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This work addresses the question of the stability of stratified, spatially periodic shear

flows at low Péclet number but high Reynolds number. This little-studied limit is

motivated by astrophysical systems, where the Prandtl number is often very small.

Furthermore, it can be studied using a reduced set of “low-Péclet-number equations”

proposed by Lignieres [Astronomy & Astrophysics, 348, 933-939, 1999]. Through a

linear stability analysis, we first determine the conditions for instability to infinites-

imal perturbations. We formally extend Squire’s theorem to the low-Péclet-number

equations, which shows that the first unstable mode is always two-dimensional. We

then perform an energy stability analysis of the low-Péclet-number equations and

prove that for a given value of the Reynolds number, above a critical strength of the

stratification, any smooth periodic shear flow is stable to perturbations of arbitrary

amplitude. In that parameter regime, the flow can only be laminar and turbulent

mixing does not take place. Finding that the conditions for linear and energy stabil-

ity are different, we thus identify a region in parameter space where finite-amplitude

instabilities could exist. Using direct numerical simulations, we indeed find that

the system is subject to such finite-amplitude instabilities. We determine numeri-

cally how far into the linearly stable region of parameter space turbulence can be

sustained.
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I. INTRODUCTION

The study of the onset of turbulence in stratified shear flows has a long history that dates

back to Richardson1. He argued that the kinetic energy of turbulent eddies in a stratified

shear flow can only decrease if N2/S2 > 1, where N is the local buoyancy frequency, and

S = |du/dz| is the local shearing rate of the flow field u in the vertical direction ez.

This criterion, derived simply from energetic arguments, is now commonly referred to as

Richardson’s criterion, and the local ratio

J(z) =
N2(z)

S2(z)
(1)

is called the gradient Richardson number. The first linear stability analysis of a stratified

shear flow is due to Taylor2, who considered both continuously and discretely varying strat-

ification and shear profiles. This work, together with Goldstein3, then led to the derivation

of the Taylor-Goldstein eigenvalue equation for the complex growth rate of two-dimensional

infinitesimal disturbances in stratified shear flows. The solution of this equation for a given

shear profile S(z) and stratification profile N(z) can be obtained either analytically in a few

particular cases, or numerically in general. It wasn’t until much later, however, that the first

general result on the stability of stratified shear flows was derived by Miles4 and Howard5:

a system is stable to infinitesimal perturbations provided J(z) is everywhere larger than

1/4. As discussed by Howard and Maslowe6, this theorem should not be viewed as a refine-

ment of Richardson’s argument (i.e. replacing 1 by 1/4), since the latter was specifically

interested in determining when turbulence could be sustained, rather than triggered. In

this sense, Richardson’s original argument should be viewed more as a nonlinear stability

criterion than a linear one.

These results were obtained in the limit of vanishing viscosity and diffusivity. For ther-

mally stratified flows, however, thermal diffusion can have a significant influence on the

development of shear instabilities by damping the buoyancy restoring force. This effect was

first studied by Townsend7 in the context of atmospheric flows. He showed that the thermal

adjustment of the fluid parcel to its surroundings, by radiative heating and cooling or by

thermal conduction, always acts to destabilize the flow and increases the critical Richard-

son number for linear stability, Jcrit, by a factor inversely proportional to the product of

the shearing rate S with the cooling time tcool (this product is a local Péclet number for

the flow), so Jcrit ∼ (tcoolS)−1. Viscosity, meanwhile, has a generally stabilizing influence8.



Zahn9 emphasized the importance of these results for stellar astrophysics: in stellar interiors

where the Prandtl number is typically very small (Pr ∼ 10−8−10−5) high Reynolds number

flows can also have a low Péclet number, or in other words, thermally diffusive shear flows

exist when viscosity is nevertheless small enough not to suppress the development of the

instability. This combination is ideal for shear instabilities, and is specific to astrophysical

systems – it cannot happen for most geophysical flows where the Prandtl number is usually

of order unity or larger.

Applying Townsend7’s results to shear-induced turbulence in stellar interiors, Zahn9 fur-

ther argued that the relevant cooling timescale is the radiative timescale based on the size

l of turbulent eddies, namely tcool = l2/κT where κT is the thermal diffusivity. He then

proposed to take for l the smallest length scale for which viscosity is still negligible, that is,

one for which the turbulent Reynolds number Rel = Sl2/ν = Stcool/Pr ∼ Recrit (where ν

is the kinematic viscosity), where Recrit is a constant that he estimates to be around 103.

This would imply Jcrit ∼ (Stcool)
−1 ∼ Re−1crit Pr−1, or in other words, Jcrit Pr ∼ Re−1crit ∼ 10−3.

Zahn9’s argument, as in the case of Richardson1’s original argument, should be viewed as

a nonlinear stability criterion rather than a linear one, since it relies on the presence of

pre-existing turbulent eddies.

Zahn’s work had an enormous impact in the field of stellar evolution. While the standard

Richardson criterion is far too stringent to allow for the development of shear instabilities

in the absence of thermal diffusion (the typical Richardson number being much larger than

one even in the strongest known stellar shear layers), its relaxation allows for the possibility

of much-needed mixing in stellar evolution theory. Indeed, models without any form of

turbulent mixing in stably stratified regions are not able to account for observations. As

reviewed by Pinsonneault10 the problem is particularly acute when it comes to explaining

the surface chemical abundances of light elements such as lithium and beryllium, as well

as products and by-products of nuclear reactions such as helium, carbon, nitrogen and

oxygen. More recently, further indication of the need for turbulent mixing was revealed

by asteroseisomolgy thanks to the Kepler mission. Measurements of the internal rotation

rate of red giant stars11 are inconsistent with evolution models in which turbulent angular-

momentum transport in stably stratified regions is neglected. In both cases, therefore,

efficient chemical transport and angular-momentum transport by shear instabilities could

be the key to resolving these problems – the question remains, however, of whether these



instabilities are indeed triggered, and how efficient mixing is.

In the limit of low-Péclet numbers (i.e., high thermal diffusivity), the temperature fluctu-

ations are slaved to the vertical velocity. The corresponding quasi-static approximation was

originally introduced to study low-Prandtl-number thermal convection12,13. In the context

of stably-stratified systems, the quasi-static approximation was introduced only recently by

Lignières14 (see Section II C for more detail). He showed that the standard Boussinesq equa-

tions can be replaced by a reduced model that is valid in the asymptotic low-Péclet-number

limit, and that this model only depends on two parameters: the Reynolds number, and the

product of the Richardson number with the Péclet number. As a result, the linear stability

properties of the system depend on the product PeSJ (where PeS = SL2
S/κT with LS being

a characteristic vertical length scale of the laminar flow) rather than on each parameter

individually. Since PeS is small by assumption, shear-induced turbulence can be expected

even if the Richardson number is much larger than one.

By contrast with linear theory, very little is known to date about the stability of stratified

shear flows to finite-amplitude perturbations when viscosity and thermal diffusivity are both

taken into account. It is yet a question of crucial importance in stellar astrophysics, since the

presence or absence of vertical mixing can strongly affect model predictions. We therefore set

out in this work to characterize the domain of instability of low-Péclet-number shear flows

to finite-amplitude perturbations. For simplicity, we consider a specific shear profile that is

periodic in the vertical direction. We present the model in Section II, and briefly discuss

the low-Péclet-number asymptotic equations proposed by Lignières14. In Sections III and

IV, we study the linear and nonlinear stability of the system respectively, and contrast the

results in the low-Péclet-number approximation to those obtained starting from the full set

of primitive equations. As we shall demonstrate using an energy stability analysis of the low-

Péclet number equations, smooth periodic shear flows are stable to perturbations of arbitrary

amplitude for sufficiently large Richardson number, for a given value of the Reynolds number.

In Section V, we turn to direct numerical simulations to study the transition to turbulence

via linear instabilities and finite-amplitude instabilities. We summarize our results and

conclude in Section VI.



II. THE MODEL

A. Model setup
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FIG. 1. Model setup: a horizontal shear flow is driven by a body-force. The background stratifi-

cation is linear, and the temperature and velocity fluctuations are periodic in the three directions.

