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Abstract. The probability distribution of the longest interval between two zeros
of a simple random walk starting and ending at the origin, and of its continuum
limit, the Brownian bridge, was analyzed in the past by Rosén and Wendel,
then extended by the latter to stable processes. We recover and extend these
results using simple concepts of renewal theory, which allows to revisit past or
recent works of the physics literature. We also discuss related problems and open
questions.

1. Introduction

Problems that can be recast in the language of renewal processes appear recurrently in
a number of studies of statistical physics without necessarily being recognized as such.
It is therefore useful to have access to this body of knowledge in simple terms. This
is one of the aims of the present study, where we revisit the question, investigated in
the past by Wendel [1], of the longest interval between zeros of the Brownian bridge,
seen as the continuum limit of the tied-down random walk (the simple random walk
starting and ending at the origin), and of its generalization by a self-similar process
with index 0 < θ < 1 (the Brownian bridge corresponding to θ = 1/2). We recover
his results using simple methods systematically developed in former studies of renewal
processes [2, 3]. We then extend this study in new directions and tackle open problems.
Finally we use this knowledge to put several related works [3, 4, 5] in perspective.

The detailed content of the paper is as follows. We start by recalling Rosén’s
results for the tied-down random walk and its continuum limit, the Brownian bridge,
as reported in [1]. We detail the derivation of this continuum limit and analyze the
rescaled distributions of the longest interval and of its inverse, as well as their averages.
We extend this study to the computation of the number of intervals between zeros of
the walk and of the probability of record breaking, that is, the probability that the last
interval be the longest (section 2). In section 3 we give a reminder on renewal processes.
We then define the tied-down renewal process, which is a generalization of the tied-
down random walk, or its continuum limit, the Brownian bridge (section 4). When the
tail index of the distribution of intervals is less than 1, this process corresponds to the
tied-down semi-stable process considered in [1]. We analyze the rescaled distributions
of the longest interval and of its inverse, as well as other characteristics of this process,
such as the number of events, the statistics of a single interval and the probability of
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0 30

τ3 τ4 τ5τ1 τ2

Figure 1. A tied-down random walk made of 2N = 30 steps, with M15 = 5
intervals between zeros, τ1, . . . , τ5, taking the values 2, 6, 18, 2, 2, respectively. In
this example, the longest interval I15 ≡ τ3. The ticks on the x−axis correspond
to two time-steps.

record breaking. We finally consider the cases of a narrow distribution of intervals or a
broad distribution with tail index θ > 1. We close by revisiting past or recent relevant
studies [3, 4, 5]. Some definitions and derivations are relegated to the appendices.

2. The tied-down random walk

2.1. Rosén’s results

We first recall Rosén’s results for the tied-down random walk as reported by Wendel
in [1], keeping his notations. Consider the sum Sn of n independent random variables
taking the values ±1, with probabilities 1/2. The random walk Sn is conditioned to be
‘tied down’ at time 2N , i.e., to return to the origin at that time. Let IN be the longest
interval between zeros of Sn, during time 0 ≤ n ≤ 2N . Define the joint probability

vN,k = Prob(IN ≤ 2k, S2N = 0), v0,k = 1. (2.1)

The quantity of interest is the conditional probability

Prob(IN ≤ 2k|S2N = 0) =
vN,k
uN

, (2.2)

where uN is the probability of return of the walk at time 2N (see Appendix B)

uN = Prob(S2N = 0) = vN,∞. (2.3)

The joint probability vN,k satisfies the renewal equation

vN,k =

k∑
n=1

fn vN−n,k, (2.4)

where fn is the probability of first return to zero at time 2n (see Appendix B).
From (2.4) we deduce that the generating functions

ṽk(z) =
∑
N≥0

vN,kz
N , f̃k(z) =

k∑
n=1

fnz
n (2.5)
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are related by

ṽk(z) =
1

1− f̃k(z)
. (2.6)

The result (2.10) below, due to Rosén, as stated in [1], gives the continuum limit,
at large times 2N , of the conditional probability (2.2), using (2.6). This conditional
probability reads, using a star to indicate the tied-down condition,

F ?R(r) = lim
N→∞

Prob(RN ≤ r|S2N = 0) = lim
N→∞

vN,k=Nr

uN
, (2.7)

also equal to

F
?

V (v) = lim
N→∞

Prob(VN > v|S2N = 0), (2.8)

the bar referring to the complementary distribution function, with the following
notations:

RN =
IN
2N

, R? = lim
N→∞

RN , r =
k

N
.

VN =
1

RN
, V ? =

1

R?
, v =

N

k
=

1

r
, (2.9)

and where r and v are real variables, with 0 < r < 1 and v > 1. According to [1], we
have

F ?R(r) = F
?

V (v) = π
√
v

∞∑
k=−∞

(−2xk)exk(1+v), (2.10)

= π
√
v f II

V (v), (2.11)

denoting by f II
V (v) the sum on the right side of (2.10), and where the xk are the zeros

of the function

D(x) = 1 +
√
πx ex erf

√
x. (2.12)

These zeros have all negative real parts, for instance

x0 = −0.854 . . . , x±1 = −4.248 . . .± i 6.383 . . . , x±2 = −5.184 . . .± i 12.885 . . . (2.13)

and so on. Let us note that the Laplace transform of f II
V (v) with respect to v is given

by

f̂ II
V (x) =

ex

1 +
√
πx ex erf

√
x
, (2.14)

where the variable x is conjugate to v. This can be seen by taking the inverse Laplace

transform of f̂ II
V (x) and noting that the residues of this function at the poles xk are

equal to −2xk exk (see (4.45) in section 4.6), which yields f II
V (v) back. We can now

interpret f II
V (v) as the density of a random variable, because it is a positive function,

normalised to unity since f̂ II
V (0) = 1. The precise meaning of this density is given in

section 3.3.
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2.2. Proof of (2.10)

Let us now detail how to derive the continuum scaling limit (2.10) from (2.6), by an
asymptotic analysis of the latter at large times. Since fn = un−1 − un (see Appendix
B), we have

1− f̃k(z) = ukz
k + (1− z)

k−1∑
n=0

unz
n, (2.15)

then setting z = e−s and using (B.5), we obtain, when k → ∞, s → 0, with x = ks
fixed,

ṽk(z) =
1

1− f̃k(z)
≈ 1√

s

1

(πks)−1/2e−ks + erf
√
ks

≈
√
πk

ex

1 +
√
πx ex erf

√
x
. (2.16)

It is now simple to infer (2.10) from (2.16). In the continuum scaling limit (2.9),
informally denoting the generating function ṽk(z) as a Laplace transform with respect
to N (considered now as a real variable), yields

ṽk(z) =L
N

Prob (RN ≤ k/N, S2N = 0) =L
N

Prob (VN > N/k, S2N = 0) . (2.17)

Rescaling N by k, the left side becomes the Laplace transform with respect to v, with
x conjugate to v,

L
v

Prob(VN > v = N/k, S2N = 0) ≈
√
π

k
f̂ II
V (x), (2.18)

hence

Prob(VN > v, S2N = 0) ≈
√
π

k
f II
V (v). (2.19)

Dividing both sides by uN ≈ 1/
√
πN leads to (2.10).

