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Longest interval between zeros of the tied-down random walk, the Brownian bridge and related renewal processes

The probability distribution of the longest interval between two zeros of a simple random walk starting and ending at the origin, and of its continuum limit, the Brownian bridge, was analyzed in the past by Rosén and Wendel, then extended by the latter to stable processes. We recover and extend these results using simple concepts of renewal theory, which allows to revisit past or recent works of the physics literature. We also discuss related problems and open questions.

Introduction

Problems that can be recast in the language of renewal processes appear recurrently in a number of studies of statistical physics without necessarily being recognized as such. It is therefore useful to have access to this body of knowledge in simple terms. This is one of the aims of the present study, where we revisit the question, investigated in the past by Wendel [1], of the longest interval between zeros of the Brownian bridge, seen as the continuum limit of the tied-down random walk (the simple random walk starting and ending at the origin), and of its generalization by a self-similar process with index 0 < θ < 1 (the Brownian bridge corresponding to θ = 1/2). We recover his results using simple methods systematically developed in former studies of renewal processes [2,3]. We then extend this study in new directions and tackle open problems. Finally we use this knowledge to put several related works [3,4,5] in perspective.

The detailed content of the paper is as follows. We start by recalling Rosén's results for the tied-down random walk and its continuum limit, the Brownian bridge, as reported in [1]. We detail the derivation of this continuum limit and analyze the rescaled distributions of the longest interval and of its inverse, as well as their averages. We extend this study to the computation of the number of intervals between zeros of the walk and of the probability of record breaking, that is, the probability that the last interval be the longest (section 2). In section 3 we give a reminder on renewal processes. We then define the tied-down renewal process, which is a generalization of the tieddown random walk, or its continuum limit, the Brownian bridge (section 4). When the tail index of the distribution of intervals is less than 1, this process corresponds to the tied-down semi-stable process considered in [1]. We analyze the rescaled distributions of the longest interval and of its inverse, as well as other characteristics of this process, such as the number of events, the statistics of a single interval and the probability of
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Figure 1. A tied-down random walk made of 2N = 30 steps, with M 15 = 5 intervals between zeros, τ 1 , . . . , τ 5 , taking the values 2, 6, 18, 2, 2, respectively. In this example, the longest interval I 15 ≡ τ 3 . The ticks on the x-axis correspond to two time-steps.

record breaking. We finally consider the cases of a narrow distribution of intervals or a broad distribution with tail index θ > 1. We close by revisiting past or recent relevant studies [3,4,5]. Some definitions and derivations are relegated to the appendices.

2. The tied-down random walk

Rosén's results

We first recall Rosén's results for the tied-down random walk as reported by Wendel in [1], keeping his notations. Consider the sum S n of n independent random variables taking the values ±1, with probabilities 1/2. The random walk S n is conditioned to be 'tied down' at time 2N , i.e., to return to the origin at that time. Let I N be the longest interval between zeros of S n , during time 0 ≤ n ≤ 2N . Define the joint probability

v N,k = Prob(I N ≤ 2k, S 2N = 0), v 0,k = 1. (2.1)
The quantity of interest is the conditional probability

Prob(I N ≤ 2k|S 2N = 0) = v N,k u N , (2.2) 
where u N is the probability of return of the walk at time 2N (see Appendix B)

u N = Prob(S 2N = 0) = v N,∞ . (2.3) 
The joint probability v N,k satisfies the renewal equation

v N,k = k n=1 f n v N -n,k , (2.4) 
where f n is the probability of first return to zero at time 2n (see Appendix B). From (2.4) we deduce that the generating functions

ṽk (z) = N ≥0 v N,k z N , fk (z) = k n=1 f n z n (2.5) are related by ṽk (z) = 1 1 -fk (z) . (2.6)
The result (2.10) below, due to Rosén, as stated in [1], gives the continuum limit, at large times 2N , of the conditional probability (2.2), using (2.6). This conditional probability reads, using a star to indicate the tied-down condition,

F R (r) = lim N →∞ Prob(R N ≤ r|S 2N = 0) = lim N →∞ v N,k=N r u N , (2.7) 
also equal to

F V (v) = lim N →∞ Prob(V N > v|S 2N = 0), (2.8) 
the bar referring to the complementary distribution function, with the following notations:

R N = I N 2N , R = lim N →∞ R N , r = k N . V N = 1 R N , V = 1 R , v = N k = 1 r , (2.9) 
and where r and v are real variables, with 0 < r < 1 and v > 1. According to [1], we have

F R (r) = F V (v) = π √ v ∞ k=-∞ (-2x k )e x k (1+v) , (2.10) 
= π √ v f II V (v), (2.11) 
denoting by f II V (v) the sum on the right side of (2.10), and where the x k are the zeros of the function

D(x) = 1 + √ πx e x erf √ x.
(2.12)

These zeros have all negative real parts, for instance

x 0 = -0.854 . . . , x ±1 = -4.248 . . . ± i 6.383 . . . , x ±2 = -5.184 . . . ± i 12.885 . . . (2.13) and so on. Let us note that the Laplace transform of f II V (v) with respect to v is given by

f II V (x) = e x 1 + √ πx e x erf √ x , (2.14) 
where the variable x is conjugate to v. This can be seen by taking the inverse Laplace transform of f II V (x) and noting that the residues of this function at the poles x k are equal to -2x k e x k (see (4.45) in section 4.6), which yields f II V (v) back. We can now interpret f II V (v) as the density of a random variable, because it is a positive function, normalised to unity since f II V (0) = 1. The precise meaning of this density is given in section 3.3.

Proof of (2.10)

Let us now detail how to derive the continuum scaling limit (2.10) from (2.6), by an asymptotic analysis of the latter at large times. Since

f n = u n-1 -u n (see Appendix B), we have 1 -fk (z) = u k z k + (1 -z) k-1 n=0 u n z n , (2.15) 
then setting z = e -s and using (B.5), we obtain, when k → ∞, s → 0, with x = ks fixed,

ṽk (z) = 1 1 -fk (z) ≈ 1 √ s 1 (πks) -1/2 e -ks + erf √ ks ≈ √ πk e x 1 +
√ πx e x erf √ x .

(2.16)

It is now simple to infer (2.10) from (2.16). In the continuum scaling limit (2.9), informally denoting the generating function ṽk (z) as a Laplace transform with respect to N (considered now as a real variable), yields

ṽk (z) =L N Prob (R N ≤ k/N, S 2N = 0) =L N Prob (V N > N/k, S 2N = 0) . (2.17)
Rescaling N by k, the left side becomes the Laplace transform with respect to v, with x conjugate to v,

L v Prob(V N > v = N/k, S 2N = 0) ≈ π k f II V (x), (2.18) 
hence

Prob(V N > v, S 2N = 0) ≈ π k f II V (v). (2.19)
Dividing both sides by u N ≈ 1/ √ πN leads to (2.10).

Characterization of the density

The large v behaviour of the density f V (v) can be read off from (2.10). At leading order

F V (v) ≈ 2|x 0 |π √ v e -|x0|v , (2.20) 
from which f V (v) ensues by derivation,

f V (v) ≈ 2π x 2 0 √ v e -|x0|v . (2.21)
As a consequence, f R (r) has an essential singularity at the origin,

f R (r) ≈ 2π x 2 0 e -|x0|/r r 5/2 . (2.22)
The density f V (v) is a piece-wise continuous function, as is also the case of the densities [3,6] (f I V and f III V are defined later). The behaviour for 1 < v < 2 is given in [1]: hence f R (r) = r -3/2 /2 for 1/2 < r < 1. The reasoning is again due to Rosén. Consider
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When I N = 2k > N , then the longest interval is unique. This is case in figure 1, where I 15 = 18. Decomposing a path into three contributions, we obtain

w N,k = N -k n=0 u n f k u N -n-k = f k , (2k > N ), (2.25) 
the last equality resulting from m j=0 u j u m-j = 1. In figure 1 these three contributions correspond to τ 1 + τ 2 , τ 3 , and τ 4 + τ 5 . So, using (B.5), we have

