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We study the solutions of generic Hamiltonians exhibiting particle-hole mixing. We show that
there exists a universal quantity that can describe locally the Majorana nature of a given state. This
pseudo-spin like two-component quantity is in fact a generalization of the Majorana polarization
(MP) measure introduced in Ref. 1, which was applicable only for some models with specific spin
and symmetry properties. We apply this to an open two-dimensional Kitaev system, as well as
to a one-dimensional topological wire. We show that the MP characterization is a necessary and
sufficient criterion to test whether a state is a Majorana or not, and use it to numerically determine
the topological phase diagram.

I. INTRODUCTION

Recently the formation of Majorana fermions has
been a central research problem in condensed matter
physics.2–16 However, we believe that to address this
problem a fundamental ingredient is lacking and the pur-
pose of the present work is to introduce this missing piece
and prove its importance. We thus introduce the gener-
alized Majorana polarization (MP), which is a universal
measure of the spatial dependence of the Majorana of
a given state, i.e. of the same-spin particle-hole over-
lap. This quantity can be thought of as the analog of
the local density of states (LDOS) for regular electrons,
except for the fact that a real quantity does not suffice to
capture the Majorana character, and one needs to intro-
duce a complex quantity which can be represented as a
two-component vectorial quantity in the complex plane.

It turns out that this quantity can be obtained from
the particle-hole (PH) operator expectation value.Such
an operator C, is anti-unitary, obeys C2 = 1, and anti-
commutes with the Hamiltonian.17 The Majorana bound
states (MBS) are self adjoint, i.e. they are eigenstates of
the PH operator with an eigenvalue of modulus 1. It is
therefore natural to use the MP which stems from the
PH operator to analyze the MBS in more detail. Note
that the MP vector discussed here is a generalization of
the MP introduced in Ref. 1 which was applicable only
for a specific subset of models.19

Having access to such a local measure can allow one to
understand the evolution of these states through a phase
transition, their dependence on specific particularities of
the system such as size, disorder, inhomogeneities, etc.,
as well as how one can manipulate them. The particu-
lar patterns arising in the spatial distribution of the MP
vector, i.e spatially aligned (‘ferromagnetic’), vortex-like,
localized-on-the-edges, etc, and its integral over given re-
gions in space, allow one to assign a global topological
character for any given state.

In what follows we write down the generalized MP
definition and apply it to a few examples, such as two-
dimensional p+ ip-wave Kitaev arrays, and a topological

one-dimensional wire in the presence of various inhomo-
geneities. As we will show, the spatial distribution of the
MP vector, allows one to distinguish between states that
exhibit a trivial or topological phase. When the crite-
rion of a zero energy for a given state cannot be strictly
applied (e.g infinitesimally small but non-zero energies),
having a universal local order parameter is a sufficient
and versatile criterion for such a distinction. This al-
lows the accurate determination of the topological phase
diagram from numerical calculations.

Also we find analytically the phase diagram for quasi
1D Kitaev wires using an exact calculation of the topolog-
ical invariant for these systems. The value of this topo-
logical invariant, and the corresponding phase diagrams
were previously unknown. We compare the phase di-
agrams obtained using the two techniques and we note
that the MP criterion works very accurately, even for not
too large systems. Thus, the MP is of potential use for
the determination of the topology of more complicated
realistic models, for which the direct determination of the
topology using the topological invariant is unfeasible.

Moreover, as we will show, this criterion will help
us prove the existence of quasi-Majorana or precur-
sor Majorana states, which are locally but not globally
Majorana-like. Such states exhibit locally an almost per-
fect electron-hole superposition, thus a quasi-maximal
MP, however the direction of the MP vector may vary
spatially and thus one cannot isolate a well-defined re-
gion that would integrate to a fully localized Majorana
state.