2.3. Characterization of the density

The large v behaviour of the density f?V (v) can be read off from (2.10). At leading
order

F
?

V (v) ≈ 2|x0|π
√
v e−|x0|v, (2.20)

from which f?V (v) ensues by derivation,

f?V (v) ≈ 2π x2
0

√
v e−|x0|v. (2.21)

As a consequence, f?R(r) has an essential singularity at the origin,

f?R(r) ≈ 2π x2
0

e−|x0|/r

r5/2
. (2.22)

The density f?V (v) is a piece-wise continuous function, as is also the case of the densities
f I
V (v), f II

V (v) and f III
V (v) [3, 6] (f I

V and f III
V are defined later). The behaviour for

1 < v < 2 is given in [1]:

f?V (v) =
1

2
√
v
, (2.23)
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Figure 2. Probability density f?V (v) for the tied-down random walk obtained
from (2.6) for N = 40 and N = 80. The black dashed curve (v > 2) corresponds
to (2.21), the red dashed curve (1 < v < 2) to (2.23).

hence f?R(r) = r−3/2/2 for 1/2 < r < 1. The reasoning is again due to Rosén. Consider

wN,k = Prob(IN = 2k, S2N = 0). (2.24)

When IN = 2k > N , then the longest interval is unique. This is case in figure 1,
where I15 = 18. Decomposing a path into three contributions, we obtain

wN,k =

N−k∑
n=0

un fk uN−n−k = fk, (2k > N), (2.25)

the last equality resulting from
∑m
j=0 ujum−j = 1. In figure 1 these three contributions

correspond to τ1 + τ2, τ3, and τ4 + τ5. So, using (B.5), we have

F ?R(r) = 1− lim
N→∞

N∑
k=Nr

wN,k
uN

(2.26)

= 1−
∫ 1

r

dy
1

2y3/2
= 2− 1

r1/2
, (1/2 < r < 1). (2.27)

This result will be generalized in section 4.6. A method for the determination of f?V (v)
in the successive intervals (i, i+ 1) is given in [1]. Complementary information on this
issue can be found in [4, 7, 8, 9].
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Figure 3. Probability density f?R(r) obtained from the data of figure 2.

Figure 2 depicts the density f?V (v) obtained by extracting vN,k from (2.6) by
formal computation, with 0 ≤ k ≤ N , for N = 40 and N = 80, then rescaling
appropriately this sequence. Figure 3 depicts the density f?R(r) obtained from the
same data. The scaling is already good for these rather small values of N . The
dashed curves corresponds to the predictions (2.21), (2.22) and (2.23). It is striking
to observe the quality of the two former ones for values of v or r beyond their a priori
ranges of validity. The discontinuity of the derivative at v = 2 is clearly visible.

2.4. Average longest interval

Since

Prob(IN ≤ 2k, S2N = 0) + Prob(IN > 2k, S2N = 0) = uN , (2.28)

the generating function of the sum adds to 1/
√

1− z. In the continuum limit we thus
find, using (2.16), that

L
N

Prob(IN > 2k, S2N = 0) ≈ 1√
s

1−
√
πxex erfc

√
x

1 +
√
πxex erf

√
x
. (2.29)

Defining

f̂ III
V (x) =

1−
√
πx ex erfc

√
x

1 +
√
πx ex erf

√
x

= 1−
√
πx f̂ II

V (x), (2.30)
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whose meaning is given in section 3.3, we have

L
N
〈IN , S2N = 0〉 = L

N

∫ ∞
0

d(2k) Prob(IN > 2k, S2N = 0)

=
2

s3/2

∫ ∞
0

dx f̂ III
V (x) =

2

s3/2
0.2417 . . . . (2.31)

By inversion of the Laplace transform and division by uN , we obtain

〈IN |S2N = 0〉 ≈ 4N × 0.2417 . . . . (2.32)

and finally

〈R?〉 = lim
N→∞

〈RN |S2N = 0〉 = 0.4834 . . . . (2.33)

We shall comment and generalize this result later (cf. (4.40)).

2.5. The full joint probability for the tied-down random walk

An alternate method to recover the results above consists in considering the full joint
probability of a configuration of the walk, in terms of the successive intervals τ1, τ2, . . .
between zeros. Moreover this allows to investigate new quantities, such as the number
of intervals up to time 2N or the probability of record breaking, i.e., the probability
that the last interval be the longest. This formalism will also serve as a preparation
for the sequel, where we consider the continuum renewal process generalizing the case
of the random walk.

Let MN be the number of intervals up to time 2N . This random variable takes
the values m = 0, 1, 2, . . .. (For the tied-down walk, m = 0 necessarily implies
2N = 0.) A configuration of the tied-down walk is specified by {τ1, . . . , τMN

,MN},
whose realization is denoted by {2`1, . . . , 2`MN

,m}. These definitions are illustrated
in figure 1. The conditional probability for the walk to be tied-down is therefore

Prob(τ1 = 2`1, . . . , τMN
= 2`MN

,MN = m|S2N = 0) =
f`1 . . . f`mδ(

∑m
i=1 `i, N)

uN
,(2.34)

where the denominator, obtained from the numerator by summing on the `i ≥ 1 and
m, is precisely the probability uN of return of the walk at time 2N ,

uN =
∑
m≥0

∑
`1...`m

f`1 . . . f`mδ
( m∑
i=1

`i, N
)
. (2.35)

This can be checked by taking the generating function of the right side of (2.35)∑
N≥0

zN
∑
m≥0

∑
`1...`m

f`1 . . . f`mδ
( m∑
i=1

`i, N
)

=
∑
m≥0

f̃(z)m (2.36)

=
1

1− f̃(z)
= ũ(z), (2.37)

which is indeed the generating function of the uN . This can be alternatively be checked
as follows. Let us denote the sum of the random number MN of intervals by

tMN
= τ1 + · · ·+ τMN

, (2.38)

and the corresponding sum when MN is fixed equal to m by

tm = τ1 + · · ·+ τm. (2.39)
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Then, clearly,

Prob(tm = 2N) = Prob(MN = m,S2N = 0)

=
∑
`1...`m

f`1 . . . f`mδ
( m∑
i=1

`i, N
)
. (2.40)

Hence, summing on m,∑
m≥0

Prob(tm = 2N) = Prob(tMN
= 2N) ≡ uN . (2.41)

We can now easily express the probability distribution of the number of intervals
(in the tied-down case) as

p?m(N) = Prob(MN = m|S2N = 0) =
Prob(tm = 2N)

uN
(2.42)

=

[
f̃(z)m

]
N

uN
, (2.43)

where the notation [·]N means the N−th coefficient of the series inside the brackets.
In particular, the mean number of intervals is

〈MN |S2N = 0〉 =
∑
m≥0

mp?m(N). (2.44)

The generating function of the numerator of this expression reads∑
m≥0

mf̃(z)m =
f̃(z)(

1− f̃(z)
)2 . (2.45)

This yields

〈MN |S2N = 0〉 =
1

uN
− 1 =

22N(
2N
N

) − 1. (2.46)