F R (r) = 1 -lim N →∞ N k=N r w N,k u N (2.26) = 1 - 1 r dy 1 2y 3/2 = 2 - 1 r 1/2 , (1/2 < r < 1).
(2.27) This result will be generalized in section 4.6. A method for the determination of f V (v) in the successive intervals (i, i + 1) is given in [1]. Complementary information on this issue can be found in [4,7,8,9]. Figure 2 depicts the density f V (v) obtained by extracting v N,k from (2.6) by formal computation, with 0 ≤ k ≤ N , for N = 40 and N = 80, then rescaling appropriately this sequence. Figure 3 depicts the density f R (r) obtained from the same data. The scaling is already good for these rather small values of N . The dashed curves corresponds to the predictions (2.21), (2.22) and (2.23). It is striking to observe the quality of the two former ones for values of v or r beyond their a priori ranges of validity. The discontinuity of the derivative at v = 2 is clearly visible.

Average longest interval

Since

Prob(I N ≤ 2k, S 2N = 0) + Prob(I N > 2k, S 2N = 0) = u N , (2.28) 
the generating function of the sum adds to 1/ √ 1 -z. In the continuum limit we thus find, using (2.16), that

L N Prob(I N > 2k, S 2N = 0) ≈ 1 √ s 1 - √ πxe x erfc √ x 1 + √ πxe x erf √ x . (2.29) Defining f III V (x) = 1 - √ πx e x erfc √ x 1 + √ πx e x erf √ x = 1 - √ πx f II V (x), (2.30) 
whose meaning is given in section 3.3, we have

L N I N , S 2N = 0 = L N ∞ 0 d(2k) Prob(I N > 2k, S 2N = 0) = 2 s 3/2 ∞ 0 dx f III V (x) = 2 s 3/2 0.2417 . . . . (2.31)
By inversion of the Laplace transform and division by u N , we obtain .32) and finally

I N |S 2N = 0 ≈ 4N × 0.2417 . . . . ( 2 
R = lim N →∞ R N |S 2N = 0 = 0.4834 . . . . (2.33)
We shall comment and generalize this result later (cf. (4.40)).

The full joint probability for the tied-down random walk

An alternate method to recover the results above consists in considering the full joint probability of a configuration of the walk, in terms of the successive intervals τ 1 , τ 2 , . . . between zeros. Moreover this allows to investigate new quantities, such as the number of intervals up to time 2N or the probability of record breaking, i.e., the probability that the last interval be the longest. This formalism will also serve as a preparation for the sequel, where we consider the continuum renewal process generalizing the case of the random walk. Let M N be the number of intervals up to time 2N . This random variable takes the values m = 0, 1, 2, . . .. (For the tied-down walk, m = 0 necessarily implies 2N = 0.) A configuration of the tied-down walk is specified by {τ 1 , . . . , τ M N , M N }, whose realization is denoted by {2 1 , . . . , 2 M N , m}. These definitions are illustrated in figure 1. The conditional probability for the walk to be tied-down is therefore

Prob(τ 1 = 2 1 , . . . , τ M N = 2 M N , M N = m|S 2N = 0) = f 1 . . . f m δ( m i=1 i , N ) u N ,(2.34)
where the denominator, obtained from the numerator by summing on the i ≥ 1 and m, is precisely the probability u N of return of the walk at time 2N ,

u N = m≥0 1... m f 1 . . . f m δ m i=1 i , N . (2.35) 
This can be checked by taking the generating function of the right side of (2.35)

N ≥0 z N m≥0 1... m f 1 . . . f m δ m i=1 i , N = m≥0 f (z) m (2.36) = 1 1 -f (z) = ũ(z), (2.37)
which is indeed the generating function of the u N . This can be alternatively be checked as follows. Let us denote the sum of the random number M N of intervals by

t M N = τ 1 + • • • + τ M N , (2.38) 
and the corresponding sum when M N is fixed equal to m by

t m = τ 1 + • • • + τ m . (2.39)
Then, clearly,

Prob(t m = 2N ) = Prob(M N = m, S 2N = 0) = 1... m f 1 . . . f m δ m i=1 i , N . (2.40) Hence, summing on m, m≥0 Prob(t m = 2N ) = Prob(t M N = 2N ) ≡ u N .
(2.41)

We can now easily express the probability distribution of the number of intervals (in the tied-down case) as

p m (N ) = Prob(M N = m|S 2N = 0) = Prob(t m = 2N ) u N (2.42) = f (z) m N u N , (2.43) 
where the notation [•] N means the N -th coefficient of the series inside the brackets.