Since our intention is to study the energy stability properties of stratified shear flows, it

is crucial to start with a model where the mechanism driving the shear is explicit, which

guarantees a well-defined energy budget. Two options are available: boundary-forcing, and

body-forcing. Having potential applications to stellar astrophysics in mind, we prefer the

latter in order to avoid boundary layer dynamics near solid walls, which are rarely present

in stars.

A simple and numerically-efficient way of studying body-forced, stratified shear flows is

to consider a Boussinesq system15, where the forcing and all the perturbations are triply-

periodic, and where the background density is linearly stratified16 (see Figure 1). The model

equations describing such a system are:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ αgTez + ν∇2u +

1

ρ0
F , (2)

∇ · u = 0 , (3)

∂T

∂t
+ u ·∇T + wT0z = κT∇2T , (4)

where u = (u, v, w) is the triply-periodic velocity field, p and T are the triply-periodic

pressure and temperature perturbations, ρ0 is the mean density of the region considered, α

is the coefficient of thermal expansion, g is gravity, ν and κT are the viscosity and thermal

diffusivity (respectively). The quantities ρ0, α, g, ν, κ are all assumed to be constant,

as in the standard Boussinesq approximation. The use of the latter is justified as long



as the vertical height of the domain is much smaller than a density scaleheight. Finally,

we assume that there is a constant background temperature gradient17 T0z, and that all

thermodynamical and dynamical perturbations have zero mean in the domain.

The applied force F should be triply-periodic as well. A natural candidate is a sinusoidal

forcing, thus driving a Kolmogorov flow in the laminar regime. In what follows, we assume

that F is of the form

F = F0 sin(kz)ex , (5)

which defines a typical lengthscale k−1. In the steady laminar regime, this force generates a

sinusoidal shear flow along the x-direction,

uL =
F0

ρ0νk2
sin(kz) ex . (6)

Note that while the present paper deals mostly with Kolmogorov forcing, the energy stability

of arbitrary smooth velocity profiles is discussed in section IV B 2.

B. Non-dimensionalization and model parameters

We non-dimensionalize the equations using the amplitude of the laminar solution, F0

ρ0νk2
,

as a velocity scale. We also use the spatial scale of the laminar solution, k−1, as the unit

length scale. This then defines the timescale kρ0ν
F0

. With this choice of units, the equations

(2)-(4) become

∂u

∂t
+ u · ∇u = −∇p+ RiTez +

1

Re
∇2(u− sin(z)ex) , (7)

∇ · u = 0 , (8)

∂T

∂t
+ u ·∇T + w =

1

Pe
∇2T , (9)

where

Re =
F0

ρ0ν2k3
, Ri =

αgT0zρ
2
0ν

2k2

F 2
0

, Pe =
F0

ρ0νk3κT
. (10)

The laminar solution (6) now takes the dimensionless form uL = sin(z) ex. Provided the

system remains in the vicinity of this laminar solution, Re, Pe and Ri are the usual Reynolds,

Péclet and Richardson numbers based on the typical velocity of the flow.



C. Low Péclet number approximation

When a field diffuses on a timescale much shorter than the advective time, it enters a

quasi-static regime where the source term and diffusive term instantaneously balance. Such

a quasi-static regime has been used for decades in the context of magneto-hydrodynamics

of liquid metals: at low magnetic Reynolds number, the induced magnetic field is slaved to

the velocity field18. The equivalent approximation for flows of low Prandtl number fluids

was originally introduced in the context of thermal convection12,13. Rather surprisingly,

this quasi-static approximation appeared only much more recently in the context of stably-

stratified flows.

Lignières14 proposed that in the low-Péclet-number limit the governing equations (7)-(9)

can be approximated by the reduced set of so-called “low-Péclet-number” equations (LPN

equations hereafter)

∂u

∂t
+ u · ∇u = −∇p+ RiTez +

1

Re
∇2u + F , (11)

∇ · u = 0 , (12)

w =
1

Pe
∇2T , (13)

to zeroth and first order in Pe. To derive equation (13), one can assume a regular expansion

of T in Pe, as in T = T0 + PeT1 + O(Pe2), and further assume that the velocity field is

of order unity. At the lowest order, the temperature equation yields ∇2T0 = 0 which then

implies T0 = 0 given the applied boundary conditions. The next order then yields the

quasi-static balance w = ∇2T1 ' Pe−1∇2T as required. It is worth mentioning that in

Lignières14’s original work the velocity is scaled with its dimensional r.m.s. value urms, so

it is Perms = urms/kκT , rather than Pe, that has to be small for the LPN equations to be

valid. In Sections III and IV, we shall study the linear and energy stability of a laminar

flow for which the r.m.s. velocity is of the same order as the flow amplitude. In that case

Pe ' Perms and we expect the LPN equations to be valid whenever Pe is small. In Section

V, however, we shall see that numerical simulations of turbulent shear flows that have large

Pe can still be well-described by the LPN equations as long as Perms is small.

It is also worth noting that the LPN equations only allow for temperature fluctuations

T that have a zero horizontal mean, by contrast with the full equations. As a result, the

horizontal mean of the full temperature field (background plus perturbations) is necessarily



linear in z. To see this, we take the horizontal average of the thermal equation, which,

assuming that there is no vertical mean flow (which can be guaranteed by making sure the

initial conditions do not have one), results in

∂2〈T 〉h
∂z2

= 0 , (14)

in the LPN equations, where 〈T 〉h is the horizontal average of T . The only solution of

this equation which satisfies periodicity is the constant solution; further requiring that the

volume-average of T be zero then implies that 〈T 〉h = 0. By contrast, taking the horizontal

average of the standard temperature equation under the same assumptions would result in

∂〈T 〉h
∂t

+
∂

∂z
〈wT 〉h =

1

Pe

∂2〈T 〉h
∂z2

, (15)

which has solutions with non-zero 〈T 〉h. These solutions can, for instance, develop into

density staircases under the right circumstances19,20. The latter are however prohibited

in the LPN equations. Among other effects, this rules out the development of Holmboe

modes21, and may explain why it is possible to get simple energy stability results in the

LPN limit but not for the full equations.

Finally, combining the momentum and the thermal energy equations yields

∂u

∂t
+ u · ∇u = −∇p+ RiPe∇−2wez +

1

Re
∇2u + F , (16)

which formally shows that the Richardson number is no longer the relevant parameter of the

system, but that RiPe is. The work of Lignières14 thus puts the arguments of Townsend7

and Zahn9 discussed in Section I on a firm theoretical footing. Lignières14 and Lignières,

Califano, and Mangeney22 verified that the LPN equations correctly account for the linear

stability properties of various systems in the low-Péclet-number limit. Prat and Lignières23

later also verified that they correctly reproduced the low-Péclet dynamics of their 3D non-

linear simulations. In this paper, we continue to verify the validity of the LPN equations

through stability analyses and nonlinear simulations.



III. LINEAR STABILITY OF A PERIODIC KOLMOGOROV FLOW

We first focus on the stability of the laminar solution to infinitesimal perturbations. We

solve the linearized versions of equations (7)-(9),

∂u′

∂t
+ uL · ∇u′ + u′ · ∇uL = −∇p+ RiT ′ez +

1

Re
∇2u′ , (17)

∇ · u′ = 0 , (18)

∂T ′

∂t
+ uL ·∇T ′ + w′ =

1

Pe
∇2T ′ , (19)

where u′ and T ′ are infinitesimal perturbations to the linearly stratified background shear

flow uL = sin(z)ex.

A. Squire’s transformation

The linear stability of the unstratified Kolmogorov flow uL was first investigated in detail

by Beaumont24. Squire’s theorem25 states that the first unstable mode as the Reynolds

number increases is a (y-independent) 2D mode. This strong result implies that one can

focus on 2D perturbations to determine the stability threshold of the system. Such a 2D

analysis is much simpler and computationally less expensive than a 3D one. Beaumont24

found that 2D flows are unstable only for Re ≥
√

2.

