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Coarsening dynamics of zero-range processes

Claude Godrèche and Jean-Michel Drouffe

Institut de Physique Théorique, Université Paris-Saclay, CEA and CNRS,
91191 Gif-sur-Yvette, France

Abstract. We consider a class of zero-range processes exhibiting a condensation
transition in the stationary state, with a critical single-site distribution decaying
faster than a power law. We present the analytical study of the coarsening
dynamics of the system on the complete graph, both at criticality and in the
condensed phase. In contrast with the class of zero-range processes with critical
single-site distribution decaying as a power law, in the present case the role
of finite-time corrections are essential for the understanding of the approach to
scaling.

1. Introduction

While the static properties of zero-range processes (ZRP) are by now well
understood [1, 2, 3, 4], dynamical properties are far less investigated. This is all
the more true when the model exhibits a condensation transition in the stationary
state. In such instances, of particular interest is the long-time evolution of the system
starting from a homogeneous disordered initial condition. In the scaling regime, a
coarsening phenomenon takes place, i.e., a group of sites, whose number decreases,
progressively become more populated, a process followed in the late-time regime by
the appearance of a condensate. A few studies have been devoted in the past to the
coarsening dynamics of the class of ZRP with a single-site critical distribution decaying
as a power law [5, 6, 7, 8]. These studies yield analytical results when the dynamics
takes place on the complete graph and in the thermodynamical limit [5, 6, 7]. In
contrast, the knowledge of the dynamics of the one-dimensional system only relies on
numerical work and heuristic arguments [7, 8]. When the density is just equal to the
critical density one rather speaks of critical coarsening, which is the process by which
dynamics progressively establishes the critical state [6, 7].

The present work is a sequel of [7] and of the related works [5, 6]. Following
the same line of thought, we investigate the dynamics of a different class of ZRP, for
which the critical single-site distribution at stationarity decays faster than a power
law. Again, analytical results can be obtained on the complete graph and in the
thermodynamical limit. The novelty of this case comes from the fact that, though
the asymptotic scaling functions associated to the single-site distributions are simpler
than in the power-law case, the approach to scaling is more complicated. The analysis
of this phenomenon is the main goal of the present work.

We proceed as in [7], analysing the coarsening dynamics of the system, first
at criticality, then in the condensed phase. For both cases, we give an analytical
treatment of the equations describing the temporal evolution of the single-site
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occupation probability in the continuum scaling limit. For the critical phase, finite-
time corrections to scaling can be explicitly determined. The parallel study of the
condensed phase turns out to be much harder. We use a semi-classical analysis of the
differential equation describing the coarsening regime, in order to study the corrections
to scaling.

The same model was recently investigated in [9], with focus on coarsening in the
condensed phase. We shall review this work in the discussion at the end of the present
paper. A list of mathematical references on related issues can be found in [9].

2. Definition of the model

Consider a finite connected graph, made of L sites, i = 1, . . . , L. At time t, on each
site we have Ni(t) indistinguishable particles such that

L∑
i=1

Ni(t) = N. (2.1)

The dynamics of the system is given by the rate W (d, a, k, `) at which a particle leaves
the departure site with label d, containing Nd = k particles, and is transferred to the
arrival site with label a containing Na = ` particles. By definition of a ZRP, this
hopping rate does not depend on the occupation of the arrival site and takes the
simple form

W (d, a, k) = wd,auk, (2.2)

where wd,a accounts for diffusion from site d to site a and uk only depends on the
occupation of the departure site. In the present work we consider the complete graph
where, by definition, all sites are connected. We take wd,a = 1/L, i.e., all sites are
equivalent and the system is spatially homogeneous. We choose the rate

uk = 1 +
b

kσ
, (2.3)

where 0 < σ < 1 is an arbitrary exponent. This form of the rate appeared in the past
in several publications, such as [3, 10, 11]. It satisfies the criterion for condensation
to occur [12] for any value of b. In contrast, for the ZRP with rate uk = 1 + b/k,
hereafter referred to as the σ = 1 case, condensation only occurs for b > 2.

We denote a configuration of the system at time t by {ni} ≡ (n1, n2, . . . , nL),
where the ni = 0, 1, 2, . . . are the values taken by the occupation numbers Ni(t). Thus,
the complete knowledge of its dynamics involves the determination of the probability
P({ni}) of finding the system in the given configuration {ni} at time t. Hereafter we
will focus our attention on a marginal of this distribution, namely on the probability
of finding k particles on the generic site i = 1, that, for short, we shall name the
(single-site) occupation probability,

fk(t) = P(N1(t) = k) = 〈δ(N1(t), k)〉 (2.4)

=
∑

n1,...,nL

δ(n1, k)P({ni}). (2.5)

Conservation of probability and of density implies∑
k≥0

fk(t) = 1, (2.6)

∑
k≥1

k fk(t) = 〈N1(t)〉 =
N

L
. (2.7)
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In the thermodynamic limit (N → ∞, L → ∞, with fixed density ρ = N/L) the last
equation yields ∑

k≥1

k fk(t) = ρ. (2.8)

Let us remind some well-known results on the stationary state of the ZRP [3, 4, 8].
The weight of a configuration is given by