Hence, at long times 2N ,

〈MN |S2N = 0〉 ≈
√
πN. (2.47)

More generally, in the continuum limit where the series in the expressions above are
dominated by z close to 1, the distribution p?m(N) has the scaling form

p?m(N) ≈ 1

2
√
N
y e−y

2/4, y =
m√
N
, (2.48)

from which the asymptotic expressions of the higher moments ensue,

〈(MN )p|S2N = 0〉 = 2p−1Np/2pΓ
(p

2

)
. (2.49)

2.6. The longest interval

Knowing (2.34) yields immediately the conditional probability (2.2)

Prob(IN ≤ 2k|S2N = 0) =
vN,k
uN

=
1

uN

∑
m≥0

k∑
`1=1

. . .

k∑
`m=1

f`1 . . . f`mδ
( m∑
i=1

`i, N
)
. (2.50)

Taking the generating function of the numerator leads again to (2.6).
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2.7. Probability of record breaking

When dealing with the successive extremes, or records, taken by a series of random
variables, an important indicator of the statistics of records is the probability that
the last random variable is the largest, named the probability of record breaking. For
independent, identically distributed (i.i.d.) random variables this probability is equal
to the inverse of the number of random variables in the series [10].

In the present case where the intervals are not independent, the determination of
the probability of record breaking for the tied-down random walk, i.e.,

Q?N = Prob(IN = τMN
|S2N = 0), (2.51)

proceeds as follows (see [11] for similar reasonings). We have

Q?N =
∑
m≥1

Prob(IN = τMN
,MN = m|S2N = 0) =

QN
uN

, (2.52)

where QN =
∑
m≥1QN,m, and

QN,m =
∑
`m≥1

`m∑
`1=1

. . .

`m∑
`m−1=1

f`1 . . . f`mδ
( m∑
i=1

`i, N
)
. (2.53)

Taking the generating function of this quantity and summing on m we obtain

Q̃(z) =
∑
N≥0

QNz
N =

∑
`≥1

f`z
`

1− f̃`(z)
, (2.54)

where f̃`(z) is defined in (2.5). This quantity appears in the appendix of [11], where
it is found that, for z → 1,

Q̃(z) ≈ − ln
√

1− z + c, c =
1

2

(
γ + ln

4

π

)
≈ 0.409, (2.55)

(γ is the Euler constant). By inversion and division by uN , we thus finally obtain

Q?N ≈
√
π

2
√
N
. (2.56)

Remark As recalled above, for i.i.d. random variables the probability of record
breaking is equal to the inverse of the number of variables. The same holds if the
random variables are exchangeable. In the present case, our intuition is that the
intervals τ1, . . . , τMN

all play the same role. So we are led to compute the average of
the inverse of the number of intervals MN . Using (2.42), we have〈

1

MN

〉
=
∑
m≥1

p?m(N)

m
=

[
− ln
√

1− z
]
N

uN
=

1

2NuN
. (2.57)

This expression is indeed asymptotically equal to (2.56). As we shall see in section 4.7,
the same holds, not only asymptotically, but also at any time for the corresponding
continuum renewal process.

3. A reminder on renewal processes

The present section and the next one generalize the tied-down random walk section 2
(which is actually a renewal process in discrete time) to a renewal process in continuous
time, with an arbitrary distribution of intervals [12, 13]. We refer to table 1 for
the correspondences between the notations for the discrete random walk and the
continuum renewal process presented below.
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Random walk Renewal proc.
2N t
2k `
IN τmax(t)
uN U(t)
vN,k F (t; `)
fn ρ(τ)
MN Nt

Prob(tm = 2N) ftn(t)
wN,k w(t; `)

Table 1: Correspondences between the notations for the discrete random walk of
section 2 and the continuum renewal process of sections 3 and 4.

3.1. Definitions and observables

We start afresh by reminding the definitions and notations used for renewal processes,
following [2]. Events occur at the random epochs of time t1, t2, . . ., from some time
origin t = 0. These events are for instance the zero crossings of some stochastic process,
(or zeros as for the simple random walk of section 2.1). We take the origin of time on
a zero crossing. When the intervals of time between events, τ1 = t1, τ2 = t2 − t1, . . .,
are independent and identically distributed random variables with common density
ρ(τ), the process thus formed is a renewal process.

The probability p0(t) that no event occurred up to time t is simply given by the
tail probability:

p0(t) = Prob(τ1 > t) =

∫ ∞
t

dτ ρ(τ). (3.1)

The density ρ(τ) can be either a narrow distribution with all moments finite, in which
case the decay of p0(t), as t → ∞, is faster than any power law, or a distribution
characterized by a power-law fall-off with index θ > 0

p0(t) =

∫ ∞
t

dτ ρ(τ) ≈
(τ0
t

)θ
, (3.2)

where τ0 is a microscopic time scale. If θ < 1 all moments of ρ(τ) are divergent, if
1 < θ < 2, the first moment 〈τ〉 is finite but higher moments are divergent, and so on.
In Laplace space, where s is conjugate to τ , for a narrow distribution we have

L
τ
ρ(τ) = ρ̂(s) =

∫ ∞
0

dτ e−sτρ(τ) =
s→0

1− 〈τ〉 s+
1

2

〈
τ2
〉
s2 + · · · (3.3)

For a broad distribution, (3.2) yields

ρ̂(s) ≈
s→0

{
1− a sθ (θ < 1)
1− 〈τ〉 s+ a sθ (1 < θ < 2),

(3.4)

and so on, where

a = |Γ(1− θ)|τθ0 . (3.5)

From now on, unless otherwise stated, we shall only consider the case 0 < θ < 1.
The quantities naturally associated to a renewal process [12, 13, 2] are the

following. The number of events which occurred between 0 and t, i.e., the largest



Longest interval between zeros 11

n such that tn ≤ t, is a random variable denoted by Nt. The time of occurrence of
the last event before t, that is of the Nt−th event, is therefore the sum of a random
number of random variables‡

tN = τ1 + · · ·+ τN . (3.6)

The backward recurrence time At is defined as the length of time measured backwards
from t to the last event before t, i.e.,

At = t− tN . (3.7)

It is therefore the age of the current, unfinished, interval at time t. Finally the forward
recurrence time (or excess time) Et is the time interval between t and the next event

Et = tN+1 − t. (3.8)

We have the simple relation At + Et = tN+1 − tN = τN+1.