In Sec. II we present the definition of the generalized
MP. In Sec. III we apply this definition to quasi-1D and
finite-size 2D system described by the Kitaev model. In
Sec. IV we apply it to a 1D spinful system. In Sec. V
we compare the present definition of the MP with the
original definition in Ref. 1. We conclude in Sec. VI.
In Appendix A we present the analytical calculation of
the topological invariant for the quasi-1D Kitaev chains,
while in Appendix B we present the relation between the
MP and the chiral character presented in Ref. 20.
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II. THE GENERALIZED MAJORANA
POLARIZATION

Naturally all finite energy eigenstates of the Hamilto-
nians under consideration satisfy 〈Ψ| C |Ψ〉 = 0 and Ma-
jorana states satisfy |〈γ| C |γ〉| = 1, where C is the PH
operator. Additionally in a region R where such a Ma-
jorana state is localized it must satisfy

C =

∣∣∣∑j∈R〈Ψ| Cj |Ψ〉
∣∣∣∑

j∈R〈Ψ|r̂j |Ψ〉
= 1 , (1)

where r̂j is the projection onto site j and Cj ≡ C r̂j . For a
system with two Majoranas localized each on a different
edge of the system, R can simply be taken to be half the
system.

One can therefore use the PH operator as a way of
theoretically visualizing MBS; this operator thus plays
the role of a universal MP generalizing the picture in-
troduced in Ref. 1 which was valid only for a subset of
Hamiltonians (the ‘chiral orthogonal’ class, or BDI in the
usual classification scheme18). The relationship between
the old definition and the current one is presented in Sec-
tion V.

Note that, while presenting some similarities, the gen-
eral MP is different from the chiral Majorana character
introduced in 20; they happen to take a similar form only
for the particular case of the BDI systems, see App. B
for more information. As the expectation values for an
anti-unitary operator are not invariant under a change
of global phase, it is fundamentally impossible to use the
MP operator to compare different states, as we can do us-
ing the chiral Majorana character introduced in Ref. 20.

III. KITAEV CHAINS, LADDERS, AND
ARRAYS

The PH operator for a spinless Kitaev model is C =
eiζ τxK̂, where K̂ is the complex-conjugation operator,
and ζ is an arbitrary phase. We use ~τ to denote the
Pauli matrices in the PH subspace. A Majorana state
γ is an eigenstate of C with an eigenvalue of modulus
1. If we write a general eigenfunction as ΨT

j = (uj , vj),
then 〈Ψ| Cj |Ψ〉 = 2ujvj , and we can use this to analyze
the behavior of a given state and its Majorana character.
Note that in order to have a Majorana state localized in
a region R , the wave function must satisfy the condition
uj = vje

iφj , with φj = φ a uniform phase inside R. This
phase is arbitrary and can be chosen conveniently.

In the past, the topological character of a variety of
quasi-1D and 2D systems has been studied.21–31 Here we
focus on a spinless 2D square lattice with nearest neigh-
bor hopping t and p + ip superconductivity of strength

FIG. 1. (Color online) Topological phase diagram as a func-
tion of ∆ and µ for Kitaev chains with (a) 3, (b) 11, (c) 40,
and (d) 41 wires. Light red is the topologically non-trivial
phase and white is the topologically trivial phase. The black
lines give the points where the bulk gap closes.

∆, described by

H =
∑
j

Ψ†jµτ
zΨj (2)

+
∑
〈i,j〉

Ψ†i

[
∆
(

[~δij ]
xiτ y + [~δij ]

yiτx
)
− tτ z

]
Ψj .

where Ψ†j = {c†j , cj} with c
(†)
j annihilating (creating) a

spinless particle at site j. Here ~δ is the nearest neighbor
vector. We set t = 1 and ~ = 1 throughout.

We want to study the formation and destruction of the
MBS in open quasi-1D and 2D systems described by this
model. The quasi-1D systems have open boundary con-
ditions (BC) imposed in the y direction. We know that
a purely 1D Kitaev chain is topologically non-trivial for
|µ| < |2t| and ∆ 6= 0.2 Similarly, a 2D p+ip Kitaev array
is topologically non-trivial for |µ| < |4t| and ∆ 6= 0. For
systems of different numbers of wires we first calculate
analytically the bulk topological phase diagrams using a
topological invariant.17,32–36 The detailss of this calcula-
tion are presented in Appendix A. We should stress that
this is the first exact calculation of the phase diagram
for the quasi-1D Kitaev chains. The resulting phase dia-
grams are shown in Fig. 1. Note the difference between
the systems with even and odd number of chains. Note
also the formation of striped ellipsoidal regions close to
∆ = 0 in which the system can go between a topological
and non-topological phase for smaller and smaller steps
in the variation of the parameters when increasing the
number of wires.

