those of Fig. 5. One can see that the ratio
Rdep

d /Rdep grows with the heat flux. The BC criterion is satisfied whenRdep
d /Rdep attains unity.

The accuracy of the bubble shape calculation may be checked independently. Indeed, the departure bubble shape
corresponds to the criterion∆pmacro = 0; cf. Section 2.2.2. In addition, CHF attained atθapp = 90◦. These two
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conditions are sufficient to find the bubble shape from Eq. (6) for giveng independently of the heat transfer calculation.
The bubble half-contour can be obtained by using two boundary conditions:dy/ds = 0 atx = 0 anddx/ds = 0 at
y = 0. For the given fluid parameters andg value, one obtains a unique value ofRdep

d = Rdep; for water at 10 MPa
andg = 9.81 m/s2 this value is 1.18 mm. The shape calculation carried out by the standard Runge–Kutta method is
shown by the (half-contour) dotted line in Fig. 4(b). It nearly coincides with its counterpart calculated for the moment
of departure (t = 720 ms) with the general algorithm, which shows the simulation accuracy. It is important to account
for the actual (noncircular) shape of the bubble provided by the buoyancy. If the circular shape was imposed in the
simulation, an essentially different value of 1.57 mm would result from the force balance at departure. This is expected
because under the gravity the bubble extends in the vertical direction [Fig. 4(a)] so that its size in the perpendicular
direction is smaller than that calculated from the circular approximation.

In both regimes the apparent contact angle grows with time which corresponds to experimental observations
(Garrabos et al., 2001; Raj et al., 2012); see Fig. 5(b).

Our simulation enables the temperature distribution along the heater surface to be rigorously calculated. It is shown
in Fig. 7, which corresponds to the bubble profiles of Fig. 4. Far from the bubble, the surface temperature is described
by Eq. (4). It increases in time independently ofx and follows the square root law. At the CL,TS = Tsat + ∆T as
shown in the insert of Fig. 7(a). The heater temperature drop at the CL is due to the intensive latent heat consumption
in the microregion. Such a result agrees with experimental observations and other numerical simulations, see e.g.
(Kunkelmann and Stephan, 2009; Sodtke et al., 2006). Inside the dry spot,TS increases with time because the heat
transfer through the dry spot is blocked. However, the temperature remains smaller than the temperature far from the
bubble when the dry spot is small enough (in the bubble departure regime, cf. Fig. 7(a) because of the low temperature
at the CL. In the opposite case [Fig. 7(b)], the dry spot becomes to be hotter than the rest of the heater. This temperature
increase leads eventually to the burnout of the heater observed during the BC.

The temperature distribution evolution inside the heater and the liquid is shown forq0 both below and above CHF
in Fig. 8. One can clearly see all the described above phenomena as well as the temperature boundary layers.

A parametric CHF study for different gravity levels and contact angles has been carried out.
The main parameter of the microregion model is the constant microscopic contact angle imposed by the surface

energies of the fluid and the heater. We have studied the impact of this undoubtedly important parameter on the bubble
growth, spreading and departure. Figure 6 shows the ratioRd/R at departure for several values of the contact angle.
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(a) (b)

FIG. 8: Temperature field in the liquid and in the heater for six different times shown forθmicro = 15◦; (a) q0 =
0.05 MW/m2 (below CHF) and(b) 0.1 MW/m2 (at CHF).

The difference between the curves forθmicro = 5◦ and 15◦ is very small with respect to the pair 35◦ and 45◦ where
the difference is striking. With the heat load increase,Rdep

d /Rdep increases and attains unity at the CHF.
The impact ofθmicro on the critical heat flux is illustrated in Fig. 9 for two values ofg. For decreasingθmicro,

qCHF saturates at a value corresponding to the complete wetting case. This tendency is in agreement with the small
difference between results forθmicro = 5◦ and 15◦ in Fig. 6. The CHF decrease with the contact angle agrees with
the experimental results (Dhir, 1998; Kandlikar, 2001). The experimental data for small contact angles usually show a
somewhat steeper change than that of Fig. 9. The experimental dependencies on the contact angle should however be
considered with caution because it is difficult to isolate the effect of the contact angle: other material properties often
vary with its change. The large measured experimentally values of equilibrium contact angle are often due to the CL
pinning on the heater surface heterogeneities [responsible for the wetting hysteresis; see Nikolayev (2005)] rather than
to the surface energy effect that influences the CL dynamics considered here. The equilibrium contact angle usually
remains small for clean and smooth substrates.

The impact of gravity on the critical heat flux is analyzed in Fig. 10. The CHF is an increasing function of gravity
in agreement with experimental observations (Kim et al., 2002). The gravity dependence is well fitted by a power law
with the exponent≃ 0.44 which is larger than that predicted by Eq. (1).

To obtain all the above data on the boiling crisis within a relatively simple numerical approach, the hydrodynamic
flows in the macroregion have been neglected. Their account would require the use of a full hydrodynamic simulation
with an efficient management of the moving gas–liquid interfaces with phase exchange. Therefore, this work should
be considered as a preparation step for such a study necessary to have the benchmark and the understanding of main
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features of the BC. It is difficult to provide a quantitative agreement with the experiment within the present simplified
bubble growth model; for this reason we discussed above only the qualitative features of the BC triggering.