The linear stability of the stratified Kolmogorov flow uL to 2D perturbations was studied

in detail by Balmforth and Young26. The 2D case can be made more generally relevant

by noting that Squire’s transformation25 for the viscous unstratified case can be extended

to the stratified case with thermal diffusion to argue that the linear stability of any 3D

mode can equivalently be studied by considering that of a 2D mode at lower or equal

Reynolds and Péclet numbers, and higher or equal Richardson number. This result, which

was summarily discussed by Yih27 and clarified by Smyth, Klaassen, and Peltier28 and

Smyth and Peltier2930, states that the growth rate λ3 of the 3D normal mode q3(x, y, z, t) =

q̂3(z) exp(ilx + imy + λ3t) at parameters (Re,Pe,Ri) is related to that of the 2D normal

mode q2(x, y, z, t) = q̂2(z) exp(iLx+ λ2t) at suitably rescaled parameters via

λ3 ≡ f(l,m; Re,Pe,Ri) =
l

L
λ2 ≡

l

L
f

(
L, 0;

l

L
Re,

l

L
Pe,

L2

l2
Ri

)
, (20)

where L =
√
l2 +m2. One can apply the same method to the LPN equations, and the

result can readily be deduced from (20). Indeed, the transformation (20) is valid for any



Péclet number, so it remains valid for low Péclet numbers. In this limit, we saw that only

the product RiPe is a relevant parameter: as a consequence, one can replace the last two

arguments of the function f in (20) by the product of the two. The low-Péclet version of

Squire’s transformation therefore gives

λ3 ≡ f(l,m; Re,RiPe) =
l

L
λ2 ≡

l

L
f

(
L, 0;

l

L
Re,

L

l
RiPe

)
. (21)

This relationship between the growth rates of 2D and 3D modes has important impli-

cations for the marginal linear stability surface. In order to find the latter in 2D, we first

maximize the real part of f(L, 0; Re,Pe,Ri) over all possible values of L, yielding the function

S2(Re,Pe,Ri) which returns the growth rate of the fastest growing mode for each parameter

set (Re,Pe,Ri). The marginal linear stability surface is then defined by S2 = 0. Similarly,

the marginal linear stability surface for 3D perturbations is obtained by constructing the

function S3(Re,Pe,Ri) = maxl,mRe[f(l,m; Re,Pe,Ri)] and setting S3 = 0. If the functions

S2 and S3 are the same, then so are the surfaces S2 = 0 and S3 = 0, which implies in turn

that the first modes to be destabilized are the 2D modes. This is the case for instance in

the limit where stratification is negligible (see above).

In general, the only way to determine whether S2 = S3 for a given linear stability problem

is to construct these functions by brute force, using their original definition as the growth

rates of the fastest growing modes. While this is not too time-consuming in 2D, it can

become computationally expensive in 3D. However in this particular problem, since the

growth rates of 2D and 3D modes are related, we also have:

S3(Re,Pe,Ri) = max
χ∈[0,1]

χS2(χRe, χPe,Ri/χ2) , (22)

where χ = |l/L|. A similar relationship applies for the LPN equations:

S3(Re,RiPe) = max
χ∈[0,1]

χS2(χRe,RiPe/χ) . (23)

Note that it is easier to construct S3 from equations (22) or (23) than to do so directly.

Whether S2 = S3 or not then simply depends on the properties of S2. It is quite easy to

find sufficient conditions that guarantee S2 = S3. For instance, in the case of the standard

equations, if S2 is a strictly increasing function of both Re and Pe, and a strictly decreasing

function of Ri, then the maximum over all possible values of χ is achieved for χ = 1, which

ensures that S2 = S3. For the LPN equations, it is sufficient to show that S2 is a strictly



increasing function of Re and a strictly decreasing function of RiPe. In what follows, we

therefore first study the stability of 2D modes, and then use these results to conclude on the

stability of the system to 3D modes.

B. Linear stability analysis using Floquet theory

We use a stream function to describe divergence-free 2D perturbations,

u = uL +∇× (ψ′ey) , (24)

where ψ′ is the infinitesimal perturbation. The linearized equations (17)-(19) become

∂

∂t
(∇2ψ′) + sin(z)

(
∂

∂x
(∇2ψ′ + ψ′)

)
= Ri

∂T ′

∂x
+

1

Re
∇4ψ′ ,

∂T ′

∂t
+ sin(z)

∂T ′

∂x
+
∂ψ′

∂x
=

1

Pe
∇2T ′ . (25)

This set of PDEs for T ′ and ψ′ has coefficients that are independent of t and x, but periodic

in z. Normal modes for this system are of the form

q′(x, z, t) = eiLx+λtq̂(z) , (26)

where q′ is either T ′ or ψ′, and L is real. Using Floquet theory, we then seek solutions for q̂

given by

q̂(z) = eiaz
N∑

n=−N

qne
inz , (27)

where a is real, to satisfy the general periodicity of the system. Substituting this ansatz into

the previous equations, we obtain an algebraic system for the ψn and Tn:

−λ((a+ n)2 + L2)ψn +
L

2

[
(1− (a+ n− 1)2 − L2)ψn−1 − (1− (a+ n+ 1)2 − L2)ψn+1

]
= iRiLTn +

1

Re
((a+ n)2 + L2)2ψn ,

λTn +
L

2
[Tn−1 − Tn+1] + iLψn = − 1

Pe
((a+ n)2 + L2)Tn , (28)

for n = −N...N . This can be cast as the linear eigenproblem,

M(L; a; Re,Pe,Ri)x = λx , (29)

where x = {ψ−N , ..., ψN , T−N , ..., TN}, which can be solved for the complex growth rate

λ. The real part of the latter can then be maximized over all possible values of a and L



for given system parameters (Re,Pe,Ri) to determine the temporal behavior and spatial

structure of the most rapidly growing mode of the shear instability, or in other words, to

construct S2 (see previous section). In both unstratified and stratified cases studied so far,

the first unstable modes at the instability threshold have the same periodicity in z as that of

the background shear, so that a = 024,26,31. We verified that this is indeed the case here as

well. In what follows, we therefore restrict the presentation of our results to the case a = 0.

The equivalent problem for the LPN equations is given by

−λ((a+ n)2 + L2)ψn +
L

2

[
(1− (a+ n− 1)2 − L2)ψn−1 − (1− (a+ n+ 1)2 − L2)ψn+1

]
=

L2

(a+ n)2 + L2
RiPeψn +

1

Re
((a+ n)2 + L2)2ψn , (30)

which can be cast as

M′(L; a; Re,RiPe)y = λy , (31)

where y = {ψ−N , ..., ψN}. This time, the fastest growing mode only depends on two system

parameters, namely Re and the product RiPe. Again, we restrict the following analysis to

the case a = 0.

Various aspects of the marginal stability surface S2(Re,Pe,Ri) = 0 for 2D modes are pre-

sented in Figure 2. Figure 2a shows the critical Reynolds number as a function of Ri for the

standard equations, for various values of the Prandtl number (Pr = Pe/Re). The evolution

of the shape of these curves as Pr increases is not a priori easy to identify nor explain. How-

ever, an obvious result is the existence of unstable modes for reasonably large values of the

Richardson number when the Prandtl number is low. This can easily be understood in the

light of the work of Townsend7 (see also Gage and Miller32, Jones33,Lignières14,Lignières,

Califano, and Mangeney22 for instance), who showed that stratified shear instabilities can

exist beyond the standard Richardson criterion when thermal diffusion is important. Since

thermal diffusion increases as Pe decreases, and since Pe = Pr Re, one can naturally expect

unstable modes at high Richardson number for fixed Re and low enough Pr (or vice-versa).