P({ni}) =
1

ZL,N

L∏
i=1

pni , (2.9)

where

p0 = 1, pk =
1

u1 . . . uk
, (2.10)

and where the normalisation factor ZL,N reads

ZL,N =
∑
{ni}

L∏
i=1

pni δ

(
L∑
i=1

ni, N

)
. (2.11)

For the rate (2.3) equation (2.10) leads to the estimate, for k � 1,

pk ∼ exp

(
−b

k∑
`=1

1

`σ

)
∼ exp

(
− b

1− σ
k1−σ

)
. (2.12)

In the thermodynamic limit, this ZRP is condensing whenever the density is larger
than the critical density (see figure 1),

ρc =

∑
k≥1 k pk∑
k≥0 pk

. (2.13)

The excess density ρ− ρc corresponds to the condensate. At the critical density, the
occupation probabilities

fk,eq =
pk∑
k≥0 pk

(2.14)

decay as the stretched exponential law (2.12). Simple derivations of the above results
can be obtained in the framework of the next section.

3. Master equation

From now on we consider the thermodynamic limit of the system on the complete
graph. In this mean-field geometry the temporal evolution of the occupation
probabilities fk(t) is explicitly given by the master equation

dfk(t)

dt
= uk+1 fk+1 + ūt fk−1 − (uk + ūt)fk (k ≥ 1), (3.1)

df0(t)

dt
= u1 f1 − ūtf0, (3.2)

where

ūt =

∞∑
k=1

ukfk(t) (3.3)
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Figure 1. Critical density ρc for the ZRP (2.3) for two values of σ.

is the rate at which a particle arrives on site number 1 from any other site. It is the
equation for a biased random walk for N1 (or birth and death process) on the positive
integers k = 0, 1, . . .. The rates of a jump to the right (N1 = k → N1 = k + 1) or to
the left (N1 = k → N1 = k− 1) are respectively given by ūt and by uk. The equation
for f0(t) is special because one cannot select an empty site as a departure site, nor
can N1 be negative. This random walk has the peculiar property of being constrained
to have its average position fixed at the value ρ (see (2.8)).

The form of the master equation (3.1) is a direct consequence of the mean-field
geometry. It has the structure of the master equation for two sites [4], where the
role of the second site is here played by the ensemble of all sites, through the self-
consistency condition (3.3). This condition implies that (3.1) is non linear because the
rate ūt is itself a function of the fk(t). Hence there is no explicit solution of the master
equation in closed form. Yet one can extract from (3.1) an analytical description of
the dynamics at long times, both at criticality and in the condensed phase, as will
be seen in the next sections. This master equation, (or closely related equations),
appeared in previous works [5, 6, 7] (see also [13]).

In the stationary state we have

lim
t→∞

ūt =
∑
k≥1

ukfk,eq = z, (3.4)

introducing the short notation z for the limit. Setting the left side of (3.1) and (3.2)
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to zero (ḟk = 0) we obtain

fk+1,eq

fk,eq
=

z

uk+1
, (3.5)

which expresses the detailed balance condition at equilibrium. So

fk,eq = zkpkf0,eq, (3.6)

where the pk are given by (2.10) and f0,eq is fixed by the normalisation (2.6). Hence
finally,

fk,eq =
zkpk∑
k≥0 z

kpk
. (3.7)

Let P (z) denote the generating series of the pk appearing in the denominator. The
second sum rule (2.8) imposes that

ρ =

∑
k≥1 z

kkpk∑
k≥0 z

kpk
=
zP ′(z)

P (z)
. (3.8)

This equation determines z as a function of the density. With the choice (2.3), the pk
decay as (2.12), implying that the maximal value of the right side of (3.8), reached at
z = 1, is finite. This finite value is the critical density (2.13),∑

k≥1

kfk,eq = ρc. (3.9)

We thus recover well-known results of the statics of the ZRP, either in the canonical
or in the grand canonical formalisms, which are equivalent in the thermodynamical
limit [3, 8].

Here we shall always keep time finite, even if very large, meaning that we are
investigating the non-stationary regime, where the system stays homogeneous (in
average, not configuration by configuration), allowing to follow the establishement
of critical order, or to follow precursor effects of condensation. Let us emphasize
that (3.1) can only account for the situation where all sites play the same role. In
other words, in the presence of a condensation transition, i.e., when ρ > ρc, this
equation only accounts for the regime of the formation of the condensate. Otherwise
stated, in the thermodynamical limit, the non-stationary regime never ends, since the
scale of time beyond which the stationary regime begins diverges with the system size
L [7, 11].

4. Critical coarsening

We consider the ZRP with hopping rate uk (2.3), evolving on the complete graph from
an homogeneous disordered initial condition specified by fk(0). For instance, initially
particles are distributed at random amongst sites, with an initial density ρ = ρc, i.e.,
we consider a system with a Poissonian initial distribution of occupation probabilities,

fk(0) = e−ρ
ρk

k!
. (4.1)

We investigate the critical coarsening process, i.e., the process by which dynamics
progressively establishes the critical state. The line of reasoning is similar to that
followed in [6, 7].
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Figure 2. Critical ratio rk(t) = fk(t)/fk,eq for t = 2048, 4096, . . . , 32768,
obtained by numerical integration of the discrete master equation (3.1).
Here σ = 0.6, b = 1.