The boiling crisis is not an instantaneous phenomenon, it develops progressively. Once its triggering occurs, its
dynamics (and thus duration) is controlled by several processes. First, it is the bubble spreading studied here. Next,
the bubble interaction should be considered. The bubbles may interact both temporally and spatially. The temporal
interaction manifests itself through the thermal history of a particular nucleation site that becomes more and more hot
after each bubble growth and departure cycle. The spatial interaction occurs both through coalescence of neighboring
bubbles that causes further extension of the dry heater area and through the heat diffusion inside the heater that controls
the general heater temperature rise during BC. These processes have been discussed in a recent paper (Charignon et al.,
2015).
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5. CONCLUSIONS

A numerical simulation of the single vapor bubble growth on a massive heater has been performed in order to study
the triggering of the boiling crisis. It is shown that phenomena acting in the vicinity of the triple contact line (the
microregion) have a strong impact on the vapor bubble dynamics. The microregion has been modeled for the case
of partial wetting where the microscopic contact angle is an input parameter. Several quantities are determined from
the microregion model, including the apparent contact angle. The latter is larger than the microscopic (static) contact
angle because of evaporation. To provide a description of the apparent contact angles up to 90◦, an extension of the
conventional lubrication approximation has been used. The microregion model has been validated against the results
of another group.

Two regimes of bubble growth have been identified. The first regime is the conventional bubble growth-and-
departure regime. The second, “bubble spreading” regime occurs when the wall superheating is high enough to cause
a strong increase of the apparent contact angle that, in turn, causes a strong increase of the dry area under the bubble.
The apparent contact angle is found to grow during the bubble growth. The 90◦ apparent contact angle value is
suggested to be an important threshold for several reasons. (i) Dry area growth causes the heater temperature rise
that should lead to the increase of the apparent contact angle of neighboring bubbles. (ii) Strong adhesion to the
heater caused by the large apparent contact angle should favor the coalescence of bubbles attached to the heater.
(iii) Coalescence of the dry areas under the bubbles occurs during the bubble coalescence, which causes the heater
temperature rise favoring the spreading of neighboring bubbles and therefore coalescence of the newly formed bubble
with its neighbors. Therefore, the individual bubble spreading is proposed to be the triggering mechanism of the
boiling crisis. The heat flux corresponding to 90◦ apparent contact angle attained at the moment of bubble departure
is proposed to be the CHF criterion. The CHF obtained from such a criterion via simulation has been studied as a
function of gravity and of the contact angle. The results correspond at least qualitatively to the available experimental
data. However the results do not seem to agree with the Zuber–Kutateladze formula since they provide a stronger
dependence of CHF on gravity (i.e., a larger power law exponent) and show quite important dependence of CHF on
the equilibrium contact angle. To obtain a better agreement with experiments, a more realistic model of macroregion
(accounting for the fluid motion in it) needs to be implemented within a single bubble growth simulation.
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Janěcek, V. and Nikolayev, V. S., Contact line singularity at partial wetting during evaporation driven by substrate heating,Euro-
phys. Lett., vol. 100, no. 1, 14003, 2012.
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APPENDIX: EXTENSION OF LUBRICATION THEORY OF EVAPORATING MENISCUS TO HIGH
INTERFACE SLOPES

This extension has been derived by Mathieu (2003) and follows the original idea of Boender et al. (1991) applied to the
lubrication theory of the isothermal CL dynamics. The expression of Boender et al. was rederived recently (Snoeijer,
2006). The approach is based on the analytical solution of the 2D Stokes flow problem in the straight wedge with
the opening angleϕ. The fluid sinkU is placed at its apex (CL position). The boundary conditions mimic the Stokes
free-interface problem statement far from the CL, where the slope is large but the evaporation is weak. The flow is
directed to the CL where the liquid is evaporated. The boundary conditions reflect (i) the impermeability of the solid
substratey = 0, no slip at the substrate, (ii) the impermeability of the liquid–gas interface and zero tangential stress
at it. The solution to such a problem in terms of the stream function

Ψ(r,φ) = −U
sin(2ϕ− 2φ) + 2φ cos(2ϕ)

2ϕ cos(2ϕ)− sin(2ϕ)
, (A1)

where(r,φ) are the polar coordinates with the center in the wedge apex, has been found by Mathieu (2003). The
corresponding solution for the liquid pressure at the interface reads

dpL
dr

= U
µ

r3
4

ϕ cos(2ϕ)− cosϕ sinϕ
. (A2)

Consider now the curved interface with a small curvature. The main assumption (Boender et al., 1991) is that the
liquid flow locally is equivalent to that of the straight wedge with the opening angle corresponding to the local slope
of the interface (see Fig. 2). The local pressure variationdpL/ds at the liquid-gas interface is thus given by Eq. (A2)
whereϕ is now a function ofs. The identityr = δ/ϕ leads to the expression

dpL
ds

= −Uµ
3

δ3
G, (A3)

where

G = −ϕ
3

3

4

ϕ cos 2ϕ− cosϕ sinϕ
(A4)

is a correction factor to the conventional lubrication approximation (Oron et al., 1997), whereG(ϕ→ 0) = 1.
By following Delon et al. (2008), we add the slip length and Marangoni effects to Eq. (A3) in Eq. (9) without

modifyingG as is justified by the fact that these effects are important only in the CL close vicinity whereϕ is small
and the correction to the lubrication theory is not needed.
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