Following Lignières, Califano, and Mangeney22, we now show in Figure 2b the same data

plotted against RiPe, and add the marginal stability curve for the LPN equations. The

interpretation of the results is now much clearer. We first see that the LPN equations are

indeed a good approximation to the full equations when the Péclet number is small (low

Pr Re). In the unstratified limit Ri → 0, we find that marginal stability is indeed achieved
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FIG. 2. Left: Marginal stability curves for 2D modes in the form of Re vs. Ri for various values of

the Prandtl number: Pr = 10−3 (green dashed line), Pr = 10−2 (blue small dashed line), Pr = 10−1

(purple dotted line), Pr = 1 (cyan long dash - dotted line), and Pr = 10 (brown short dash - dotted

line). The system is unstable in the area above and to the left of the curves. Right: the same

data plotted against RiPe instead. The red solid line is the marginal stability curve for the LPN

equations. The Pr = 10−3 and Pr = 10−2 curves nearly overlap with it for Re ≤ 100, which is

consistent with the fact that Pe < 1 for these values of the Prandtl number. In all cases, we have

truncated the Fourier expansion of ψ′ and T ′ to N = 20 to create these curves. This choice of N

was made after successful convergence tests.

for Re =
√

2, as expected24. We also see that, for the low-Péclet equations, the threshold for

linear stability (RiPe)L above which the flow is linearly stable becomes independent of the

Reynolds number for large enough Re. The asymptotic value can be estimated numerically,

and is roughly (RiPe)L,Re→∞ ' 0.25. The fact that the critical RiPe for linear stability is

independent of the Reynolds number for large enough Re shows that the inviscid limit is

a regular limit of this problem. This is, however, in contrast with the findings of Jones33

and Lignières, Califano, and Mangeney22 for the tanh shear layer. In both cases, they find

that (RiPe)L ∝ Re for large Re (albeit using a fairly limited survey of parameter space).

Using the LPN equations, Lignières, Califano, and Mangeney22 also found that there is no



stability threshold in the inviscid limit, that is, unstable modes exist for all values of RiPe.

The reason for the stark difference between our results and theirs remains to be determined,

but could be attributed either to the nature of the boundary conditions used (periodic vs.

non-periodic), or to the fact that a sinusoidal velocity profile has shear of both signs while

a tanh velocity profile only has shear of one sign.

We now discuss linear stability to 3D perturbations using Squire’s theorem. For the LPN

equations, we find that the function S2(Re,RiPe) is indeed a strictly increasing function of

Re, and a strictly decreasing function of RiPe, which implies that the marginal stability of

2D modes is also that of 3D modes (see the previous section). For larger Prandtl number,

however, we can immediately see from its null contour that S2(Re,Pe,Ri) is no longer a

monotonic function of RiPe which strongly suggests that 3D modes could be the first ones

to destabilize the system. Whether this is indeed the case is beyond the scope of this paper,

since it belongs to the high-Péclet-number regime. However, this result would be consistent

with the work of Smyth and Peltier29, who found that 3D modes can be the first ones to be

unstable for parallel stratified shear flows which have a tanh profile, albeit in some relatively

small region of parameter space.

In preparation for our 3D simulations (see Section V), we are also interested in the spatial

structure of the first modes to be destabilized, since the computational domain size must be

chosen to be large enough to contain them in order to avoid spurious results. Based on the

previous results, we now limit our study entirely to the 2D modes. The range of unstable 2D

modes for which marginal stability is achieved is shown in Figure 3, for both the standard

equations and for the LPN equations. Again, we see that the results obtained using the

LPN equations correctly approximate those obtained using the standard equations at low

Péclet number. In all cases, we find that the first mode to be destabilized has L ∈ [0, 1],

i.e. its horizontal wavelength is larger than the shear lengthscale. For this reason, in the

numerical simulations of Section V we use a reasonably long domain size, that can fit at

least two wavelengths of the most unstable mode.

Finally, Figure 3 also sheds light on the actual source of the non-monotonicity of the 2D

linear stability curves seen in Figure 2 at Pr = 1 and above. Indeed, it reveals a new unstable

region for low horizontal wavenumber modes, which appears here for Pe = 10 (Pr = 0.1 in

this figure). These modes have a growth rate λ with non-zero imaginary part, by contrast

with the standard shearing modes whose growth rates are real34
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FIG. 3. Marginal stability curves for 2D modes, for Re = 102, in the form of RiPe vs. L, where L

is the horizontal wavenumber of the first unstable mode. The system is unstable in the area within

the curves, which therefore corresponds to the range of unstable modes for a given Richardson-

Péclet number. The solid red line was obtained using the LPN equations. The green dashed line

is for Pe = 0.1 (Pr = 10−3), the blue short-dashed line for Pe = 1 (Pr = 10−2), the purple dotted

line for Pe = 10 (Pr = 10−1) and the cyan dot-dashed line for Pe = 100 (Pr = 1). As in Figure 2,

we have truncated the Fourier expansion of ψ′ and T ′ to N = 20 to create these curves.

IV. ENERGY STABILITY

A. Energy stability for stratified shear flows: general ideas

Linear stability only provides information on the stability of a shear flow to infinitesimal

perturbations. Energy stability is a much stronger form of stability30,35,36: when a system

is energy stable (also called absolutely stable), perturbations of arbitrarily large amplitudes

decay at least exponentially in time, and the laminar flow is the only attractor of the system.

Energy stability is thus a sufficient condition for the system to be stable to perturbations

of arbitrary amplitude, whereas linear instability is a sufficient condition for the system to

be unstable. Often the linear stability limit and the energy stability limit do not coincide

in parameter space, an extreme example being the unstratified plane Couette flow, which

has a finite threshold Reynolds number for energy stability, but is linearly stable up to



infinite Reynolds number: in the region between the two, the system is stable to infinitesimal

perturbations, but it may be unstable to perturbations of large amplitude, i.e., it may exhibit

finite-amplitude instabilities.

With the goal of further studying the stabilizing effect of background stratification, we

now derive an energy stability criterion for forced stratified shear flows. We ask the following

question: for a given amplitude of the force, is there a critical strength of the stratification

above which the laminar solution is the only attractor of the system?

Again, we insert the decomposition u(x, t) = uL(z) +u′(x, t) in (7)-(9). However, we do

not assume that u′ is small. u′ and T ′ then satisfy

∂u′

∂t
+ uL · ∇u′ + u′ · ∇uL + u′ · ∇u′ = −∇p+ RiT ′ez +

1

Re
∇2u′ , (32)

∇ · u′ = 0 , (33)

∂T ′

∂t
+ (uL + u′) ·∇T ′ + w′ =

1

Pe
∇2T ′ , (34)

in the case of the standard equations, and

∂u′

∂t
+ uL · ∇u′ + u′ · ∇uL + u′ · ∇u′ = −∇p+ RiPe∇−2w′ez +

1

Re
∇2u′ , (35)

∇ · u′ = 0 , (36)

for the LPN equations.

An energy equation for the perturbations can be obtained by dotting the momentum

equation with u′, adding it to γT ′ times the temperature equation (where the only constraint

on γ is that it should be a positive scalar), and integrating the result over the domain under

consideration. Using the periodicity of the solutions, together with the incompressibility

condition greatly simplifies the resulting expressions, which reduce to

∂

∂t

[
1

2
〈u′2〉+

γ

2
〈T ′2〉

]
= (Ri− γ)〈w′T ′〉 − 〈SLw′u′〉 −

1

Re
〈|∇u′|2〉 − γ

Pe
〈|∇T ′|2〉 ,

≡ Hγ [u′, T ′] (37)

for the standard equations, where 〈·〉 denotes a volume integral, and SL(z) = d
dz
uL(z) =

cos(z) denotes the local vertical shear of the laminar solution. Similarly, for the LPN

equations we get

∂

∂t

[
1

2
〈u′2〉

]
= RiPe〈w′∇−2w′〉 − 〈SLw′u′〉 −

1

Re
〈|∇u′|2〉 ≡ HLPN [u′] . (38)



This defines the two functionals Hγ [u′, T ′] and HLPN [u′], which are both quadratic forms.

The task at hand is to determine the region of parameter space {Re,Pe,Ri} or {Re,RiPe}

where these quadratic forms are negative definite, i.e., where they are strictly negative for

any possible input fields u′ (and T ′). In this region of parameter space the system is energy

stable: the right-hand-side of (37) or (38) is strictly negative and the perturbation decays in

time, regardless of its initial amplitude. On the basis of mass and momentum conservation,

the only constraints that we place on u′ is that it is divergence-free and has a vanishing

average over the whole domain.