In particular, the mean number of intervals is

M N |S 2N = 0 = m≥0 m p m (N ). (2.44)
The generating function of the numerator of this expression reads

m≥0 m f (z) m = f (z) 1 -f (z) 2 . (2.45) 
This yields

M N |S 2N = 0 = 1 u N -1 = 2 2N 2N N -1. (2.46)
Hence, at long times 2N ,

M N |S 2N = 0 ≈ √ πN .
(2.47) More generally, in the continuum limit where the series in the expressions above are dominated by z close to 1, the distribution p m (N ) has the scaling form

p m (N ) ≈ 1 2 √ N y e -y 2 /4 , y = m √ N , (2.48) 
from which the asymptotic expressions of the higher moments ensue,

(M N ) p |S 2N = 0 = 2 p-1 N p/2 p Γ p 2 .
(2.49)

The longest interval

Knowing (2.34) yields immediately the conditional probability (2.2)

Prob(I N ≤ 2k|S 2N = 0) = v N,k u N = 1 u N m≥0 k 1=1 . . . k m=1 f 1 . . . f m δ m i=1 i , N . (2.50)
Taking the generating function of the numerator leads again to (2.6).

Probability of record breaking

When dealing with the successive extremes, or records, taken by a series of random variables, an important indicator of the statistics of records is the probability that the last random variable is the largest, named the probability of record breaking. For independent, identically distributed (i.i.d.) random variables this probability is equal to the inverse of the number of random variables in the series [10].

In the present case where the intervals are not independent, the determination of the probability of record breaking for the tied-down random walk, i.e.,

Q N = Prob(I N = τ M N |S 2N = 0), ( 2 
.51) proceeds as follows (see [11] for similar reasonings). We have

Q N = m≥1 Prob(I N = τ M N , M N = m|S 2N = 0) = Q N u N , (2.52) 
where

Q N = m≥1 Q N,m
, and

Q N,m = m≥1 m 1=1 . . . m m-1=1 f 1 . . . f m δ m i=1 i , N . (2.53)
Taking the generating function of this quantity and summing on m we obtain

Q(z) = N ≥0 Q N z N = ≥1 f z 1 -f (z) , (2.54) 
where f (z) is defined in (2.5). This quantity appears in the appendix of [11], where it is found that, for z → 1,

Q(z) ≈ -ln √ 1 -z + c, c = 1 2 γ + ln 4 π ≈ 0.409, (2.55) 
(γ is the Euler constant). By inversion and division by u N , we thus finally obtain

Q N ≈ √ π 2 √ N .
(2.56) Remark As recalled above, for i.i.d. random variables the probability of record breaking is equal to the inverse of the number of variables. The same holds if the random variables are exchangeable. In the present case, our intuition is that the intervals τ 1 , . . . , τ M N all play the same role. So we are led to compute the average of the inverse of the number of intervals M N . Using (2.42), we have

1 M N = m≥1 p m (N ) m = -ln √ 1 -z N u N = 1 2N u N . (2.57)
This expression is indeed asymptotically equal to (2.56). As we shall see in section 4.7, the same holds, not only asymptotically, but also at any time for the corresponding continuum renewal process.

A reminder on renewal processes

The present section and the next one generalize the tied-down random walk section 2 (which is actually a renewal process in discrete time) to a renewal process in continuous time, with an arbitrary distribution of intervals [START_REF] Cox | Renewal theory[END_REF][START_REF] Feller | An Introduction to Probability Theory and its Applications Volumes 1&2[END_REF]. We refer to table 1 for the correspondences between the notations for the discrete random walk and the continuum renewal process presented below.

Random walk

Renewal proc. 2N t 2k I N τ max (t) u N U (t) v N,k F (t; ) f n ρ(τ ) M N N t Prob(t m = 2N ) f tn (t) w N,k w(t; )
Table 1: Correspondences between the notations for the discrete random walk of section 2 and the continuum renewal process of sections 3 and 4.