Since the average rate ūt at which a particle leaves a generic site reaches its
equilibrium value z = 1 at large times, we set

ūt = 1 + ηt, (4.2)

where the small scale ηt will be determined hereafter. Morevover, we are led to
investigate the dynamics according to two time-occupancy regimes, as in [6, 7]. These
regimes are defined as follows.

(I) k fixed, t large In this situation there is convergence to the equilibrium fluid phase.
Hence we set

fk(t) = fk,eq(1 + wk(t)), (4.3)

with fk,eq given by (2.14) and where the wk(t) are proportional to ηt as demonstrated
below.

(II) k and t are simultaneously large This is a regime where scaling is expected, so
we look for a solution to (3.1) of the form

fk(t) = fk,eq g(x, t), x = k εt, (4.4)
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Figure 3. Differences rk(t)−rk+1(t) for t = 2048, 4096, . . . , 32768, obtained
from the data of figure 2.

where εt is a small scale, to be determined, x is the scaling variable, and g(x, t) is
expected to converge to the scaling function g(x) in the limit of large times.

The present situation is closely related to critical coarsening for a ferromagnetic
spin system quenched from infinite temperature down to Tc [14, 15, 16]. In such
circumstances, spatial correlations develop in the system, just as in the critical state,
but only over a length scale which grows like t1/zc , where zc is the dynamic critical
exponent. On scales smaller than t1/zc the system appears critical, while on larger
scales the system is still disordered. For instance, for Ising spins, σ = ±1, the equal-
time correlation function C(r, t) = 〈σ0(t)σr(t)〉 scales as

C(r, t) ≈ r−2β/νg
( r

t1/zc

)
, (4.5)

where β and ν are the usual static exponents. The scaling function g(x) goes to a
constant as x→ 0, while it falls off very rapidly when x→∞.

Here, anticipating on what follows, starting from a homogeneous disordered initial
condition, for a large but finite time t, and for k much smaller than an ordering size of
order t1/z (where the exponent z is determined hereafter), the system looks critical,
i.e., the distribution fk(t) has essentially converged toward the equilibrium distribution
fk,eq. To the contrary, for k � t1/z, the system still looks disordered, i.e., the fk(t)
fall off very fast. This is illustrated by figure 2, obtained by numerical integration
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of (3.1), which depicts the ratio

rk(t) =
fk(t)

fk,eq
. (4.6)

As time increases, this ratio exhibits a plateau of increasing length, reflecting the fact
that the system equilibrates. Then this ratio falls down very fast.

The agenda is now to determine the quantities ηt, wk(t), εt, g(x, t), using the
sum rules (2.6) and (2.8), the master equations (3.1) and (3.2), and finally the
assumptions (4.3) and (4.4). We proceed as follows.

4.1. Time-occupancy regime (I)

The expression (4.3) carried into (3.1), (3.2) imposes the left side ḟk to vanish because
it is proportional to ẇk, which is negligible compared to the right side of (3.1), (3.2).
We thus obtain the quasi-stationary condition

fk+1,eq

fk,eq

1 + wk+1

1 + wk
=

1 + ηt
uk+1

, (4.7)

which formally resembles the detailed balance condition (3.5) and yields wk+1−wk =
ηt. Setting wk = vkηt we obtain

vk = v0 + k, (4.8)

where v0 is determined below (see (4.37)).

4.2. Time-occupancy regime (II)

We now turn to the differential equation obeyed by g(x, t). The ratio rk(t) =
fk(t)/fk,eq satisfies the equations

drk(t)

dt
= rk+1 + ūt uk rk−1 − (ūt + uk)rk (k ≤ 1), (4.9)

dr0(t)

dt
= r1 − ūtr0. (4.10)

Using (4.4), the left side of (4.9) becomes

dg(x, t)

dt
= g′

dx

dt
+ ġ = g′kε̇t + ġ, (4.11)

and the right side yields

rk+1 + rk−1 − 2rk −
(
ηt +

b

kσ

)
(rk − rk−1) + ηt

b

kσ
rk−1

≈ ε2t g′′ −
(
ηt
εσt

+
b

xσ

)
ε1+σt g′ + ηtε

σ
t

b

xσ
(g + · · ·). (4.12)

As will be shown below, the small scale ηt is decaying exponentially fast. Dropping
the corresponding terms in the equation, we obtain the partial differential equation

ġ = ε2t g
′′ −

(
b

xσ
ε1+σt + x

ε̇t
εt

)
g′. (4.13)

In order to equate the powers of εt in the second term of the right side, we set, (see
also (5.17)),

εt = t−1/(1+σ). (4.14)
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We finally obtain the equation obeyed by g(x, t),

tġ = t−a g′′ +

(
x

1 + σ
− b

xσ

)
g′, (4.15)

with

a =
1− σ
1 + σ

. (4.16)

By setting σ = 1, we recover the equation found in [6, 7] for the case uk = 1 + b/k
(see (A.3)), up to the left side of (4.15), which was omitted in these references, since
the finite-time corrections need not be considered. We now analyse equation (4.15).

(a) Scaling function At large times, the asymptotic scaling function

g(x) = lim
t→∞

g(x, t) (4.17)

satisfies the equation(
x

1 + σ
− b

xσ

)
g′(x) = 0. (4.18)

Hence g(x) = 1 as long as the factor in parenthesis does not vanish. This occurs for

x = x0 = [b(1 + σ)]1/(1+σ). (4.19)

For x > x0, g(x) = 0. The limiting scaling function is thus a discontinuous curve,
depicted in figure 4. In contrast, as can be seen on figure 4, at finite time the solution
of (4.15) is a smooth curve, that we now investigate.