We now compare these analytical phase diagrams with
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FIG. 2. (Color online) Total MP (in the left half of the sys-
tem) for the lowest energy state as a function of ∆ and µ
for Kitaev ladders of size (a) 3 × 51, (b) 41 × 41, and (c)
11 × 51. The solid black lines correspond to the topological
phase transitions for the quasi-1D systems, the dashed black
lines to the topological phase transitions for the 2D system.

similar ones obtained using a numerical calculation of the
MP in finite-size systems (see Fig. 2). We evaluate the
total polarization summed over half the system (R) and
normalized by the total DOS, see Eq. (1), which should
be equal to 1 in the case of a MBS. The local components
of the wave function uj and vj on a site j are obtained
by performing a numerical exact diagonalization of the
Kitaev Hamiltonian in Eq. (2), for a finite-size system
with open BCs. We can see clearly that there are re-
gions in the phase diagram in which a total MP of 1 is
achieved (denoted in red), which correspond to the re-
gions predicted by the bulk topological phase diagram,
see for example Fig. 2(a) for a 3× 51 site “ladder”, cor-
responding to the formation of Majorana states at the
ends of the wire.

For wider ladders however, the formation of topo-
logically protected states along the lateral edges of the
ladders, as predicted from the 2D bulk phase diagram,
makes things more complicated. These bands tend to
vastly reduce the gap and make the interpretation of the
phase diagrams tricky, and one may need to consider very
long ladders to see a behavior identical with the analyt-

ical phase diagrams. For shorter wires, as is the case
in Fig. 2 this gives rise to the extra yellow regions in
the phase diagrams, corresponding to a MP of 0.6− 0.8.
In the Kitaev ladders these intermediate regions arise in
substantially large parameter regimes even for a small
number of coupled wires. To illustrate this, in Fig. 3
we present the structure of different states for a 7 × 35
lattice, in different regions of the phase diagram: (a) a
purely Majorana state (red, for µ = 1.15t, ∆ = 0.2t), (b)
a non Majorana state (blue, for µ = 1.65t, ∆ = 0.15t) (c)
an intermediate edge state (yellow, for µ = 1.8t, ∆ = 2t),
and (d) a fully non-topological state (blue, outside the 2D
topologically non-trivial phase µ = 4.2t, ∆ = 0.5t). Plot-
ted is the complex local Majorana polarization as a 2D
vector. Note that in the ‘pure’ Majorana state the MP
vector is fully aligned (‘ferromagnetic’), while in the fully
non-topological state it is locally very small, delocalized
in the bulk and disordered. For a ‘blue’ state inside the
topological phase, the MP is locally large, but it sums up
to zero. In the intermediate (‘yellow’) states it is localized
on the edges and shows locally a full Majorana character,
but its direction varies from site to site, making the sum
of the MP non-zero but finite.

When approaching the square system we see that the
MP is correctly recovering the boundaries of the phase
diagrams for bulk 2D systems, with a value close to 1/

√
2.

This value can be easily understood by noting that most
of the contribution comes from two corner MP vectors
of magnitude 1/2 each, perpendicular to each other (see
Fig. 4). Inside the 1d phase transition lines, denoted by
the full lines, the topology of the states is described in
Fig. 4(a) (the MP is localized at the corners), while in
the region between the 1D and 2D boundaries by the
structure in Fig. 4(b) (the MP is localized along the edge
of the system). This shows that the MP can capture the
topology of the 2D Majorana-like states, as well as their
origin, be it 1D or 2D bulk topology.