Definitions and observables

We start afresh by reminding the definitions and notations used for renewal processes, following [2]. Events occur at the random epochs of time t 1 , t 2 , . . ., from some time origin t = 0. These events are for instance the zero crossings of some stochastic process, (or zeros as for the simple random walk of section 2.1). We take the origin of time on a zero crossing. When the intervals of time between events, τ 1 = t 1 , τ 2 = t 2 -t 1 , . . ., are independent and identically distributed random variables with common density ρ(τ ), the process thus formed is a renewal process.

The probability p 0 (t) that no event occurred up to time t is simply given by the tail probability:

p 0 (t) = Prob(τ 1 > t) = ∞ t dτ ρ(τ ). (3.1)
The density ρ(τ ) can be either a narrow distribution with all moments finite, in which case the decay of p 0 (t), as t → ∞, is faster than any power law, or a distribution characterized by a power-law fall-off with index θ > 0

p 0 (t) = ∞ t dτ ρ(τ ) ≈ τ 0 t θ , (3.2) 
where τ 0 is a microscopic time scale. If θ < 1 all moments of ρ(τ ) are divergent, if 1 < θ < 2, the first moment τ is finite but higher moments are divergent, and so on.

In Laplace space, where s is conjugate to τ , for a narrow distribution we have

L τ ρ(τ ) = ρ(s) = ∞ 0 dτ e -sτ ρ(τ ) = s→0 1 -τ s + 1 2 τ 2 s 2 + • • • (3.3) For a broad distribution, (3.2) yields ρ(s) ≈ s→0 1 -a s θ (θ < 1) 1 -τ s + a s θ (1 < θ < 2), (3.4) 
and so on, where

a = |Γ(1 -θ)|τ θ 0 . (3.5) 
From now on, unless otherwise stated, we shall only consider the case 0 < θ < 1.

The quantities naturally associated to a renewal process [START_REF] Cox | Renewal theory[END_REF][START_REF] Feller | An Introduction to Probability Theory and its Applications Volumes 1&2[END_REF]2] are the following. The number of events which occurred between 0 and t, i.e., the largest n such that t n ≤ t, is a random variable denoted by N t . The time of occurrence of the last event before t, that is of the N t -th event, is therefore the sum of a random number of random variables ‡

t N = τ 1 + • • • + τ N . (3.6) 
The backward recurrence time A t is defined as the length of time measured backwards from t to the last event before t, i.e.,

A t = t -t N . (3.7)
It is therefore the age of the current, unfinished, interval at time t. Finally the forward recurrence time (or excess time) E t is the time interval between t and the next event

E t = t N +1 -t. (3.8) 
We have the simple relation

A t + E t = t N +1 -t N = τ N +1 .

Joint probability densities

Consider the following sequences of intervals [3] (I) : {τ 1 , τ 2 , . . . , τ N , A t },

(II) : {τ 1 , τ 2 , . . . , τ N , τ N +1 }, (III) : {τ 1 , τ 2 , . . . , τ N }. (3.9) 
To each of these sequences, supplemented by N t , is associated a joint probability density [2,3]. For the first sequence, this joint probability density is, with the notations of Appendix A,

f τ ,At,Nt (t; 1 , . . . , n , a, n) = ρ( 1 ) . . . ρ( n ) p 0 (a) δ n i=1 i + a -t . (3.10)
Likewise, the joint probability density of τ 1 , . . . , τ N +1 , N t is

f τ ,τ N +1 ,Nt (t; 1 , . . . , n+1 , n) = ρ( 1 ) . . . ρ( n+1 ) I(t n < t < t n + n+1 ), (3.11) 
where I(•) = 1 or 0 if the condition inside the parentheses is satisfied or not. Finally, for the third sequence, the joint probability density of τ 1 , . . . , τ N , N t is

f τ ,Nt (t; 1 , . . . , n , n) = ρ( 1 ) . . . ρ( n ) ∞ 0 da p 0 (a) δ n i=1 i + a -t , (3.12) 
which can alternatively be obtained from (3.10) or (3.11) by summing on a or n+1 , respectively. For short, we denote the joint probability densities (3.10)-(3.12) by

f I (t; 1 , . . . , n , a, n) = f τ ,At,Nt (t; 1 , . . . , n , a, n), f II (t; 1 , . . . , n+1 , n) = f τ ,τ N +1 ,Nt (t; 1 , . . . , n+1 , n), f III (t; 1 , . . . , n , n) = f τ ,Nt (t; 1 , . . . , n , n). (3.13) 
The explicit dependence in time t, which acts as a parameter in these densities, is enhanced by the notations above.