3.2. Joint probability densities

Consider the following sequences of intervals [3]

(I) : {τ1, τ2, . . . , τN , At},
(II) : {τ1, τ2, . . . , τN , τN+1},
(III) : {τ1, τ2, . . . , τN}. (3.9)

To each of these sequences, supplemented by Nt, is associated a joint probability
density [2, 3]. For the first sequence, this joint probability density is, with the notations
of Appendix A,

f~τ,At,Nt(t; `1, . . . , `n, a, n) = ρ(`1) . . . ρ(`n) p0(a) δ
( n∑
i=1

`i + a− t
)
. (3.10)

Likewise, the joint probability density of τ1, . . . , τN+1, Nt is

f~τ,τN+1,Nt(t; `1, . . . , `n+1, n) = ρ(`1) . . . ρ(`n+1) I(tn < t < tn + `n+1), (3.11)

where I(·) = 1 or 0 if the condition inside the parentheses is satisfied or not. Finally,
for the third sequence, the joint probability density of τ1, . . . , τN , Nt is

f~τ,Nt(t; `1, . . . , `n, n) = ρ(`1) . . . ρ(`n)

∫ ∞
0

da p0(a) δ

(
n∑
i=1

`i + a− t

)
, (3.12)

which can alternatively be obtained from (3.10) or (3.11) by summing on a or `n+1,
respectively. For short, we denote the joint probability densities (3.10)-(3.12) by

f I(t; `1, . . . , `n, a, n) = f~τ,At,Nt(t; `1, . . . , `n, a, n),

f II(t; `1, . . . , `n+1, n) = f~τ,τN+1,Nt(t; `1, . . . , `n+1, n),

f III(t; `1, . . . , `n, n) = f~τ,Nt(t; `1, . . . , `n, n). (3.13)

The explicit dependence in time t, which acts as a parameter in these densities, is
enhanced by the notations above.

‡ From now on, when no ambiguity arises, we drop the time dependence of the random variable if
the latter is itself in subscript.
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3.3. Longest interval

To each of these sequences corresponds a longest interval, denoted by

τ I
max(t) = max(τ1, τ2, . . . , τN , At),

τ II
max(t) = max(τ1, τ2, . . . , τN , τN+1),

τ III
max(t) = max(τ1, τ2, . . . , τN ). (3.14)

It turns out that the ratios

Rα = lim
t→∞

ταmax(t)

t
, V α =

1

Rα
, (α = I, II, III) (3.15)

have limiting distributions, whose densities are denoted by fαR(r) and fαV (v). Explicit
expressions for the Laplace transforms with respect to v of the latter, with x conjugate
to v, are as follows:

f̂ I
V (x) =

1

1 + xθex
∫ x

0
duu−θe−u

=
1

1F1(1, 1− θ, x)
, (3.16)

f̂ II
V (x) = exf̂ I

V (x), (3.17)

f̂ III
V (x) = 1− xθΓ(1− θ)f̂ II

V (x), (3.18)

where 1F1(1, 1 − θ, x) is a confluent hypergeometric function, simply related to the
incomplete gamma function

Γ(θ, x) =

∫ ∞
x

duuθ−1e−u, (3.19)

as follows,

1F1(1, 1− θ, x) = exxθ [Γ(1− θ) + θΓ(−θ, x)] . (3.20)

The functions f II
V (v) and f III

V (v) encountered in (2.11) and (2.30), respectively, are
precisely the densities of the random variables V II and V III defined for the second and
third sequences (with θ = 1/2).

The expression of the Laplace transform of the density (3.16) was originally found
in [6], then derived by another method in [3], which also addresses the same question
for the two other sequences II and III. Related studies can also be found in [11, 14, 15]
in the context of record statistics of random walks and renewal processes.

4. The tied-down renewal process

The tied-down renewal process is defined by the condition {tN = t}, or equivalently
by the condition {At = 0}, which both express that the Nt−th event occurred at time
t. This process generalizes the tied-down random walk of section 2, or its continuum
limit, the Brownian bridge. The tied-down semi-stable process of order 0 < θ < 1
considered in [1] corresponds to the tied-down renewal process considered here when
the tail index of the density ρ(τ) is 0 < θ < 1.

4.1. The tied-down conditional density

The tied-down conditional density, denoted for short by

f?(t; `1, . . . , `n, n) ≡ f~τ,Nt|tN (t; `1, . . . , `n, n|y = t), (4.1)
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is a generalization of (2.34) (see Appendix C for more details). Its expression is

f?(t; `1, . . . , `n, n) =
ρ(`1) . . . ρ(`n)δ (

∑
`i − t)

U(t)
, (4.2)

where the denominator is obtained from the numerator by integration on the `i and
summation on n,

U(t) =
∑
n≥0

∫ ∞
0

d`1 . . . d`n ρ(`1) . . . ρ(`n)δ
( n∑
i=1

`i − t
)

=
∑
n≥0

ftn(t), (4.3)

denoting by ftn(t) the density of the sum tn = τ1 + · · · + τn, with n fixed (compare
to (2.40) for the discrete case). The quantity (4.3), which is the continuum counterpart
of the probability uN of section 2.1 (cf. (2.35) and (2.41)), can be intuitively thought
of as giving the fraction of ‘tied-down’ histories. It is the edge value of the probability
density of tN at its maximal value tN = t (see (C.7) and (C.12)). In Laplace space
with respect to t, we have

L
t
ftn(t) = ρ̂(s)n, (4.4)

so

L
t
U(t) =

∑
n≥0

ρ̂(s)n =
1

1− ρ̂(s)
, (4.5)

which is the counterpart of (2.37). The right side behaves, when s is small, as s−θ/a.
Thus, at long times, we finally obtain, using (3.5),

U(t) ≈ sinπθ

π

tθ−1

τθ0
. (4.6)

Equations (4.2)-(4.6) are the cornerstone of the present study.

4.2. Number of renewals between 0 and t

Let us consider the conditional distribution of Nt, the number of renewals between 0
and t, for the tied-down renewal process,

p?n(t) = Prob(Nt = n|tN = t) =
ftn(t)

U(t)
, (4.7)

whose discrete counterpart is (2.42). We have

〈Nt|tN = t〉 =
∑
n>0

np?n(t) =

∑
n>0 nftn(t)

U(t)
. (4.8)

In Laplace space we have

L
t

∑
n>0

nftn(t) =
ρ̂(s)

(1− ρ̂(s))2
≈ 1

a2s2θ
. (4.9)

Laplace inverting back and dividing by (4.6), we obtain, at large times

〈Nt|tN = t〉 ≈ A?(θ)
(
t

τ0

)θ
, A?(θ) =

Γ(θ)

Γ(1− θ)Γ(2θ)
. (4.10)
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By comparison, for the unconstrained renewal process [2],

〈Nt〉 ≈ A(θ)

(
t

τ0

)θ
, A(θ) =

sinπθ

πθ
. (4.11)

Note that A?(θ) > A(θ).
Likewise

L
t

∑
n 0

n2ftn(t) =
ρ̂(s)(1 + ρ̂(s))

(1− ρ̂(s))3
≈ 2

a3s3θ
. (4.12)

By inversion and division by (4.6), we obtain 〈N2
t |tN = t〉 ∼ t2θ. As for the

unconstrained case [2], we can set

Nt =

(
t

τ0

)θ
Yt, (4.13)

where the random variable Yt has a limiting distribution when t→∞. For instance,
for θ = 1/2, we obtain

fY (y) =
π

2
y e−πy

2/4, y =
n√
t/τ0

, (4.14)

which is the counterpart of (2.48). More generally, we have

fY (y) =
π

sinπθ

∫
dz

2πi
eze−Γ(1−θ)yzθ . (4.15)

4.3. Marginal statistics of a single interval

We want to determine the tied-down conditional average of one of the τi, say τ1,

〈τ1|tN = t〉 =
∑
n≥0

∫ ∞
0

d`1 . . . d`n `1f
?(t; `1, . . . , `n, n). (4.16)