Comparing Hγ [u′, T ′] and HLPN [u′], we readily see that the task of proving energy

stability for stratified shear flows is more involved in the case of the full set of equations

than in the case of the LPN equations. We therefore focus on the latter, for which we are

able to obtain interesting and generic results on the stability of stratified shear flows.

B. Energy Stability in the low Péclet number limit

Focussing on the LPN equations, we first compute bounds on the location of the energy

stability curve in the (RiPe,Re) plane. These bounds prove useful, because they correctly

describe the scaling behavior of the energy stability limit for large Reynolds number. As we

shall see they also validate our numerical results, and provide a simple analytical approxi-

mation to the high Reynolds number limit.

1. Lower bound

While the true energy stability boundary can only be obtained by ensuring that HLPN < 0

for all possible perturbations u′ and T ′, one may also ask the question of when a subset of

perturbations is energy stable or unstable. If the subset is unstable, then we know that the

system overall is not energy stable either. The critical RiPe for energy stability for that

subset is therefore a lower bound (called (RiPe)< hereafter) on the true energy stability

boundary.



We now restrict our attention to perturbations of the following form:

u′ = B cos(Ky) , (39)

v′ =
1

K
sin(Ky) sin(z) , (40)

w′ = cos(z) cos(Ky) . (41)

where K is the wave number of the perturbation in the y direction, and B is a free parameter.

One can check that such perturbations are divergence-free.

We insert (39)-(41) into the quadratic form (38), recalling that SL = cos(z), to obtain

HLPN

LxLyLz
= − RiPe

4(K2 + 1)
− B

4
− 1

Re

[
K2B2

2
+
K2 + 1

4

(
1 +

1

K2

)]
. (42)

This expression is a quadratic polynomial in B. As long as its discriminant is negative,

the polynomial is negative and perturbations of the form (39)-(41) decay exponentially.

However, when the discriminant is positive, there will be values of B corresponding to

growing perturbations. The threshold for energy stability of perturbations of the form (39)-

(41) is therefore attained when the discriminant vanishes, which gives

(RiPe)< =
K2 + 1

8K2
Re−

(K2 + 1)2
(
1 + 1

K2

)
Re

. (43)

For large enough Reynolds number, this value is maximum for the smallest value of K that

is compatible with the boundary conditions, namely K = 2π/Ly. The corresponding lower

bound on the energy stability limit of the system is

(RiPe)< =

ReL2
y

32π2
−

(
4π2

L2
y

+ 1
)(

1 +
L2
y

4π2

)
Re

(4π2

L2
y

+ 1

)
. (44)

For a given system size, the high-Re asymptotic behavior of the lower-bound is

(RiPe)< '
L2
y

32π2

(
4π2

L2
y

+ 1

)
Re , (45)

which shows that the Richardson-Péclet number needs to be at least of the order of Re to

have energy stability. This bound also indicates a strong dependence of the energy stability

limit on the size of the domain. Indeed, as the transverse size Ly of the domain increases,

expression (45) grows as L2
y: larger domains allow for perturbations that are very weakly

damped by viscosity.

The lower bound is plotted in Figure 4 for a domain of size 10π × 2π × 2π, for which

(RiPe)< =
Re

4
− 8

Re
. (46)



2. Upper bound

Upper bounds on the energy stability limit can be obtained using rigorous estimates of

the three terms in HLPN . In this subsection, we do not restrict attention to shear flows of

the Kolmogorov type. Instead, we consider any smooth shear flow uL(z) along x that is

2π-periodic in z. We still use the height of the domain as the characteristic length scale,

and consider a domain of size Lx ×Ly × 2π with periodic boundary conditions. We assume

that some forcing function with amplitude F0 sustains the laminar flow. The dimensionless

profile has an amplitude of order unity. We prove that any such laminar flow is energy stable

provided the Richardson-Péclet number is large enough.

To simplify notations and avoid dealing with the inverse Laplacian operator, we introduce

θ = T ′/Pe, such that w′ = ∇2θ. With these notations, the quadratic functional reads

HLPN [u′] = −RiPe〈|∇θ|2〉 − 〈duL
dz

u′∇2θ〉 − 1

Re
〈|∇u′|2〉 . (47)

Let T be the second term of this functional. After integration by parts,

T = −〈duL
dz

u′∇2θ〉 = 〈∇
(

duL
dz

u′
)
·∇θ〉 = 〈duL

dz
∇u′ ·∇θ〉+ 〈d

2uL
dz2

u′∂zθ〉 . (48)

Using classical inequalities, we bound this term according to

|T | ≤ sup
z

∣∣∣∣duLdz

∣∣∣∣ 〈|∇u′| |∇θ|〉+ sup
z

∣∣∣∣d2uL
dz2

∣∣∣∣ 〈|u′| |∂zθ|〉
≤ sup

z

∣∣∣∣duLdz

∣∣∣∣√〈|∇u′|2〉√〈|∇θ|2〉+ sup
z

∣∣∣∣d2uL
dz2

∣∣∣∣√〈|u′|2〉√〈|∂zθ|2〉
≤ RiPe

2
〈|∇θ|2〉+

1

2RiPe
sup
z

∣∣∣∣duLdz

∣∣∣∣2 〈|∇u′|2〉
+

RiPe

2
〈|∇θ|2〉+

1

2RiPe
sup
z

∣∣∣∣d2uL
dz2

∣∣∣∣2 〈|u′|2〉
= RiPe〈|∇θ|2〉+

1

2RiPe
sup
z

∣∣∣∣duLdz

∣∣∣∣2 〈|∇u′|2〉+
1

2RiPe
sup
z

∣∣∣∣d2uL
dz2

∣∣∣∣2 〈|u′|2〉 , (49)

where we have used respectively Hölder’s inequality to get the first line, Cauchy-Schwartz

inequality to get the second one, and Young’s inequality to get the final expression (see

Doering, Spiegel, and Worthing37 for another example of the use of these inequalities in a

fluid dynamics context). We now wish to express 〈|u′|2〉 in terms of 〈|∇u′|2〉. To wit, we use

Poincaré’s inequality37: the divergence-free constraint implies that u′ has vanishing Fourier



amplitude on modes with vanishing wave numbers in both the y and z directions, hence

〈|u′|2〉 ≤ 1

4π2
max

{
L2
y; 4π2

}
〈|∇u′|2〉 , (50)

where the arguments of the max are the maximum allowed values for the squared wavelengths

in the y and z directions. Inserting this inequality into (49), together with 〈|∇u′|2〉 ≤

〈|∇u′|2〉, leads to

HLPN [u′] ≤ 〈|∇u′|2〉

[
1

2RiPe

(
sup
z

∣∣∣∣duLdz

∣∣∣∣2 + sup
z

∣∣∣∣d2uL
dz2

∣∣∣∣2 max

{
L2
y

4π2
; 1

})
− 1

Re

]
. (51)

As discussed at the beginning of this subsection, the non-dimensionalization is such that

sup
z

∣∣∣∣duLdz

∣∣∣∣2 = c1 , (52)

sup
z

∣∣∣∣d2uL
dz2

∣∣∣∣2 = c2 , (53)

where c1 and c2 are constants of order unity that depend on the shape of the laminar profile

only (and specifically not on Re, RiPe, Ly, etc). Combining these expressions with (51)

leads to

HLPN [u′] ≤ 〈|∇u′|2〉
[

1

2RiPe

(
c1 + c2 max

{
L2
y

4π2
; 1

})
− 1

Re

]
, (54)

hence HLPN is a negative quadratic form if the expression inside the square brackets is

negative, i.e., if

RiPe > (RiPe)> =

(
c1 + c2 max

{
L2
y

4π2
; 1

})
Re

2
. (55)

Because we have used rough but rigorous estimates of the different terms of the quadratic

functional, (RiPe)> is an upper bound on the actual energy stability limit of the system. It

proves that any smooth laminar velocity profile is absolutely stable provided the stratification

is strong enough. This has important implications, showing in particular that for fixed

Reynolds number and strong enough stratification such a shear flow does not induce any

turbulent mixing! Note, however, that since this result is obtained for the LPN equations,

it is formally only valid for perturbations that have a low Péclet number. This can be

done mathematically by taking the asymptotic limit of the equations for Pe → 0 before

considering perturbations of arbitrary amplitude. In practice, however, our result does not

rule out the possibility of instability for perturbations that have a high Péclet number. A



simple example would be perturbations that locally reduce or eliminate the horizontally-

averaged vertical stratification the domain: such perturbations are not allowed in the LPN

equations, but they are allowed in the full set of equations at very low Péclet number, where

they might indeed allow for sustained turbulent solutions localized in the mixed layer.