Remark Setting σ = 1 in (4.19) yields x0 =
√

2b. This prediction matches the result
obtained for the ZRP with rate uk = 1 + b/k in the limit b → ∞ [6]. Indeed, in this
limit, the scaling function g(x) becomes a discontinuous front at position

√
2b, as can

be seen on its explicit expression (A.4).
This matching between the two ZRP (corresponding respectively to the rates uk =
1 + b/kσ and uk = 1 + b/k) can be informally summarized as

lim
σ→1

ZRPσ<1 ∼ lim
b→∞

ZRPσ=1. (4.20)

This property can be intuitively understood by noting that, in the limit b → ∞, the
decay of the pk ∼ k−b of the second ZRP (with σ = 1) is formally faster than a power
law, thus falling into the class of the first ZRP (with σ < 1). The same matching
will be encountered when investigating coarsening in the condensed phase (see the
comment below (6.28)).

(b) Finite-time corrections Consider, for a while, equation (4.15) without its left side.
This yields immediately

−g′(x, t) ∝ e−t
aψ(x), ψ(x) =

∫
dx

(
x

1 + σ
− b

xσ

)
. (4.21)

It turns out that this expression does not account faithfully for the solution of the
master equation (3.1) as is demonstrated by what follows. In other words, in order to
account for the correct finite-time corrections to the scaling function g(x), both terms
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tġ and t−ag′′ should be kept. However (4.21) puts us on the path of the correct ansatz
for the solution of (4.15). Let us set

−g′(x, t) ∝ e−t
aϕ(x), (4.22)

where ϕ(x0) = 0, since g′(x, t) peaks at x0 when t → ∞. If we substitute (4.22)
in (4.15) we find a differential equation for the function ϕ(x),

ϕ′ + a
ϕ

ϕ′
=

x

1 + σ
− b

xσ
. (4.23)

This differential equation does not seem to be of a known type [17]. Nevertheless the
behaviours of ϕ(x) at x→ 0 or x→∞ can be predicted,

ϕ(x) ≈
x→0

ϕ(0)− bx1−σ

1− σ
, ϕ(x) ≈

x→∞

x2

4
. (4.24)

A plot of ϕ(x), obtained by a numerical integration of (4.23), is given in figure 6,
which is in complete agreement with the data coming from the numerical integration
of (3.1), as will be commented later.

We can perform a local analysis of the behaviour of g′(x, t) around x0, using the
expansion

ϕ(x) ≈ 1

2
ϕ′′(x0)(x− x0)2. (4.25)

Cast into (4.23), we obtain the relation

ϕ′′(x0) = 1− a

2
. (4.26)

Since, at large times, g(0, t)→ 1, we impose the normalisation∫ ∞
0

dx g′(x, t) = −1. (4.27)

So (4.22) yields

g′(x, t) ≈ −
√

(1− a/2)ta

2π
e−(1−a/2)t

a(x−x0)
2/2. (4.28)

Hence

g(x, t) ≈ −
∫ ∞
x

du g′(u, t) =
1

2
erfc

√
(1− a/2) ta/2(x− x0)√

2

=
1

2
erfc ξ, (4.29)

defining the new scaling variable ξ as

ξ =
ta/2(x− x0)√

2/(1− a/2)
=

k − ktyp√
2t/(1− a/2)

, (4.30)

and where the typical location of the front depicted in figure 2 is

ktyp = x0t
1/(1+σ). (4.31)

So, the front moves more rapidly (as t1/(1+σ)) than it widens (as t1/2). The difference
between the two exponents is

1

1 + σ
− 1

2
=
a

2
, (4.32)

which is precisely the exponent appearing in the scaling variable ξ. To summarize, the
bulk of the function g(x, t) is given by (1/2) erfc ξ, hence −g′(x, t) is a Gaussian, and
the large deviations of the latter are given by (4.22), where ϕ(x) is the large-deviation
function.



Coarsening dynamics of zero-range processes 11

Remark For k and t large, using the results above, we get fk(t) ∼ e−k
2/(4t), as for

the case uk = 1 + b/k, see Appendix.

0 0.5 1 1.5 2 2.5 3x
0

0.2

0.4

0.6

0.8

1

g(
x,
t)

2048
4096
8192
16384
32768
g(x)

Figure 4. Function g(x, t) against x for t = 2048, 4096, . . . , 32768, obtained
from the data of figure 2. The discontinuous curve is the limiting scaling
function g(x). The discontinuity is at x0 = (b(1 + σ))1/(1+σ), i.e., x0 =
1.341 . . . with σ = 0.6, b = 1.

4.3. Exact numerical results

We now compare the theoretical predictions above to the results of numerical
integrations of the discrete master equation (3.1).

(i) Figure 2, already commented upon above, depicts rk(t) for the five different times
t = 2048, 4096, 8192, 16384, 32768, for σ = 0.6, b = 1.

(ii) Figure 3 depicts the forward differences, rk(t)− rk+1(t), of the previous data.