Laplace transforming the numerator of the right side yields

−dρ̂(s)

ds

1

1− ρ̂(s)
≈ θ

s
. (4.17)

By Laplace inverting and dividing by (4.6), we obtain

〈τ1|tN = t〉 ≈ B?(θ)τθ0 t1−θ, B?(θ) =
πθ

sinπθ
, (4.18)

which turns out to be equal to t/〈Nt〉. By comparison, for the unconstrained renewal
process [2],

〈τ1〉 ≈ B(θ)τθ0 t
1−θ, B(θ) =

θ

1− θ
. (4.19)

We conclude that 〈Nt|tN = t〉〈τ1|tN = t〉 is proportional to t, as expected. Note that
〈Ntτ1〉 = 〈tN 〉 = t, identically. Here again, the amplitude of the tied-down case B?(θ)
is larger than the amplitude of the unconstrained case B(θ).
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4.4. The longest interval

Let τ?max(t) be the longest interval of the sequence τ1, . . . , τN with the condition that
their sum tN = t. We want to compute the conditional distribution function

F ?(t; `) = Prob(τ?max(t) ≤ `|tN = t)

=
∑
n≥0

∫ `

0

d`1 . . .

∫ `

0

d`nf
?(t; `1 . . . , `n, n, y = t) =

F (t; `)

U(t)
, (4.20)

where the numerator is

F (t; `) =
∑
n≥0

∫ `

0

d`1 ρ(`1) . . .

∫ `

0

d`n ρ(`n)δ
( n∑
i=0

`i − t
)
. (4.21)

Equation (4.20) is the continuum counterpart of (2.50), with F (t; `) playing the role
of vN,k. Laplace transforming (4.21) with respect to time, we get

L
t
F (t; `) =

∑
n≥0

(∫ `

0

d`1 ρ(`1)e−s`1

)n
=

1

1− ρ̂(s; `)
, (4.22)

where

ρ̂(s; `) =

∫ `

0

d`1 ρ(`1)e−s`1 . (4.23)

The expression (4.22) is the continuum counterpart of ṽk(z) given in (2.6). It holds
for any distribution of intervals ρ(τ). In the limit ` → ∞ the right side is equal to
1/(1− ρ̂(s)), as it should (cf. (4.5)).

We now perform the asymptotic analysis of (4.22) along the lines of [3]. An
integration by parts yields

1− ρ̂(s; `) = p0(`)e−s` + s p̂0(s; `), (4.24)

where p̂0(s; `) =
∫ `

0
dτ p0(τ)e−sτ . Then, using the asymptotic estimates in the regime

s→ 0, `→∞, with s` fixed [3],

p̂0(s; `) ≈ τθ0 sθ−1

∫ s`

0

duu−θe−u, (4.25)

and

1− ρ̂(s; `) ≈ τθ0 sθ
(

(s`)−θe−s` +

∫ s`

0

duu−θe−u

)
, (4.26)

we obtain

L
t
F (t; `) ≈

(
`

τ0

)θ
es`

1 + (s`)θes`
∫ s`

0
duu−θe−u

. (4.27)

Laplace inverting with respect to s and dividing by tθ−1 sinπθ/(πτθ0 ) (given in (4.6)),
we finally obtain, using notations akin to (3.15),

F ?R(r) = F
?

V (v) = lim
t→∞

F ?(t; `),

=
π

sinπθ
v1−θf II

V (v), (4.28)

where f II
V (v) is the inverse Laplace transform of (3.17). Note that the microscopic

scale τ0 altogether disappeared in (4.28), which demonstrates the universality of the
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result with respect to the distribution ρ(τ). In particular (2.11), recovered for θ = 1/2,
is universal. Equation (4.28) can be alternatively written as

L
v
vθ−1F

?

V (v) =
π

sinπθ
f̂ II
V (x), (4.29)

L
v
vθ−1F ?V (v) =

Γ(θ)

xθ
f̂ III
V (x), (4.30)

using (3.18). This expression, as well as its generalizations to the case of the second
(k = 2), third (k = 3), ..., longest intervals, are given in [1] (cf. § 5, theorem 4),

L
v
vθ−1F

(k)?
V (v) =

Γ(θ)

xθ

(
f̂ III
V (x)

)k
. (4.31)

Note that Γ(θ)/xθ is equal to the Laplace transform of vθ−1. Ref. [1] also gives the
generalization of the density (3.16) for the k−longest interval,

f̂
(k)I
V (x) = f̂ I

V (x)
(
f̂ III
V (x)

)k−1

. (4.32)

Equations (4.31) and (4.32) are derived in Appendix D by elementary methods of
order statistics theory. Likewise, one could show that

f̂
(k)II
V (x) = f̂ II

V (x)
(
f̂ III
V (x)

)k−1

, (4.33)

and

f̂
(k)III
V (x) =

(
f̂ III
V (x)

)k
, (4.34)

which can be summarized as

f̂
(k)α
V (x) = f̂αV (x)

(
f̂ III
V (x)

)k−1

, (α = I, II, III). (4.35)

4.5. Average longest interval

The method follows that of section (2.4). The average longest interval is computed as

〈τ?max(t)〉 =

∫ ∞
0

d` F
?
(t; `). (4.36)

We have (see (4.20))

F (t; `) + F (t; `) = U(t). (4.37)

Laplace transforming this equation with respect to time, we get

L
t
F (t; `) =

1

1− ρ̂(s)
− 1

1− ρ̂(s; `)
(4.38)

≈ s−θ

a

(
1− (s`)θΓ(1− θ)f̂ II

V (s`)
)

=
s−θ

a
f̂ III
V (s`). (4.39)

After integration upon `, inverse Laplace transform with respect to s, and division by
U(t) (given by (4.6)), we obtain

〈R?〉 = lim
t→∞

〈
τ?max(t)

t

〉
=

1

θ

∫ ∞
0

dx f̂ III
V (x) (4.40)

=
1

θ
lim
t→∞

〈
τ III
max(t)

t

〉
=

1

θ
〈RIII〉. (4.41)

For θ = 1/2 we recover (2.33).
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Using the same method, we find, for the k−th longest interval,

〈R(k)?〉 = lim
t→∞

〈
τ

(k)?
max (t)

t

〉
=

1

θ

∫ ∞
0

dx
(
f̂ III
V (x)

)k
=

1

θ
〈R(k)III〉. (4.42)

Since the sum of the intervals τ
(k)?
max (t) is, by definition of the process, equal to t, one

should have ∑
k≥1

〈R(k)?〉 = 1. (4.43)

This result can indeed be proved by direct computation of the integral of the

geometrical series in f̂ III
V (x) in the right side, which gives the value θ. One can also

note that the 〈R(k)III〉 sums up to 〈tN/t〉 and that 〈tN/t〉 → θ [2]. (See also [16, 5].)