For domains with large extent in the y-direction, the sufficient condition (55) for energy

stability becomes approximately RiPe & L2
yRe. In the particular case of the Kolmogorov

velocity profile, we can compare this upper bound to the lower bound (45): both bounds

scale as L2
yRe for large Reynolds number, which indicates unambiguously that the actual

critical RiPe for energy stability obeys the same scaling. This is illustrated in Figure 4,

where we plot the upper bound for a Kolmogorov flow in a domain of size 10π × 2π × 2π.

For such a Kolmogorov flow, c1 = c2 = 1 and the bound becomes

(RiPe)> = Re . (56)

3. Energy stability boundary using Euler-Lagrange equations

To determine the true energy stability limit of the LPN system, we now consider the

variational problem associated with the extremization of the quadratic functional. This

gives a set of Euler-Lagrange equations, which can be solved numerically to obtain the

critical value of RiPe for absolute stability, called (RiPe)E hereafter.

Starting from HLPN [u′], we separate the viscous dissipation term from the other two, as

HLPN [u′] = RiPe〈w′∇−2w′〉 − 〈SLw′u′〉 − D , (57)

where D = 1
Re
〈|∇u′|2〉 is positive definite for non-trivial flows. We then ask the following

question: for fixed viscous dissipation rate D = D0, for what values of RiPe and Re is

HLPN [u′] < 0 for all incompressible velocity fields u′? As we shall see, the selected value

of D0 is irrelevant as it merely serves as a general normalization38 of u′. In order to answer

this question, it is sufficient to maximize RiPe〈w′∇−2w′〉− 〈SLw′u′〉 over all possible incom-

pressible flows u′, and find out for what values of RiPe and Re this maximum is smaller

than D0. The problem thus reduces to an Euler-Lagrange optimization problem.

Using the notation θ = T ′/Pe as in the previous section, we construct the following



Lagrangian:

L [u′] = RiPe〈w′θ〉−〈SLw′u′〉+〈π1(x, y, z)∇·u′〉−π2〈
|∇u′|2

Re
−D0〉+〈π3(x, y, z)(w′−∇2θ)〉 ,

(58)

where the Lagrange multiplier function π1(x, y, z) enforces incompressibility at every point,

π3(x, y, z) enforces equation (13) at every point, and the constant multiplier π2 enforces

D = D0 globally39. Note that we go back here to using the field θ merely to avoid dealing

with inverse Laplacian operators in the variational problem; it is also possible to work

through the following derivation without doing it.

The maximizing perturbation field u′ has to solve the Euler-Lagrange equations: three

of them (arising from the derivatives of L with respect to π1, π2 and π3) simply recover the

constraints, and the other four (arising from the derivatives of L with respect to u′, v′, w′

and θ) are

−SLw′ − ∂xπ1 = −2π2
Re
∇2u′ , (59)

−∂yπ1 = −2π2
Re
∇2v′ , (60)

RiPeθ + π3 − SLu′ − ∂zπ1 = −2π2
Re
∇2w′ , (61)

RiPew′ = ∇2π3 . (62)

We see that the multiplier π1 plays a role similar to pressure, a standard result. Comparing

the fourth equation with the constraint (13) also reveals that π3 = RiPeθ, which implies

that we can eliminate both θ and π3 to get

2RiPe∇−2w′ − SLu′ − ∂zπ1 = −2π2
Re
∇2w′ . (63)

Dotting equations (59) to (61) with u′ and integrating over the domain, we get (using

incompressibility) the relationship:

− 〈SLu′w′〉+ RiPe〈w′∇−2w′〉 =
π2
Re
〈|∇u′|2〉 = π2D , (64)

which reveals the interpretation of π2, and allows us to write

HLPN [u′] = (π2 − 1)D . (65)

Since D is positive, this expression shows that energy stability corresponds to π2 < 1. All

that is left to do is to solve equations (59)-(62) as well as the incompressibility condition for



the eigenvalue π2 and determine for which values of Re and RiPe the condition π2 < 1 is

satisfied. Unfortunately, this system of equations does not generally lend itself to Squire’s

transformation, which means that we need to study the full 3D eigenproblem to solve for

u′, v′, w′, θ, π1 and of course π2.

 0.001  0.01  0.1  1  10  100  1000  10000
RiPe

 1

 10

 100

 1000

 10000

R
e

linear'
2D'(Lx'='∞,'Lz=2π)'
'3D'(Lx=10π,Ly=Lz=2π)'
'bounds'

FIG. 4. Stability boundaries for the LPN equations. The linear stability boundary is valid for

infinite domains in both 2D and 3D. The energy stability boundary is shown in 2D (green curve)

for a domain of arbitrary horizontal extension and in 3D (red curve) for the periodic domain of

size Lx × Ly × Lz = 10π × 2π × 2π used for the low-Pe numerical simulations. The 3D energy

stability limit falls between the lower and upper bounds (46) and (56). At large Reynolds number,

the flow is linearly stable above a critical value (RiPe)L, and the energy stability limit follows the

scaling (RiPe)E ∼ Re. The symbols mark the simulations for which a turbulent solution was found

numerically, using the LPN equations.

Since SL(z) = cos(z) for the Kolmogorov flow studied here, we use Floquet theory again

to solve (59)-(62), together with π1 = p′, π3 = RiPeθ and the incompressibility condition.

For simplicity, and for ease of comparison with the numerical simulations of the next section,

we now restrict our attention to domains with vertical extent Lz = 2π by setting the Floquet

coefficient a = 0. Assuming an ansatz of the form

q(x, y, z) = eilx+imy
N∑

n=−N

qne
inz (66)



for each of the unknown functions yields the system:

−Re

2
(wn−1 + wn+1)− ilpn =

2π2
Re

(
l2 +m2 + n2

)
un , (67)

−impn =
2π2
Re

(
l2 +m2 + n2

)
vn , (68)

2RiPeθn −
Re

2
(un−1 + un+1)− inpn =

2π2
Re

(
l2 +m2 + n2

)
wn , (69)

wn +
(
l2 +m2 + n2

)
θn = 0 , (70)

lun +mvn + nwn = 0 , (71)

for n = −N..N . This forms a generalized eigenvalue problem Az = π2Bz, where

z = (u−N , ..., uN , v−N , ....vN , w−N , ..., wN , p−N , ..., pN , θ−N , ..., θN), which can be solved nu-

merically (using LAPACK routines) for the eigenvalue π2. The latter depends on the hor-

izontal wavenumbers l and m as well the original parameters Re and RiPe. For given Re

and RiPe, energy stability is achieved if π2 < 1 for all possible l and m. At fixed RiPe,

the critical Reynolds number for energy stability is the largest value of Re for which this

is true. Conversely, at fixed Reynolds number, the critical Richardson-Péclet number for

energy stability (RiPe)E is the smallest value of RiPe for which π2 < 1. The energy stability

boundary therefore delimits the region of parameter space where the maximum value of π2

over all possible l and m is smaller than unity.