(iii) Figure 4 depicts the data of figure 2 plotted against x, i.e., rk(t) ≈ g(x, t). The
discontinuous curve is the limiting scaling function g(x).

(iv) Figure 5 depicts the derivative −g′(x, t) obtained by plotting the data of figure 3
against x. The location of the maximum is moving towards x0 = 1.341.... The
successive curves peak as ta/2 towards the limiting function δ(x− x0).

(v) Figure 6 gives a comparison between the theoretical prediction for ϕ(x), obtained
by a numerical integration of (4.23), with the results obtained from the data of
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Figure 5. Function −g′(x, t) for t = 2048, 4096, . . . , 32768, obtained from
the data of figure 4.

figure 4, using the definition (4.22). Note the perfect collapse of the latter onto a
master curve, as well as their adequation with the former.

(vi) Figure 7 and 8 depict g(x, t) and −g′(x, t) against ξ, respectively, demonstrating
the convergence of the data towards the theoretical prediction (4.29) and its

derivative e−ξ
2

/
√
π.

4.4. Using the sum rules

Taking into account the respective contributions of the two time-occupancy regimes (I)
and (II), the sum rules (2.6) and (2.8) lead respectively to the following relationships,

0 =
∑
k≥0

(fk(t)− fk,eq) ≈ ηt(v0 + ρc)− I0, (4.33)

and

0 =
∑
k≥1

k(fk(t)− fk,eq) ≈ ηt(v0ρc + µc)− I1, (4.34)

where µc = 〈N2
1 〉 =

∑
k2fk,eq, and where the integrals I0 and I1 read

I0 =

∫ ∞
0

dk fk,eq(1− g(kεt, t)), (4.35)
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Figure 6. Comparison between the theoretical prediction for the large-
deviation function ϕ(x) given by (4.23) (dashed) with the results obtained
from the data of figure 5, using the definition (4.22). These data have been
shifted to x0.

I1 =

∫ ∞
0

dk k fk,eq(1− g(kεt, t)). (4.36)

The integral I0 is negligible compared to I1 since the integrand of the latter bears an
additional factor k, which is large. So, comparing (4.33) and (4.34), we conclude that

v0 + ρc = 0. (4.37)

So the proportionality constant between ηt and I1 in (4.34) is the variance µc − ρ2c .
We can now address the question of the time dependence of ηt. We have seen

that in regime (I) (for k fixed, t→∞) rk+1 − rk ≈ ηt. On the other hand, in regime
(II), for x→ 0, we have rk+1−rk ∼ g′(0, t). Since a matching mechanism between the
two time-occupancy regimes (I) and (II) should take place, it is natural to suppose
that

ηt ∼ e−t
a ϕ(0). (4.38)

This result has been checked numerically. Looking at (4.34), we infer that

ηt ∼ I1 ∼ e−t
a ϕ(0). (4.39)
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Figure 7. Same data as in figure 2, against scaling variable ξ defined
in (4.30), compared to the bulk scaling function (1/2) erfc ξ (dashes).

5. Coarsening dynamics in the condensed phase

In this section we describe the dynamics of the ZRP in the condensed phase. As
above, the system evolves from a homogeneous disordered initial condition, given e.g.
by (4.1), now with an initial density ρ > ρc.

5.1. Time-occupancy regimes

Figure 9, obtained by numerical integration of the master equation (3.1), depicts
kfk(t) against ln k for increasing times. These curves exhibit two well separated
time-occupancy regimes: a first regime of convergence to equilibrium, before the dip,
then a second regime corresponding to the bumps shifting progressively to the right.
Rescaling k, as detailed below, we obtain figure 10 which indicates a slow convergence
to a limiting curve (dashes).

These observations can be formalized as follows. We still set

ūt = 1 + ηt, (5.1)

where the small scale ηt will turn out to be different from its critical counterpart (4.2),
and we investigate the dynamics according to two time-occupancy regimes, as for the
critical case.
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Figure 8. Same data as in figure 3 against ξ, compared to the Gaussian

e−ξ
2

/
√
π (dashes). This function is normalised to unity with respect to ξ.

(I) k fixed, t large In this situation there is convergence to the equilibrium fluid phase
and we still set

fk(t) = fk,eq(1 + wk(t)). (5.2)

By the same reasoning as for the critical case we find, with wk = vkηt, that

vk = v0 + k, (5.3)

with v0 given by (5.11), as demonstrated below.

(II) k and t are simultaneously large In the spirit of [6, 7] (see appendix), we look
for a solution of (3.1) of the form

fk(t) = ε2t g(x, t), x = kεt, (5.4)

where x is the scaling variable and εt is a small scale which will turn out to be given
again by (4.14). As in the critical case, g(x, t) is expected to converge, in the limit of
large times, to the scaling function g(x), to be determined. In [6, 7] the explicit time
dependence of g(x, t) was not taken into account because the finite-time corrections
were inessential.



Coarsening dynamics of zero-range processes 16

0 2 4 6 8
ln k

0

0.05

0.1

0.15

0.2

k 
f k(t)

200
400
800
1600
3200
6400
equilibrium

Figure 9. Product kfk(t) against ln k for t = 200, 400, . . . , 6400. The
dashed curve is the equilibrium distribution fk,eq. This figure substantiates
the separation between the two time-occupancy regimes (I) and (II). Here
σ = 1/2, b = 4, ρc ≈ 0.306, ρ = 20ρc.