Remark The last equality in (4.42) can be obtained by the methods of Appendix D
(see [16]). A list of values of 〈R(k)III〉 for θ = 1/2 can be found in [16]. One could
generalize the results of [16] to find

〈R(k)I〉 =

∫ ∞
0

dx f̂
(k)I
V (x), 〈R(k)II〉 =

∫ ∞
0

dx f̂
(k)II
V (x). (4.44)

4.6. Characterization of the densities f?V and f?R

The denominator of f̂ II
V (x) in (3.16), D(x) = 1 + xθex

∫ x
0

duu−θe−u, satisfies the
following differential equation

xD′(x) = D(x)(x+ θ)− θ. (4.45)

The residues at the poles xk of f̂ II
V (x) are therefore equal to −xkexk/θ, so

F ?R(r) = F
?

V (v) =
π

θ sinπθ
v1−θ

∞∑
k=−∞

(−xk)exk(1+v), (4.46)

which generalizes (2.10) [1]. Hence the asymptotic behaviour at large v (small r) of
the corresponding densities is obtained as in section 2.3 (cf. (2.21), (2.22)), yielding

f?V (v) ≈ πx2
0

θ sinπθ
v1−θ e−|x0|v, f?R(r) ≈ π x2

0

θ sinπθ

e−|x0|/r

r3−θ . (4.47)

The density f?R(r) for 1/2 < r < 1 has a simple expression,

f?R(r) =
θ Γ(θ)2 sinπθ

πΓ(2θ)

(1− r)2θ−1

r1+θ
, (4.48)

which, for θ = 1/2, yields back f?R(r) = r−3/2/2. This expression is obtained by the
following reasoning, adapted from that used in [1] for the tied-down random walk, and
reproduced in section 2.3 (cf. (2.25)). Let w(t; `) be the density

w(t; `) =
dF (t; `)

d`
, (4.49)

where F (t; `) is defined in (4.21). If ` > t/2, then the longest interval is unique.
Decomposing an history into three contributions as in (2.25), we have

w(t; `) =

∫ t−`

0

dτ U(τ)ρ(`)U(t− `− τ). (4.50)
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Noting that

L
T

∫ T

0

dτ U(τ)U(T − τ) =
1

(1− ρ̂(s))2
≈ (as)−2θ, (4.51)

we have, for ` > t/2,

w(t; `) ≈ 1

a2θΓ(2θ)
ρ(`)(t− `)2θ−1. (4.52)

It follows that

F ?R(r) = 1− C(θ)

tθ−1

∫ t

rt

d` `−1−θ(t− `)2θ−1, (1/2 < r < 1), (4.53)

where

C(θ) =
θ Γ(θ)2 sinπθ

πΓ(2θ)
, (4.54)

yielding (4.48), by derivation with respect to r. It is also possible to derive (4.48) from
eq. (6.1) of [1]. As a consequence

f?V (v) =
θ Γ(θ)2 sinπθ

πΓ(2θ)
v−θ(v − 1)2θ−1. (4.55)

4.7. Probability of record breaking Q?(t)

The probability that the last interval is the longest one is defined as

Q?(t) = Prob(τ?max(t) = τN |tN = t) = Prob(τN > max(τ1, . . . , τN−1)|tN = t). (4.56)

This probability is given by the sum (see [3] for similar reasonings)

Q?(t) =
∑
n≥1

Q?n(t) =
∑
n≥1

Prob
(
τN > max(τ1, . . . , τN−1), Nt = n|tN = t

)
. (4.57)

Explicitly,

Q?n(t) =

∫ ∞
0

d`n

∫ `n

0

d`1 . . .

∫ `n

0

d`n−1 f
?(t; `1, . . . , `n−1, `n, n) (4.58)

=
Qn(t)

U(t)
, (4.59)

where

Qn(t) =

∫ ∞
0

d`n

∫ `n

0

d`1 . . .

∫ `n

0

d`n−1 ρ(`1) . . . ρ(`n) δ
( n∑
i=0

`i − t
)
. (4.60)

In Laplace space, after summing on n, we have

Q̂(s) =

∫ ∞
0

d`
ρ(`)e−s`

1−
∫ `

0
dτ ρ(τ)e−sτ

=

∫ ρ̂(s)

0

dρ̂(s; `)

1− ρ̂(s; `)
, (4.61)

where ρ̂(s; `) =
∫ `

0
dτ ρ(τ)e−sτ . Finally,

Q̂(s) = − ln(1− ρ̂(s)). (4.62)

The same result can be recovered by assuming that the Nt intervals τ1, . . . , τN
should all play the same role, hence that the probability of record breaking is equal
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to the inverse number of these random variables, as for i.i.d. random variables. So,
let us assume that

Q?n(t) =
p?n(t)

n
, (n > 0), (4.63)

where p?n(t) = Prob(Nt = n|tN = t) (see (4.7)). Thus

Q?(t) =
∑
n≥1

Q?n(t) =
〈
N−1
t |tN = t

〉
. (4.64)

In Laplace space, the numerator of this expression is

Q̂(s) =
∑
n≥1

f̂tn(s)

n
=
∑
n≥1

ρ̂(s)n

n
,

= − ln(1− ρ̂(s)), (4.65)

which is (4.62) above. The last step consists in Laplace inverting with respect to s,
then dividing by U(t). We thus find, at large times,

Q?(t) ≈ πθ

sinπθ

(τ0
t

)θ
≈ 1

〈Nt〉
, (4.66)

where the right side pertains to the unconstrained case (see (4.11)). There is no
universality of the result with respect to the choice of distribution ρ(τ) since the
microscopic scale τ0 is still present. We also recall, for comparison, that QIII(t) ∼
ln t/tθ [3].

4.8. Narrow distribution of intervals

The aim of this subsection is to determine the distribution of τ?max(t) and the
probability of record breaking Q?(t) for a narrow distribution of intervals, taking
the exponential distribution of intervals, ρ(τ) = e−τ , as an example. We first note
that, by inversion of (4.5), we have U(t) = 1 for t > 0.

The computation of 〈τ?max(t)〉 relies on (4.36) and (4.38). We find∫ ∞
0

d` L
t
F (t; `) =

1

s
ln

(
1 +

1

s

)
, (4.67)

whose inverse is ∫ ∞
0

d` F (t; `) = E(t) ≡
∫ t

0

du
1− e−u

u
. (4.68)

At large times, E(t) ≈ ln t+ γ, where γ is the Euler constant. we finally obtain

〈τ?max(t)〉 = E(t) ≈ ln t+ γ. (4.69)

We also have, for s small and ` large,

L
t
F (t; `) =

1

s+ e−`
, (4.70)

which by inversion yields

F (t; `) = F ?(t; `) ≈ e−e−(`−ln t)

. (4.71)

So

τ?max(t) ≈ ln t+ ZG, (4.72)
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where ZG follows the standard Gumbel distribution, with 〈ZG〉 = γ. This behaviour
coincides with that found for the three sequences (3.9) in [3]. We also find, from (4.65)
that Q?(t) ≈ 1/t. Since 〈Nt|tN = t〉 ≈ t, as can be inferred from (4.9), Q?(t) behaves
qualitatively as if the Nt intervals were i.i.d. random variables. This is akin to what
was found for the cases of QI(t) and QIII(t), the probabilities of record breaking for
the sequences I and III [3].