Figure 4a compares the linear stability boundary to the energy stability boundary. The

former is computed for an infinite domain and is valid both in 2D and in 3D, while the

latter is computed for a 2D (y−independent) domain of infinite horizontal extent and for

the 3D domain of size Lx × Ly × Lz = 10π × 2π × 2π used in the low Péclet numerical

simulations of the next section. Note how the 3D energy stability curve is lower than the

2D one, which is expected since the family of all possible 2D perturbations is included

in the family of all possible 3D perturbations. Systems whose parameters lie below the

3D energy stability curve are always stable to perturbations of arbitrary amplitude, while

systems whose parameters lie above the linear stability curve are unstable to infinitesimal

perturbations. The 3D energy stability curve lies strictly below the linear instability curve,

revealing a significant region of parameter space between them where a stratified shear flow

is stable to small perturbations but could be destabilized by appropriate finite-amplitude

perturbations.

At large Reynolds number, (RiPe)E scales as Re with a proportionality constant of order



unity, in agreement with the predictions from the upper and lower bounds. It is interesting

to note that (RiPe)E ' Re is equivalent to (Ri Pr)E ' O(1), which is reminiscent of the

nonlinear stability criterion originally proposed by Zahn9, albeit with the right-hand-side

constant of order unity rather than of order 10−3. His original argument, modified to have

Recrit = 1, could therefore provide a plausible physical explanation for the energy-stability

scaling found.

In summary, we have formally proved, using both simple analytical bounding arguments

and exact numerical integration of the Euler-Lagrange equations, that a strong enough

stratification makes the laminar shear flow stable to perturbations of arbitrary form and

amplitude, within the constraint that the perturbations must still have a low Péclet number

(see discussion in Section IV B 2).

V. NUMERICAL SIMULATIONS

Our findings strongly suggest that stratified shear flows are subject to finite-amplitude

instabilities, which raises the question of the relevance of linear stability analyses in de-

termining when turbulent mixing is expected. In order to clearly assess the existence of

finite-amplitude instabilities, we now turn to direct numerical simulations.

A. The numerical model

We solve the set of equations (7)-(9) in a triply-periodic domain of size Lx = 10π, Ly = 4π

and Lz = 2π, using the pseudo-spectral code originally developed by S. Stellmach to study

double-diffusive convection40,41. This code has been modified to include the effect of the

body force F . Table 1 shows a record of simulations run in this format. In all of these runs,

Re = 104, and Pe is either 0.1, 1 or 10.

We then modified the code to solve instead the LPN momentum equation (16) together

with the continuity equation, and have run a number of simulations with this new setup in

a somewhat smaller domain (Lx = 10π, Ly = 2π and Lz = 2π), for Re ranging from 102 to

104. The difference in the two domain sizes does not appear to have any influence on the

numerical results in the low-Péclet-number regime, hence our decision to save on computer

time in this second set of runs. The latter are summarized in Table 2.



Pe Ri RiPe Transition to turbulence

0.1 1 0.1 Linear Instab.

0.1 10 1 Fin. amp. instab. starting from Ri = 1 run.

0.1 12 1.2 Fin. amp. instab. starting from Ri = 10 run.

0.1 15 1.5 No instab. found starting from Ri = 12 run.

1 0.001 0.001 Linear Instab.

1 0.01 0.01 Linear Instab.

1 0.1 0.1 Linear Instab.

1 0.3 0.3 Fin. amp. instab. starting from Ri = 0.1 run.

1 0.5 0.5 Fin. amp. instab. starting from Ri = 0.3 run.

1 0.7 0.7 Fin. amp. instab. starting from Ri = 0.5 run.

1 1 1 Fin. amp. instab. starting from Ri = 0.7 run.

1 1.2 1.2 Fin. amp. instab. starting from Ri = 1 run.

1 1.5 1.5 No instab. found starting from Ri = 1.2 run.

10 0.0001 0.001 Linear Instab.

10 0.001 0.01 Linear Instab.

10 0.01 0.1 Linear Instab.

10 0.1 1 Fin. amp. instab. starting from Ri = 0.01 run.

10 0.12 1.2 Fin. amp. instab. starting from Ri = 0.1 run.

10 0.15 1.5 No instab. found starting from Ri = 0.12 run.

TABLE I. Presentation of the various runs performed using the standard equations. All runs are at

Re = 104, in rectangular domains of size 10π×4π×2π. The resolution (in terms of equivalent mesh-

points Nx,y, Nz) is the same in all directions, and for all runs, and is equal to 192 mesh points per

interval of length 2π. Runs that go unstable starting from infinitesimal perturbations are marked

“Linear Instab.”. Runs that do not go unstable starting from infinitesimal perturbations, but that

have finite-amplitude instabilities are marked “Fin. amp. instab.”. These runs were started using

the endpoint of another simulation at lower Ri, also noted.



Re RiPe Transition to turbulence

100 0.1 Linear Instab.

100 0.2 Linear Instab.

100 0.22 Linear Instab.

100 0.25 No instab. found starting from RiPe = 0.22

1100 0.09 Linear Instab.

1100 0.21 Linear Instab.

1100 0.24 Linear Instab.

1100 0.27 No instab. found starting from RiPe = 0.24

2500 0.06 Linear Instab.

2500 0.2 Linear Instab.

2500 0.3 Fin. amp. instab. starting from RiPe = 0.2 run.

2500 0.4 Fin. amp. instab. starting from RiPe = 0.3 run.

2500 0.5 Fin. amp. instab. starting from RiPe = 0.4 run.

2500 0.6 Fin. amp. instab. starting from RiPe = 0.5 run.

2500 0.7 Fin. amp. instab. starting from RiPe = 0.6 run.

2500 0.8 Fin. amp. instab. starting from RiPe = 0.7 run.

2500 0.9 No instab. found starting from RiPe = 0.8 run

10000 0.01 Linear Instab.

10000 0.1 Linear Instab.

10000 0.3 Fin. amp. instab. starting from RiPe = 0.1 run.

10000 0.5 Fin. amp. instab. starting from RiPe = 0.3 run.

10000 0.6 Fin. amp. instab. starting from RiPe = 0.5 run.

10000 0.8 Fin. amp. instab. starting from RiPe = 0.6 run.

10000 1 Fin. amp. instab. starting from RiPe = 0.8 run.

10000 1.2 Fin. amp. instab. starting from RiPe = 1 run.

10000 1.5 No instab. found starting from RiPe = 1.2 run.

TABLE II. Presentation of the various runs performed using the LPN equations. All runs are in

rectangular domains of size 10π×2π×2π. Those with Re = 104 have the same effective resolution

as in Table 1. Those with Re = 100 have 96 meshpoints per interval of length 2π and those with

Re = 1100 and 2500 have 144 meshpoints per interval of length 2π.



B. Typical results

We first take a look at typical simulations run using the LPN equations. Figure 5 shows

u" w"

FIG. 5. Snapshot of the streamwise (left) and vertical (right) velocity components for the run

at Re = 104 and RiPe = 0.01 using the LPN equations, taken once it has equilibrated into a

statistically-steady turbulent state.

a system snapshot of a run at Re = 104 and RiPe = 0.01, once it has equilibrated into

a statistically-steady turbulent state. The shear flow is visible in the left panel (which

shows the velocity field in the x−direction), and the typical size and amplitude of the

velocity perturbations are illustrated in the right panel (which shows the velocity field in the

z−direction). For this particular value of RiPe, the shear is linearly unstable. We find that

whenever this is the case, the system eventually settles into a statistically-steady turbulent

state that is independent of the initial conditions. This is demonstrated in Figure 6a, which

shows 〈w2〉 as a function of time for two simulations at Re = 104 and RiPe = 10−4: one

that was started from small amplitude random initial conditions, and one that was started

from the statistically-steady state reached by a previous run at Re = 104 and RiPe = 0.01.

In both cases, 〈w2〉 settles into the same statistically-steady state after a short transient

period. The same statement applies to all global diagnostics of the system dynamics.

As shown in Figure 4a, for Re = 104 the largest value of RiPe for which the laminar

steady state solution uL(z) is linearly unstable is roughly equal to (RiPe)L = 0.25. We

have found that all low-Péclet-number simulations (i.e those run using the LPN equations,

and those run with the standard equations at Pe ≤ 1) which have RiPe < 0.25 do indeed

transition to a turbulent state, and the results shown in Figure 5 and Figure 6a are fairly

representative of their behavior. A detailed quantitative analysis of the results of these runs



will be presented elsewhere.
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FIG. 6. Evolution of 〈w2〉 as a function of time, for Re = 104 and RiPe = 10−4 (left) and

RiPe = 0.5 (right) starting from small random perturbations (red solid line) and from finite-

amplitude perturbations (green dashed line) by continuation of a previous run at other parameter

values as noted in the legend.