5.2. Using the sum rules

We start by using (5.2) and (5.4) as well as the sum rules (2.6) and (2.8) in order to
derive (5.11) and (5.12). We proceed as follows. Let us mark the separation between
the two time-occupancy domains by the position of the dip k? clearly seen on figure 9.
The first sum rule (2.6) leads to

1 =

k?∑
k=0

fk,eq (1 + ηtvk) + ε2t

∞∑
k=k?

g(kεt, t), (5.5)

hence

ηt

k?∑
k=0

fk,eq(v0 + k) = −εt
∫ ∞
x?

dx g(x, t) +

∞∑
k=k?

fk,eq, (5.6)

where x? = k?ε
−1
t . We then let k? → ∞ and x? → 0. This is justified by the fact

that k? increases much slower in time than ε−1t , as a simple argument shows (see the
remark below). Thus

ηt(v0 + ρc) = −εt
∫ ∞
0

dx g(x, t). (5.7)
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Figure 10. Same as figure 9 against the scaling variable x. The asymptotic
dashed curve xg(x) (6.4) is normalised according to (5.12).

The second sum rule (2.8) yields

ρ =

k?∑
k=0

kfk,eq (1 + ηtvk) + ε2t

∞∑
k=k?

kg(kεt, t), (5.8)

hence

ρ−
k?∑
k=0

kfk,eq = ηt

k?∑
k=0

kfk,eq(v0 + k) +

∫ ∞
x?

dxxg(x, t) (5.9)

Thus

ρ− ρc = ηt(v0ρc + µc) +

∫ ∞
0

dxxg(x, t). (5.10)

Taken together and assuming, as shown below, that ηt � εt, these equations impose
the two constraints

v0 + ρc = 0, (5.11)

and

ρ− ρc =

∫ ∞
0

dxxg(x, t). (5.12)

Equation (5.11) determines v0, while (5.12) gives the normalisation of the function
g(x, t) that we know investigate.
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Remark In order to estimate the time dependence of k? we impose the derivative
of fk(t) with respect to k to vanish at this point. Using (2.12) and the fact that
g(x, t) ∼ xσ at large time (see section 6.1), we obtain

e−b k
1−σ
? /(1−σ) ∼ ε2+σt , (5.13)

hence

k? ∼ (ln t)1/(1−σ), (5.14)

which is well verified numerically.

5.3. Equation satisfied by g(x, t)

Inserted into (3.1) the scaling form (5.4) yields a linear differential equation for g(x, t).
Indeed (3.1) can be rewritten as

dfk(t)

dt
= fk+1 + fk−1 − 2fk + b

(
fk+1

(k + 1)σ
− fk
kσ

)
− ηt(fk − fk−1). (5.15)

Replacing the discrete derivatives of fk with respect to k by derivatives of g(x, t) with
respect to x, yields

ε̇tεt(2g + xg′) + ε2t ġ = ε4t g
′′ + ε3+σt

(
b

xσ
− ηt
εσt

)
g′ − ε3+σt

σb

x1+σ
g. (5.16)

We divide both sides by ε3+σt . Setting, as for the critical case,

εt = t−1/(1+σ), (5.17)

implies ε̇t/ε
2+σ
t = −1/(1 + σ). Finally setting

ηt = Aεσt , (5.18)

where it is understood that A is a function of t, we obtain the continuum equation

tġ = t−ag′′ +

(
x

1 + σ
−A+

b

xσ

)
g′ +

(
2

1 + σ
− σb

x1+σ

)
g, (5.19)

with definition (4.16) for the exponent a. For σ = 1, omitting the left side of (5.19) we
recover the equation corresponding to the ZRP with rate uk = 1 + b/k, see (A.7). For
this latter case, the term tġ would give a finite-time correction to the scaling function
g(x). This was not considered in [5, 6, 7] because the convergence to g(x) was very
fast.

Remark A heuristic argument confirming the relationship (5.18) between ηt and εt
is as follows. First, balancing ūt with uk yields k ∼ η−1/σt . Then, noting that k ∼ ε−1t
in the scaling region, (5.18) ensues.

6. Analysis of the continuum equation (5.19)

6.1. The scaling function

The stationary solution g(x) of (5.19), obtained by letting t→∞, satisfies the equation(
x

1 + σ
−A+

b

xσ

)
g′ +

(
2

1 + σ
− σb

x1+σ

)
g = 0, (6.1)
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which can be rewritten as

D(x)g′ +

(
D′(x) +

1

1 + σ

)
g = 0, (6.2)

where

D(x) =
x

1 + σ
−A+

b

xσ
. (6.3)

The solution of this equation is

g(x) ∝ 1

D(x)
exp

(
− 1

1 + σ

∫ x

0

du
1

D(u)

)
. (6.4)

If x→ 0 then D(x) ∼ x−σ, hence g(x) ∼ xσ. If x→∞ then D(x) ∼ x/(1 + σ), thus

g(x) ∼ 1

x
e−
∫ x

du/u ∼ x−2, (6.5)

and therefore
∫

dxxg(x) diverges. This therefore rules out the possibility for g(x) to
have a support extending to infinity.