The formation of non-zero energy states which are lo-
cally Majorana but for which the direction of the MP
vector is varying spatially is in fact a generic feature for
all high energy states in ‘topological bands’, for exam-
ple the bands of Andreev bound states in topological SN
junctions (see the SI for a description of such states in
terms of the MP), or the bands of edge states in topolog-
ical 2D systems (see e.g. Ref. 37 and references therein).
Such bands, for which the lowest energy state is a Majo-
rana, can be thought of as topological in character, since
the higher energy states also show some large local Majo-
rana character, which is however not ‘ferromagnetic’, but
varies spatially. Here we have for the first time an appro-
priate tool to understand the topology and the structure
of such states. It would be interesting in the future to
study the properties and the usefulness for applications
of such quasi-Majorana states.
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FIG. 3. (Color online) The MP as a function of position
for a 7 × 35 open system: (a) a MBS (red) for µ = 1.15t,
∆ = 0.2t; (b) a non-MBS (blue) for µ = 1.65t, ∆ = 0.15t; (c)
an intermediate state (yellow) µ = 1.8t, ∆ = 2t; (d) a bulk
state for a topologically trivial system (blue) for µ = 4.2t,
∆ = 0.5t. The length of the arrows is proportional to the
MP, with a scale given by the (black) arrows on the right
hand side.
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FIG. 4. (Color online) The MP as a function of position for
a 31 × 31 open system for ∆ = 2t and (a) µ = 1.3t and (b)
µ = 3t.

IV. SPIN-FULL MODELS

Let us now consider a spin-full state written in the

Nambu basis: Ψ†j = {c†j↑, c
†
j↓, cj↓,−cj↑}, where c

(†)
jσ anni-

hilates (creates) a particle of spin σ at site j. The corre-
sponding wavefunction is ψTi : {uj↑, uj↓, vj↓, vj↑}. The

particle hole operator is C = eiζ σyτ yK̂, where K̂ is
the complex-conjugation operator, and ζ is an arbitrary
phase. We will use ~τ to denote the Pauli matrices in the
particle-hole subspace and ~σ as the Pauli matrices in the
spin subspace. A MBS, γ, is by definition a state which

satisfies C γ = eiζ̃ γ with ζ̃ an arbitrary phase.

Irrespective of which spin basis we choose, our test
becomes v∗jσ = −σ e2iφjσ ujσ and φjσ = φ must be both
spatially and spin independent in the region where the
Majorana is localized. Exactly as for the spinless case
this arbitrary phase, which cannot be physically fixed,
does not affect the properties of the Majorana state and
we can choose it in a convenient manner.

As before we can consider the local MP vector

〈Ψ| Cj |Ψ〉 = −2
∑
σ

σujσvjσ (3)

Note that the condition to have a Majorana state is un-
changed from the spinless case and is given in Eq. (1)

A. Generic spin-full model

We consider the one dimensional tight-binding Hamil-
tonian for a chain of N sites

H = −1

2

N−1∑
x=1

Ψ†x [tx + iασy] τ zΨx+1 + H.c. (4)

+

N∑
x=1

Ψ†x [−(µ− t)τ z −∆τx +Bn̂x · ~σσσ′ ] Ψx ,

tx is the nearest neighbor hopping strength which is al-
lowed to vary spatially, µ is the chemical potential, B is
an applied Zeeman field, ∆ is the s-wave superconduct-
ing pairing assumed to be induced by a proximity effect,
and α is the Rashba spin-orbit coupling. The magnetic
field direction is allowed to vary as a function of position:

n̂x = (cosϑx sinϕx, sinϑx sinϕx, cosϕx) . (5)

To exemplify the stability of the generalized MP we
focus on a very complicated system for which ϕx =
0.3π(j−1), ϑx = 0.1π(j−1), tx = t+0.2t tanh[(i−1)/N ],
µ = 0, N = 60, ∆ = 0.3t, α = 0.01t, and B = 0.4t. We
also add a specific realization of disorder to both the
onsite chemical potential and to the hopping tx