4.9. Broad distribution of intervals with θ > 1

We first find, by inversion of (4.5), that

U(t) ≈ 1

〈τ〉
+

τθ0
(θ − 1)〈τ〉2

t1−θ. (4.73)

We then compute the average number of renewals, using the first equality in (4.9).
We obtain, after division by 1/〈τ〉,

〈Nt|tN = t〉 ≈ t

〈τ〉
+

2τθ0
(θ − 1)(2− θ)〈τ〉2

t2−θ. (4.74)

We restart from (4.22) in order to compute the distribution of τ?max(t). Following
the asymptotic analysis made in [3], we find

L
t
F (t; `) ≈ 1

〈τ〉
1

s+ (`/τ0)−θ/〈τ〉
, (4.75)

hence

F (t; `) ≈ 1

〈τ〉
e−t/〈τ〉(`/τ0)−θ . (4.76)

Dividing this expression by the leading order 1/〈τ〉 in (4.73), we have

F ?(t; `) ≈ e−t/〈τ〉(`/τ0)−θ . (4.77)

Setting

τ?max(t) = τ0

(
t

〈τ〉

)1/θ

Zt, (4.78)

we have, as t→∞, Zt → ZF , with limiting distribution

Prob(ZF < x) = e−1/xθ (4.79)

which is the Fréchet law. Therefore

〈τ?max(t)〉 ≈ τ0
(

t

〈τ〉

)1/θ

〈ZF 〉︸ ︷︷ ︸
Γ(1−1/θ)

. (4.80)

This is exactly the result found for the three sequences (3.14) in ref. [3]. The tied-down
condition does not change the asymptotic distribution of the longest interval if θ > 1.
Finally, from (4.65) we find

Q?(t) ≈ 〈τ〉
t
, (4.81)

which has therefore the same time dependence as QIII(t) [3].
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5. Discussion

The tied-down renewal process studied in the present paper is equivalent to the stable
process considered in [1] if the tail exponent of the distribution of intervals is comprised
between 0 and 1. The results of [1] concerning the statistics of the longest interval are
thus recovered in a simple manner. This study is extended in several directions such as
the statistics of the number of intervals or the probability of record breaking, both for
the tied-down random walk, the Brownian bridge and the tied-down renewal process.
We also discuss the cases of a narrow distribution of intervals or of a distribution
with a tail exponent θ > 1. A summary of some important results for the tied-down
random walk and the tied-down renewal process (for 0 < θ < 1) is given in table 2.

tied-down random walk tied-down renewal proc.

〈MN |S2N = 0〉 ≈
√
πN 〈Nt|tN = t〉 ≈ Γ(θ)

Γ(1−θ)Γ(2θ)

(
t
τ0

)θ
〈R(k)?〉 = 2〈R(k)III〉 〈R(k)?〉 = 1

θ 〈R
(k)III〉

Q?N ≈
√
π

2
√
N

Q?(t) ≈ πθ
sinπθ

(
τ0
t

)θ
Table 2: Some important results for the tied-down random walk of section 2 (starting
and ending at the origin) and the continuum renewal process of section 4 (with
0 < θ < 1). The results in the left column correspond, respectively, to the mean
number of interval (2.47), a generalisation of (2.33) for the asymptotic mean ratio
of the longest interval to the total length of time, and the probability of record
breaking (2.56). Those in the right column correspond to the equivalent quantities
(4.10), (4.42), and (4.66), in the continuum formalism.

Some related works, that we now review, can be put in perspective with the
present study.

(i) As mentioned in the course of this study, there are close connections between the
tied-down renewal process, including the Brownian bridge, and the cases (I, II
and III) considered in [3, 11]. In particular, the connection with case III is clearly
seen in table 2.

(ii) In the recent past, the distribution of the longest interval for the tied-down
random walk and the Brownian bridge of section 2 was investigated in [4]. The
results of this analysis can be usefully completed by the studies made in [1, 7, 9]
and in the present work.

(iii) Recently, a study of the longest domain in a specific one-dimensional system
of Ising spins has been given in [5]. In this model, introduced in [18, 19], the
probability density associated to the Boltzmann weight of a spin configuration can
be expressed in terms of the lengths of domains. It turns out that, at criticality,
this density can be seen as the discrete version (2.34) of the tied-down conditional
density (4.2), for a particular choice of distribution of intervals f`. Thus, the
expression given in [5] for the distribution of the longest spin domain at criticality
(with 0 < θ < 1) coincides with the distribution of the longest interval (4.30) for
the tied-down renewal process, as a consequence of the universality of this result
with respect to the choice of distribution of intervals ρ(τ), when 0 < θ < 1, as
demonstrated in the present work.
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In a companion paper [20] we will complete the study done here by addressing the
statistics of other quantities, such as the occupation time or the two-time correlation
function.
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Appendix A. Notations

The distribution function of the random variable X is denoted by

FX(x) = Prob(X ≤ x). (A.1)

If X is a continuous random variable, it has a density

fX(x) =
dFX(x)

dx
. (A.2)

For several random variables we have

FX1,X2,...(x1, x2, . . .) = Prob(X1 ≤ x1, X2 ≤ x2, . . .), (A.3)

with associated density fX1,X2,...(x1, x2, . . .). When permitted by the context, we will
omit the variables in subscript.

Let X and Y two random variables with joint density fX,Y (x, y) and marginal
densities fX(x) and fY (y). For discrete random variables the conditional distribution
function of X given Y = y is simply

Prob(X ≤ x|Y = y) = FX|Y (x|y) =
Prob(X ≤ x, Y = y)

Prob(Y = y)
. (A.4)

For continuous random variables, the conditional distribution function of X given
Y = y is defined as follows [17],

Prob(X ≤ x|Y = y) = FX|Y (x|y) =

∫ x

0

du
fX,Y (u, y)

fY (y)
. (A.5)

Therefore the conditional density reads

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

fX,Y (x, y)∫
dx fX,Y (x, y)

. (A.6)

Appendix B. First return probability fn for the simple random walk

Let

un = Prob(S2n = 0) = (−1)n
(
− 1

2

n

)
=

1

22n

(
2n

n

)
, (B.1)

and

fn = Prob(first return to zero occurs at time 2n) = (−1)n−1

( 1
2

n

)
. (B.2)

Thus, u0 = 1, u1 = 1
2 , u2 = 3

8 . . . ; f1 = 1
2 , f2 = 1

8 , f3 = 1
16 . . . . These probabilities obey

fn = un−1 − un, and their generating functions are

ũ(z) =
∑
n≥0

unz
n =

1√
1− z

, (B.3)

f̃(z) =
∑
n≥0

fnz
n = 1−

√
1− z. (B.4)

At large n,

un ≈
1√
πn

, fn ≈
1

2
√
πn3/2

. (B.5)
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Appendix C. The tied-down conditional density

Let us add some details on the definition of the tied-down conditional density (4.2)
given in the bulk of the paper. Consider the conditional probability

Prob(~τ ≤ ~̀, Nt = n|tN = y), (C.1)

where ~̀= {`1, . . . , `n} is a realization of the sequence of intervals

~τ = {τ1, . . . , τN}. (C.2)

The associated conditional density is a generalization of (A.6), with X = {~τ ,Nt} and
Y = tN ,

f~τ,Nt|tN (`1, . . . , `n, n|y) =
f~τ,Nt,tN (t; `1, . . . , `n, n, y)

ftN (y)
. (C.3)

The numerator is explicitly obtained by multiplying f III(·) (given by (3.12)) by
δ(
∑
`i − y), i.e.,

f~τ,Nt,tN (t; `1, . . . , `n, n, y)

= ρ(`1) . . . ρ(`n)

∫ ∞
0

da p0(a) δ
( n∑
i=1

`i + a− t
)
δ
( n∑
i=1

`i − y
)
. (C.4)

The denominator, ftN (t; y), obtained from the numerator by integration on `1, . . . , `n
and summation on n, is the probability density of the random variable tN . The double
Laplace transforms with respect to t and y of the numerator and of the denominator
are respectively given in (C.9) and (C.10).