Let us more generally discuss which value of the amplitude A is selected. Denoting
the value of x such that D(x) is minimum by

x0 = [b σ(1 + σ)]
1

1+σ , (6.6)

we have

D(x0) = A0 −A, (6.7)

where

A0 =
x0
σ
. (6.8)

Three cases are to be considered according to the sign of D(x0):

(i) D(x0) > 0, or A < A0,

(ii) D(x0) = 0, or A = A0,

(iii) D(x0) < 0, or A > A0.

Case (i) is necessarily ruled out since the support of g(x) would extend to infinity. In
case (iii) g(x) would vanish at x1, the first zero of D(x). As will be demonstrated
below, the selected solution is case (ii). For the latter, the asymptotic scaling function
g(x) has an essential singularity at x0,

g(x) ∼ e−2x0/((1+σ)(x0−x)), (6.9)

and vanishes for x > x0. The integral (6.4) is explicit when σ is rational. We plot
xg(x) for σ = 1/2 and b = 4 in figure 10, with the normalisation (5.12). Figure 10
also depicts xg(x, t) for several values of time. One observes slow convergence to the
asymptotic function xg(x), that we now analyse.
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6.2. A simplified form of (5.19)

Let us now analyse a simplified form of (5.19) where the left side, i.e., the tġ term, is
omitted. We rewrite the equation for convenience,

γg′′ +

(
x

1 + σ
−A+

b

xσ

)
g′ +

(
2

1 + σ
− σb

x1+σ

)
g = 0, (6.10)

where we have set γ = t−a. Since the time dependence of g(x, t) only enters through
the small parameter γ, we denote the solution of (6.10) by g(x, γ). The constraints
on this function are that it should be positive and vanish at zero and infinity. This
selects an amplitude A depending on γ, with limiting value A0, when γ → 0, as we
now show.

We first cast (6.10) in normal form by setting g(x, γ) = v(x)w(x), with v(x)
chosen in such a way that the resulting equation for w has no first derivative term.
This gives

v(x) = exp

(
− 1

2γ

∫ x

0

duD(u)

)
, (6.11)

with ∫ x

0

duD(u) = x

(
x

2(1 + σ)
−A+

b

(1− σ)xσ

)
. (6.12)

So

v(x) ∼
x→∞

exp

(
− x2

4γ(1 + σ)

)
,

v(x) ∼
x→0

exp

(
− b x1−σ

2γ(1− σ)

)
. (6.13)

The equation for w(x) reads

γ2w′′ =

(
D(x)2

4
− γ

(
D′(x)

2
+

1

1 + σ

))
w, (6.14)

which is a Schrödinger equation(
−γ2 d2

dx2
+ V (x,A)

)
w = 0, (6.15)

with potential

V (x,A) =
1

4

(
x

1 + σ
−A+

b

xσ

)2

− γ

2

(
3

1 + σ
− σb

x1+σ

)
. (6.16)

We now analyse this equation in the semi-classical regime γ → 0. In the ground
state (w(x) is positive), the particle sits at the minimum of the potential. Moreover,
since this solution has zero energy, we have to express that this minimum vanishes, at
leading order.

We expect this minimum to be located in the vicinity of x0, with A close to A0

because for γ = 0, V (x,A) is minimum at x0 (see (6.7)), and vanishes if A = A0. We
have

V (x0, A) =
(A−A0)2

4
− γ 1

1 + σ
. (6.17)
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Figure 11. Solutions of the differential equation (6.10) obtained by
numerical integration, for decreasing values of γ (σ = 1/2, b = 4), ranging
from γ = 0.4 (t ≈ 15) to γ ≈ 8.5 10−6 (t ≈ 1.62 1015).

Hence choosing A = A1 ≡ A0− 2γ1/2/
√

1 + σ yields V (x0, A1) = 0, and V ′(x0, A1) =
−γ/(2x0) (this last value is independent of A). We refine this analysis by expanding
the potential around its minimum. We set

x = x0 + γ3/8z, (6.18)

A = A0 − αγ1/2 + βγ3/4, (6.19)

where α and β will be determined. We obtain, for the potential, now a function of z,

Ṽ (z) =
γ

4

(
α2 − 4

1 + σ

)
+ γ5/4

α

4x0

(
z2 − 2βx0

)
+ · · · . (6.20)

The leading order is suppressed by setting α = 2/
√

1 + σ, in agreement with the
preliminary analysis made above. Finally (6.15) becomes the equation of a harmonic
oscillator, (

− d2

dz2
+

α

4x0
z2
)
w̃(z) =

αβ

2
w̃(z), (6.21)
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Figure 12. Upper curve: comparison between the amplitude A
corresponding to the solutions, depicted in figure 11, of the simplified
equation (6.10) (black dots) and the prediction (6.27) (red dashes).
Lower curve: amplitude A obtained by numerical integration of the
master equation (3.1) (the continuum limit of which is the complete
equation (5.19)) (open blue dots).

with energy αβ/2. The ground-state solution is‡

w̃(z) ∝ exp

(
−cz

2

2

)
, (6.24)

that we cast in the equation above, in order to determine the constants c and β as,

c =
1

2

√
α

x0
=

1√
2x0(1 + σ)1/4

, β =
2c

α
, (6.25)

so (6.21) simplifies into(
− d2

dz2
+ c2z2

)
w̃(z) = c w̃(z). (6.26)

‡ Let us remind that the harmonic oscillator

−y′′ + (x2 − λ)y = 0, (6.22)

with y(±∞) = 0, has solutions in terms of Hermite polynomials, when λ = 2n+ 1,

yn(x) = e−x
2/2Hn(x). (6.23)
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Finally

A = A0 −
2√

1 + σ
γ1/2 +

(1 + σ)1/4√
2x0

γ3/4 + · · · . (6.27)

Coming back to the original variable x, we have

w(x) ∝ exp

(
−c(x− x0)2

2γ3/4

)
. (6.28)

The present analysis parallels that done for b large in the σ = 1 case, where the
scaling function is found to have finite support with an essential singularity [6] (see
the discussion below eq. (3.23) therein).