We have also found that this body-forced stratified shear flow is subject to finite-

amplitude instabilities for (RiPe)L < RiPe < (RiPe)c, where the critical value (RiPe)c

is discussed in the next section. This is shown in Figure 6b, which presents 〈w2〉 as a func-

tion of time for two simulations at Re = 104 and RiPe = 0.5: one that was started from weak

amplitude random initial conditions, and one that was started from the statistically-steady

state reached by a previous run at Re = 104 and RiPe = 0.1. We clearly see that the energy

in the perturbations decays in the first case, but reaches a different statistically-steady state

in the second case, a classical example of finite-amplitude instability.

C. Finite-amplitude instability

We now consider both the standard equations at Pe = 0.1, Pe = 1 and Pe = 10 and the

LPN equations. In order to find turbulent solutions for RiPe > (RiPe)L more systematically,

and determine the critical value (RiPe)c for the existence of finite-amplitude instabilities,

we gradually increase Ri (keeping all other parameters fixed), using as a starting solution

the result of a simulation run at lower Ri. We say that (RiPe)c is reached when we are no

longer able to continue increasing Ri without losing the turbulent solution. Note that this



only yields a rough estimate of (RiPe)c that depends largely on the size of the increments

in Ri taken. It is possible that by using smaller increments one may be able to push further

into the linearly stable region. Unfortunately, this is computationally very demanding and

the increment size is in practice selected to satisfy our constraints on computation time.

The results are summarized in Tables 1 and 2 and in Figure 4, and raise a number of

interesting points. First note how (RiPe)c is the same for the LPN equations and for the

standard equations at Pe = 0.1, Pe = 1 and even for Pe = 10 for Re = 104. In all cases,

we have (RiPe)c ' 1.2. This validates the use of the LPN equations as a substitute for

the standard equations for low-Péclet-number systems. One may in fact be surprised at the

fact that the LPN equations even appear to be a good approximation of the large Pe runs

(Pe = 10 here). However, this is due to the fact that the global Péclet number based on the

amplitude of the hypothetical laminar shear flow uL is not a good predictor for the actual

Péclet number of the turbulent solutions, Perms (see Section II C). The latter is significantly

smaller, and remains below one in all runs at Pe = 10. This result is consistent with the

theory of Lignières14, which merely requires Perms � 1 for the the LPN equations to be

valid.

The value of (RiPe)c ' 1.2 found at Re = 104 is somewhat larger than the linear stabil-

ity threshold (RiPe)L, but is significantly smaller than the theoretical energy stability limit

(RiPe)E found in Section IV (see Figure 4). Some level of discrepancy is expected, since

lying within the energy stability limit is only a necessary (but not sufficient) condition for

instability: even though everywhere within the energy-unstable domain there exist pertur-

bations whose amplitude initially increase with time, this does not guarantee the onset of

turbulence, as in most cases transient growth is followed by rapid decay.

These results, however, show that at Re = 104 neither linear stability nor energy stability

thresholds are good estimates for the actual threshold for transition to turbulence. Varying

the Reynolds number from 100 to 10,000 we found that this is not always the case: for

Re = 100 and Re = 1100, (RiPe)c and (RiPe)L do appear to coincide and no finite-amplitude

instabilities were found. The latter only appear for Re = 2500, and seem to exist at this

Reynolds number for (RiPe)L ' 0.25 < RiPe < (RiPe)c ' 0.8.

The very limited finite-amplitude data available is not inconsistent with (RiPe)c ∼ O(1)

for Re ≥ 2500. We therefore see that, when using a non-dimensionalization based on the

velocity and scale of the laminar flow, both the linear stability limit and the threshold to



finite-amplitude instabilities are independent of the Reynolds number for large Re (at least,

tentatively for the finite-amplitude threshold). The latter extends somewhat the stability

threshold from the linear one (RiPe)L ' 0.25 to (RiPe)c ∼ O(1), but not by a large amount.

VI. SUMMARY AND CONCLUSION

We have analyzed in this work the stability of an idealized stratified, body-forced, low-

Péclet-number shear flow using three different techniques: linear stability analysis, energy

stability analysis, and direct numerical simulations. Our mathematical goal was three-

fold: to test the validity of the LPN equations proposed by Lignières14, to determine the

respective thresholds for linear instability and energy stability, and to characterize the region

of parameter space where finite-amplitude instabilities exist.

Using dimensionless numbers based on the typical velocity of the laminar solution, our

linear stability analysis confirmed that the LPN equations are indeed an excellent approx-

imation to the standard equations of fluid dynamics provided Pe is smaller than 1. The

domain of validity of these equations is in fact somewhat larger, and depends more on the

Péclet number of the realized turbulent flow than the one of the hypothetical laminar so-

lution. In the low Péclet number limit, thermal diffusion acts to destabilize the flow. We

have found, as first shown by Lignières14 and Lignières, Califano, and Mangeney22, that

the relevant bifurcation parameter is the Richardson number times the Péclet number, with

stability for large Reynolds number achieved whenever RiPe > (RiPe)L ' 0.25. This shows

that shear instabilities can exist at relatively large Richardson numbers in the small Péclet

number limit. We have also shown using an extension of Squire’s transformation that in the

same limit the first modes to be destabilized are 2D modes, a result which by contrast is

not necessarily true for high-Péclet-number flows.

We then performed an energy stability analysis of the LPN equations. We proved

rigorously that any smooth low-Péclet-number shear flow becomes energy stable above a

(Reynolds dependent) critical intensity of the background stratification. This has funda-

mental implications: in this region of parameter space, the laminar flow is the only attractor

of the dynamics, and therefore sustained turbulent mixing cannot take place. The criterion

for energy stability is approximately RiPe & Re for large Reynolds number. Hence a lami-

nar flow subject to strong stratification (with Ri & Pr−1) is energy stable, and the vertical



diffusion of a scalar is due to molecular diffusivity only.

These linear stability and energy stability results, however, may only be of academic

interest. Indeed, using direct numerical simulations we have found that finite-amplitude in-

stabilities in these low-Péclet-number stratified shear flows exist, for large enough Reynolds

number, beyond the threshold for linear instabilities (RiPe)L ' 0.25, but nevertheless disap-

pear for RiPe significantly below the threshold for energy stability (RiPe)E ∼ Re. Our very

limited data is consistent with a finite-amplitude instability threshold (RiPe)c ' O(1) for

large enough Re, using a non-dimensionalization based on the laminar velocity. These scal-

ing laws are very tentative, in the sense that much remains to be done to measure (RiPe)c for

larger Reynolds number, and to confirm the values found here. Indeed, as discussed above,

it is possible that with more appropriately chosen initial conditions, one may be able to find

turbulent solutions for even larger RiPe for a given Re. Furthermore, we note that while

including the effects of rotation will not change the results of the energy stability analysis,

it might allow for a wider range of dynamics and could help maintain turbulent solutions for

larger RiPe. On the other hand, it is also not impossible that rotation could instead reduce

the instability domain, or that some of the turbulent solutions found far into the region of

linear stability are long chaotic transients that would eventually settle back to the laminar

state upon longer numerical integration. Since the numerical constraints on the timestep

and resolution increase dramatically for large Re and large RiPe flows, the accurate and

definitive determination of (RiPe)c at large Reynolds number is a formidable task, one that

should nevertheless be undertaken in the future.

Finally, it is also worth recalling that all of these results only apply to the low Péclet

number regime. While sufficiently-small-scale stellar shear layers fall into that category,

large-scale shear layers, however, commonly have a high Péclet number (albeit still with a

small Prandtl number). Both linear and energy stability analyses remain to be done in this

case, and may reveal further surprises.
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