The tied-down conditional density (C.6) is defined as (C.3), however with the
condition that tN = t. Setting y = t in (C.4) amounts to suppressing the first delta
function in the right side of the equation. The remaining integral upon a is equal to
1, so

f~τ,Nt,tN (t; `1, . . . , `n, n, y = t) = ρ(`1) . . . ρ(`n)δ
( n∑
i=1

`i − t
)
. (C.5)

The same result can also be obtained by setting a = 0 in (3.10). Thus, using a shorter
notation for the tied-down conditional density, we have

f?(t; `1, . . . , `n, n) = f~τ,Nt|tN (t; `1, . . . , `n, n|y = t)

=
ρ(`1) . . . ρ(`n)δ (

∑
`i − t)

ftN (t; y = t)
, (C.6)

where the denominator reads§

ftN (t; y = t) =
∑
n≥0

∫ ∞
0

d`1 . . . d`n ρ(`1) . . . ρ(`n)δ
( n∑
i=1

`i − t
)

=
∑
n≥0

ftn(t), (C.7)

denoting by ftn(t) the density of the sum tn = τ1 + · · ·+ τn, with n fixed. In the bulk
of the paper we use the shorter notation

U(t) ≡ ftN (t; y = t) (C.8)

for the edge value of the probability density of tN at its maximal value y = t.

§ n = 0 corresponds to δ(t) in (C.5), and therefore to 1 in Laplace space.
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Remark Laplace transforming (C.4) with respect to t and y (with s conjugate to t
and u conjugate to y), yields

L
t,y
f~τ,Nt,tN (t; `1, . . . , `n, n, y)

= ρ(`1)e−(s+u)`1 . . . ρ(`n)e−(s+u)`1
1− ρ̂(s)

s
. (C.9)

Then summing upon the `i and n yields the double Laplace transform of ftN (t; y) [2]

L
t,y
ftN (t; y) =L

t
〈e−utN 〉 =

1

1− ρ̂(s+ u)

1− ρ̂(s)

s
. (C.10)

In order to get the edge value of this density at y = t, we invert (C.10),

ftN (t; y) =

∫
du

2iπ
euy
∫

ds

2iπ
est

1

1− ρ̂(s+ u)

1− ρ̂(s)

s
, (C.11)

we then set y = t and w = s+ u, yielding, with the shorter notation (C.8),

U(t) =

∫
dw

2iπ
ewt

1

1− ρ̂(w)

∫
ds

2iπ

1− ρ̂(s)

s
. (C.12)

The second integral is equal to 1, since it represents p0(t) for t = 0. We thus
recover (4.5).

Appendix D. Second, third, . . . , longest intervals

For independent, identically distributed (i.i.d.) random variables X1, . . . , Xn, the
distribution function of the k−th largest random variable X(k) can be obtained by
noting that the event {X(k) ≤ `} means that at most k − 1 variables Xi are larger
than `, so

F (k)(`) = Prob(X(k) ≤ `) =

k−1∑
j=0

Prob(j r. v. Xi > `) (D.1)

=

k−1∑
j=0

(
n

j

)
F (`)jF (`)n−j , (D.2)

where F (`) = Prob(X ≤ `), F (`) = Prob(X > `).
For the intervals τ1, . . . , τN , the conditional distribution function

F (k)?(t; `) = Prob(τ (k)?
max ≤ `|tN = t) (D.3)

still obeys (D.1). We have likewise, using (C.6),

Prob(j r. v. τi > `) =
1

U(t)
(D.4)

∑
n≥0

(
n

j

)∫ ∞
`

d`1 ρ(`1) · · ·︸ ︷︷ ︸
∫ `

0

d`1 ρ(`1) · · ·︸ ︷︷ ︸ δ
( n∑
i=1

`i − t
)
, (D.5)

where the first group of integrals is done j times, and the second group n − j times.
Summing on j and Laplace transforming with respect to time, we obtain for the
numerator of F (k)?(t; `), denoted by

F (k)(t; `) = Prob(τ (k)?
max ≤ `, tN = t), (D.6)
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the expression

L
t
F (k)(t; `) =

k−1∑
j=0

∑
n≥0

(
n

j

)
[ρ̂(s)− ρ̂(s; `)]

j
[ρ̂(s; `)]

n−j
(D.7)

=

k−1∑
j=0

[ρ̂(s)− ρ̂(s; `)]
j

[1− ρ̂(s; `)]
j+1

=
1

1− ρ̂(s)

(
1−

[
ρ̂(s)− ρ̂(s; `)

1− ρ̂(s; `)

])k
. (D.8)

In the scaling limit of large times, i.e., s → 0, using the asymptotic estimate (4.26),
this expression becomes

L
t
F (k)(t; `) =

1−
(
f̂ III
V (s`)

)k
asθ

. (D.9)

By Laplace inversion with respect to s, and division by (4.6), we obtain Wendel’s
result (4.31). A similar computation is done in [5] for the case of a specific choice of
discrete distribution of intervals.

We can finally derive (4.32) by the same methods. We start from the distribution
f I(·), given by (3.10), for the Nt + 1 intervals τ1, . . . , τN , At. In order to evaluate the
probability of having j of these random variables larger than `, we have to separate
the cases where At belongs to the group of random variables smaller than ` or to the
group of random variables larger than `. Hence

Prob(j r. v. (τi and At) > `) =∑
n≥0

(
n

j − 1

)∫ ∞
`

d`1 ρ(`1) · · ·︸ ︷︷ ︸
∫ `

0

d`1 ρ(`1) · · ·︸ ︷︷ ︸
∫ ∞
`

da p0(a) δ
( n∑
i=1

`i + a− t
)

+

∑
n≥0

(
n

j

)∫ ∞
`

d`1 ρ(`1) · · ·︸ ︷︷ ︸
∫ `

0

d`1 ρ(`1) · · ·︸ ︷︷ ︸
∫ `

0

da p0(a) δ
( n∑
i=1

`i + a− t
)
. (D.10)

In the first line of the right side, the first group of integrals is done j − 1 times, and
the second group n− j + 1 times, with j ≥ 1, while in the second line, the first group
of integrals is done j times, and the second group n− j times, with j ≥ 0. The rest of
the computation follows as above, using the asymptotic estimates (4.25) and (4.26).
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