Let us compare these predictions to the results of a numerical integration of (6.10).
Figure 11 depicts the solutions of this equation for various values of γ, ranging from
γ = 0.4 (t ≈ 15) to γ ≈ 8.5 10−6 (t ≈ 1.62 1015), with σ = 1/2 and b = 4. This
figure demonstrates the very slow convergence of the finite-time solutions g(x, t) to
the stationary scaling function g(x) given by (6.4) with A = A0. The corresponding
values of the amplitude A are depicted in figure 12 (black dots). These values are well
predicted by (6.27) which yields A ≈ 4.160− 1.633γ1/2 + 0.542γ3/4, with σ = 1/2 and
b = 4 (red dashes).

6.3. Complete equation (5.19)

As can be seen in figure 12, the amplitude A obtained by numerical integration of the
master equation (3.1) (yielding the complete equation (5.19) in the continuum limit)
is different from the amplitude predicted for the simplified equation. This discrepancy
is due to the finite-time corrections induced by the term tġ in the left side of (5.19).
The analysis of this situation is rather involved and is left for future work. As already
mentioned earlier, for the σ = 1 case, finite-time corrections are also present. However
these finite-time corrections are so small that there is no need to analyse their role.

7. Discussion

As mentioned in the introduction, the same condensing ZRP with rate (2.3) was
recently investigated in [9], with focus on coarsening in the condensed phase. The
scaling analysis of the single-site probability fk(t) given in this work turns out to be
incorrect. In particular, the asymptotic scaling function g(x) is not correctly predicted
because A is not taken equal to A0, as imposed by the selection mechanism described
in section 6.1; for the analysis of the simplified equation (6.10) the time dependence
of the amplitude A in (6.10) is overlooked (it is conjectured instead to be linear in b
and depending on density, which does not hold); the complete equation (5.19) is not
derived.

Acknowledgments

It is a pleasure to thank J M Luck for many enlightening discussions.



Coarsening dynamics of zero-range processes 24

Appendix A. Summary of formula

We collect here some important formula for the ZRP under study, derived in the bulk
of the paper, as well as the corresponding formula for the ZRP with rate uk = 1+b/k,
derived in [5, 6, 7], for comparison.

• ZRP with rate uk = 1 + b/k

At criticality (b > 3)

ūt = 1 + ηt, ηt = Aεb−2t , εt = t−1/2. (A.1)

fk(t) =

{
fk,eq(1 + (v0 + k)ηt) : k fixed, t large

fk,eq g(kεt) : k and t large
(A.2)

where g(x) satisfies

g′′ +

(
x

2
− b

x

)
g′ = 0, (A.3)

and is explicitly given by [6]

g(x) =
2−b

Γ( b+1
2 )

∫ ∞
x

dy ybe−y
2/4. (A.4)

The fall-off of g(x) for x � 1 is very fast: g(x) ∼ exp(−x2/4), hence fk(t) ∼
exp(−k2/4t). The amplitude A is a function of b alone and its explicit expression
is known [6].

In the condensed phase

ūt = 1 + ηt, ηt = Aεt, εt = t−1/2. (A.5)

fk(t) =

{
fk,eq(1 + (v0 + k)ηt) : k fixed, t large

ε2t g(kεt) : k and t large
(A.6)

where g(x) is solution of the equation

g′′ +

(
x

2
−A+

b

x

)
g′ +

(
1− b

x2

)
g = 0. (A.7)

The amplitude A is again a function of b alone. Its explicit expression is only known
for large values of b [6].

• ZRP with rate uk = 1 + b/kσ

At criticality

ūt = 1 + ηt, ηt ∼ e−t
aϕ(0), εt = t−1/(1+σ). (A.8)

fk(t) =

{
fk,eq(1 + (v0 + k)ηt) : k fixed, t large

fk,eq g(kεt, t) : k and t large
(A.9)

where g(x, t) satisfies

tġ = t−a g′′ +

(
x

1 + σ
− b

xσ

)
g′, (A.10)

with a = (1− σ)/(1 + σ).
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In the condensed phase

ūt = 1 + ηt, ηt = Aεσt , εt = t−1/(1+σ). (A.11)

fk(t) =

{
fk,eq(1 + (v0 + k)ηt) : k fixed, t large

ε2t g(kεt, t) : k and t large
(A.12)

where g(x, t) is solution of

tġ = t−a g′′ +

(
x

1 + σ
−A+

b

xσ

)
g′ +

(
2

1 + σ
− σb

x1+σ

)
g. (A.13)
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[4] Godrèche C, 2007 Lect. Notes Phys. 716 261
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