38. By
exactly diagonalizing our system we find the eigenvalues
and the eigenstates and we test that we have indeed a Ma-
jorana fermion forming. Thus in Fig. 5(a) we plot the MP
for the lowest energy state, which is very close to zero,
as a function of position; indeed we observe the ordered
‘ferromagnetic’ Majorana states forming in each half of
the wire. We have checked that, remarkably enough, this
state satisfies Eq. (1) even if many symmetries of the
problem are broken. In Fig. 5(b) we plot the MP for the
state corresponding to the second energy level, and we
see that the Majorana vector is fully disordered in this
case. We do not show it here but we have checked that by
plotting separately the MP for each individual spin that
the ‘ferromagnetic’ character is preserved, and that the
MP does not depend on the spin basis we have chosen.
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FIG. 5. (Color online) The MP as a function of position for
a disordered system with ϕx = 0.3π(j − 1), ϑx = 0.1π(j − 1),
tx = t + 0.2t tanh[(i − 1)/N ], µ = 0, N = 60, ∆ = 0.3t,
α = 0.01t, B = 0.4t. Panel (a) shows the lowest energy
Majorana state and (b) the second energy state.
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FIG. 6. (Color online) Local Majorana polarization as a
function of position for an SN junction with ϕx = ϑx = 0,
tx = t = 1, µ = 0, α = 0.2t, B = 0.5t, N = 40, and
∆x>20 = 0.4t in the S region and ∆x≤20 = 0 in the N re-
gion. (a) shows the lowest energy Majorana state and (b)
the next energy state an ABS. The MBS contribution at the
superconductor edge near x ≈ 1, has been scaled down by
1/4 relative to the extended Majorana in the N region so that
they can be shown in the same figure.

B. The Majorana polarization applied to SN
junctions

We also present the MP for the two lowest energy
states in a superconducting-normal (SN) junction: the
zero energy Majorana state and the first Andreev bound
state (ABS). In Fig. 6 we focus on the example ϕx =
ϑx = 0, tx = t = 1, µ = 0, α = 0.2t, B = 0.5t, N = 40,
and ∆x>20 = 0.4t in the S region and ∆x≤20 = 0 in
the N region. We see that the lowest energy state ex-
hibits a localized Majorana in the SC and an extended
uniform Majorana in the normal state, as predicted in.1

More interestingly, the first ABS, while showing locally
a large MP, is not a Majorana, as this polarization oscil-
lates along the wire and we cannot find any region R over
which its integral can be equal to its integrated density.
The next higher energy states all show a similar behavior,
with increasing numbers of nodes in the MP oscillations.

V. RELATION OF GENERALIZED MP TO THE
ORIGINAL MP DEFINITION

To see the effects of redefining the MP, in Fig. 7 we
show the normalized MP in both original form introduced

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q

C
,
M

,
G

FIG. 7. (Color online.) Total Majorana polarization of the
lowest energy state inside R, the left half of the wire, as a
function of the precession q. Here ϕx = π/2(x − 1), ϑx =
2πq(x − 1), tx = t, µ = 3t, α = 0.2t, B = 2t, N = 80, and
∆x = 0.5t. Solid (black) lines show the updated form, C, and
the dashed (red) lines show the original form M . The dotted
(green) lines show, G, the gap renormalized by the gap at
q = 0.

in Ref. 1, and in the corrected form given in the present
work, for the lowest energy state as a function of the
precession speed q where ϑx = 2πq(x − 1), see Eq. (4).
We compare C as defined here to the form of the MP in
Ref. 1 given by

M =

∣∣∣∑j∈R〈Ψ|Mj |Ψ〉
∣∣∣∑

j∈R〈Ψ|r̂j |Ψ〉
, (6)

where1

Mj = (τ yσy + iτxσy) r̂j . (7)

Although both quantities show a suppression close to the
points where the gap closes, the generalized MP form
captures correctly the formation of the Majorana states
and is equal to 1 when such states form, in contrast with
the original MP form which stays finite but not equal
to 1 except for a few special points. The position of the
topological phase transitions given by the generalized MP
criterion is in agreement with the points at which the gap
closes. To find the bulk gap we use the following heuristic
formula:

G =
ε2(q)− `(q)

ε2(q = 0)− `(q = 0)
, (8)

where ε2(q) is the second positive energy level and `(q)
is the mean level spacing.

This system is generically in the D class, however it
falls into the BDI class at three points: q = 0, 1/2, 1. It is
precisely at these three points at which the old Majorana
polarization can be used. Note that there are other BDI
realizations where the original MP formula in Eq. (7)
would however not work.

Note also that for a system with a uniform phase gradi-
ent and a total phase difference of π39 the generalized MP
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introduced here would correctly recover the formation of
two Majorana fermions with opposite polarization, while
using the old MP such as in Ref.39 one would obtain
two Majorana fermions with the same polarization. The
present form is clearly accurate in capturing the conser-
vation of the MP, however, as detailed above, it cannot
capture an overall phase factor, so it cannot keep track
of the SC phase.

VI. CONCLUSIONS

We present a generalized definition for the Majorana
polarization describing locally the Majorana character of
a given state. We apply it to a 2D finite-size Kitaev sys-
tem and to a 1D topological SC wire. We show that the
spatial structure of our local order parameter is a suf-
ficient criterion to distinguish a Majorana state from a
non-Majorana state and that the criterion of small en-
ergy is not sufficient to prove the Majorana character of
a state. For example, even for some infinitesimally small
energies, the MP may show spatial oscillations which do
not allow one to isolate a spatial region over which the
total MP integrates to 1 (the characteristic of a full Ma-
jorana state). The only alternative is a calculation of the
bulk invariant or a scaling analysis of the energies with
system length, neither of which can be in general easily
implemented.

The MP is not directly measurable in any current ex-
periment, since the MP is a Majorana analogue of the
particle density of states, and as such the necessary probe
would require the injection of an isolated Majorana into
the system. However it is an extraordinary versatile and
we believe indispensable theoretical tool that allows one
to determine the topological character of a given system
based on the form of its eigenstates. This is of particu-
lar interest for example for determining the topological
character of fully open systems for which one does not
have other appropriate tools. One interesting observa-
tion about such systems which can be obtained solely
using the MP, is the existence of non-Majorana topolog-
ical states which are locally Majorana-like but cannot be
integrated to a full Majorana state over a finite region of
the system. The formation of these states is generally de-
scribed by the bulk topological phase diagram of the sys-
tem. Since the formation of these states depends strongly
on the geometry, it would be crucial to investigate their
formation in quasi-3D topological wires, to check that,
when taking into account realistic parameters, true Ma-
jorana states actually can form in InAs and InSb wires. It
would be also interesting to study the usefulness of such
quasi-Majorana or precursor Majorana states for quan-
tum computation, and their braiding characteristics.

ACKNOWLEDGMENTS

This work is supported by the ERC Starting Indepen-
dent Researcher Grant NANOGRAPHENE 256965. We
thank Pascal Simon, Marine Guigou, and Juan Manuel
Aguiar for interesting discussions.

Appendix A: Topological invariant of quasi-1D
Kitaev chain

We start from a quasi-one-dimensional system with
periodic boundary conditions (PBCs) along the bulk x
direction and open boundary conditions (OBCs) along
the finite y direction, described by Eq. (2) of the main
text. After a Fourier transform along x we can write the

Hamiltonian as H =
∑
k Ψ†kH(k)Ψk with

H(k) =

(
f(k) Lk
L†k −f(k)

)
, (A1)

where

f(k) =


f(k) −t 0 0 . . .
−t f(k) −t 0 . . .
0 −t f(k) −t . . .
0 0 −t f(k) . . .
...

...
...

...
. . .

 , (A2)

and

Lk =


Lk i∆ 0 0 . . .
−i∆ Lk i∆ 0 . . .

0 −i∆ Lk i∆ . . .
0 0 −i∆ Lk . . .
...

...
...

...
. . .

 . (A3)

Finally f(k) = −2t cos[k]− µ and Lk = −2i∆ sin[k].
In order to calculate the topological invariant we can

calculate the parity of the negative energy bands at the
time reversal invariant (TRI) momenta, Γ1 = 0 and Γ2 =
π. Here the parity refers specifically to a quantity which
commutes with the Hamiltonian, but only at the TRI
momenta, and anti-commutes with C.32 By transforming
to the basis in which the parity operator is

PNy =

(
INy 0
0 −INy

)
, (A4)

then the Hamiltonian at the TRI momenta is, in this
basis,

H̃(Γ̂i) =

(
H̄(Γ̂i) 0

0 −H̄(Γ̂i)

)
. (A5)

H̃(k) = U†H(k)U with U the rotation between Eqs. (A1)
and (A5). For the Kitaev chains under consideration the
rotation is

U =
1 + τx

2
INy +

1− τx

2
ĪNy , (A6)
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where ĪNy is the Ny × Ny matrix given by [̄INy ]nn′ =
δn,Ny+1−n′ . The topological invariant is

δ = sgn det H̄(Γ̂1) det H̄(Γ̂2) . (A7)

When δ = −1 there is band inversion, i.e. the parity
switches between TRI momenta an odd number of times
and the system is topologically non-trivial. For δ = 1
the system is topologically trivial. For more information,
and how to generalize this calculation to a spinful s-wave
chain see Ref. 36.

Appendix B: Relation of MP to the chiral Majorana
character

The local chiral Majorana character, V, introduced in
Ref. 20, can be written for any BDI system, but not
for any other symmetry class. This operator plays for
these particular systems a similar role to the particle-hole
operator in the present work. However, it has additional
properties related to the fact that it cannot be written
for a D or DIII topological superconductor (TS). Here we
describe the relation between the MP and the previously
defined chiral Majorana character.

A spin-full state in the Nambu basis, Ψ†j =

{c†j↑, c
†
j↓, cj↓,−cj↑}, where c

(†)
jσ annihilates (creates) a

particle of spin σ at site j, can be described by the wave-
function ψTi = {uj↑, uj↓, vj↓, vj↑}. We will write

ψj =


|uj↑| eiφj↑−iθj↑
|uj↓| eiφj↓−iθj↓
|vj↓| eiφj↓+iθj↓

|vj↑| eiφj↑+iθj↑

 , (B1)

and define φjδ = φj↑ − φj↓ and θjδ = θj↑ − θj↓.
In the most general case for a spinful BDI model the

chiral Majorana character is

Vj = 2uj↓v
∗
j↓
[
eiα cos2[β/2] + e−iα sin2[β/2]

]
−2uj↑v

∗
j↑
[
e−iα cos2[β/2] + eiα sin2[β/2]

]
(B2)

+2
(
uj↑v

∗
j↓ − uj↓v∗j↑

)
i sin[α] sin[β] .

The angles α and β can be calculated from any two,
non-parallel, spin vectors at different spatial points in

the system. Writing these as ~S1,2, then the angles are
defined by20

(sinα cosβ, cosα, sinα sinβ) =
~S1 × ~S2

|~S1 × ~S2|
. (B3)

As already noted the Majorana states localized at the
boundaries of the system have either Vj > 0 or Vj < 0
and these are well separated, much like the MP used
here. This can be explicitly checked by plotting Vj as
a function of position for the eigenstates. An arbitrary
but homogeneous superconducting phase of κ requires
the transformation V → V eiκ.

We know that for any Majorana |〈γ| C |γ〉| = 1, and
equally that ∑

j

|〈γ| Vj |γ〉| = 1 . (B4)

It is then a simple task to construct a unitary operator
which has this property also for a D or DIII TS by al-
lowing ourselves to locally correct for the operator using
a spin rotation. The above spin-rotation can be under-
stood as rotating the system to a reference frame in which
Syj = 0, for a particular state. By locally implementing
such a rotation, it can be seen that any zero energy state
will satisfy ∑

j

∣∣∣〈Ψ|Ṽj |Ψ〉∣∣∣ = 1 , (B5)

where

〈Ψ|Ṽj |Ψ〉 = 2(uj↓v
∗
j↓ eiαj −uj↑v∗j↑ e−iαj )

= 2 e−i(θj↑+θj↓)(|uj↓vj↓| eiθjδ eiαj

−|uj↑vj↑| e−iθjδ e−iαj ) , (B6)

and

αj = − tan−1

[
Syj
Sxj

]
= φjδ − θjδ . (B7)

Here Sj,y,zj are the local particle spin expectation values

of the state |Ψ〉. Naturally such a definition no longer al-
lows one to make any comparison across states or space.
For a BDI system this transformation can be performed
globally in an appropriately chosen spin basis. Eq. (B5)
is referred to as the chiral density. Note however that
although all Majorana states will have a chiral Majorana
density of one, not all states with a chiral density close
to one must be Majorana states, or even low energy lo-
calized states. The PH operator allows us to do better
at identifying the Majorana states by also defining the
appropriate local phase for a state in a way which is in-
dependent of the spin basis used:

〈Ψ| Cj |Ψ〉 = 2 e−i(φj↑+φj↓)(|uj↓vj↓| eiφjδ −|uj↑vj↑| e−iφjδ) .
(B8)

This local phase is crucial to the arguments and calcula-
tions used in the main text.
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