Longest interval

To each of these sequences corresponds a longest interval, denoted by

τ I max (t) = max(τ 1 , τ 2 , . . . , τ N , A t ), τ II max (t) = max(τ 1 , τ 2 , . . . , τ N , τ N +1 ), τ III max (t) = max(τ 1 , τ 2 , . . . , τ N ). (3.14)
It turns out that the ratios

R α = lim t→∞ τ α max (t) t , V α = 1 R α , (α = I, II, III) (3.15)
have limiting distributions, whose densities are denoted by f α R (r) and f α V (v). Explicit expressions for the Laplace transforms with respect to v of the latter, with x conjugate to v, are as follows:

f I V (x) = 1 1 + x θ e x x 0 du u -θ e -u = 1 1 F 1 (1, 1 -θ, x) , (3.16 
)

f II V (x) = e x f I V (x), (3.17) 
f III V (x) = 1 -x θ Γ(1 -θ) f II V (x), (3.18) 
where 1 F 1 (1, 1 -θ, x) is a confluent hypergeometric function, simply related to the incomplete gamma function

Γ(θ, x) = ∞ x du u θ-1 e -u , (3.19) 
as follows,

1 F 1 (1, 1 -θ, x) = e x x θ [Γ(1 -θ) + θΓ(-θ, x)] . (3.20) 
The functions f II V (v) and f III V (v) encountered in (2.11) and (2.30), respectively, are precisely the densities of the random variables V II and V III defined for the second and third sequences (with θ = 1/2).

The expression of the Laplace transform of the density (3.16) was originally found in [6], then derived by another method in [3], which also addresses the same question for the two other sequences II and III. Related studies can also be found in [11,[START_REF] Majumdar | [END_REF]15] in the context of record statistics of random walks and renewal processes.

The tied-down renewal process

The tied-down renewal process is defined by the condition {t N = t}, or equivalently by the condition {A t = 0}, which both express that the N t -th event occurred at time t. This process generalizes the tied-down random walk of section 2, or its continuum limit, the Brownian bridge. The tied-down semi-stable process of order 0 < θ < 1 considered in [1] corresponds to the tied-down renewal process considered here when the tail index of the density ρ(τ ) is 0 < θ < 1.

The tied-down conditional density

The tied-down conditional density, denoted for short by

f (t; 1 , . . . , n , n) ≡ f τ ,Nt|t N (t; 1 , . . . , n , n|y = t), (4.1) 
is a generalization of (2.34) (see Appendix C for more details). Its expression is

f (t; 1 , . . . , n , n) = ρ( 1 ) . . . ρ( n )δ ( i -t) U (t) , (4.2) 
where the denominator is obtained from the numerator by integration on the i and summation on n,

U (t) = n≥0 ∞ 0 d 1 . . . d n ρ( 1 ) . . . ρ( n )δ n i=1 i -t = n≥0 f tn (t), (4.3) 
denoting by f tn (t) the density of the sum 

t n = τ 1 + • • • + τ n ,
L t f tn (t) = ρ(s) n , (4.4) so L t U (t) = n≥0 ρ(s) n = 1 1 -ρ(s) , (4.5) 
which is the counterpart of (2.37). The right side behaves, when s is small, as s -θ /a. Thus, at long times, we finally obtain, using (3.5), 

U (t) ≈ sin πθ π t θ-1 τ θ 0 . ( 4 

Number of renewals between 0 and t

Let us consider the conditional distribution of N t , the number of renewals between 0 and t, for the tied-down renewal process,

p n (t) = Prob(N t = n|t N = t) = f tn (t) U (t) , (4.7) 
whose discrete counterpart is (2.42). We have

N t |t N = t = n>0 np n (t) = n>0 nf tn (t) U (t) . (4.8) 
In Laplace space we have

L t n>0 nf tn (t) = ρ(s) (1 -ρ(s)) 2 ≈ 1 a 2 s 2θ .
(4.9)

Laplace inverting back and dividing by (4.6), we obtain, at large times

N t |t N = t ≈ A (θ) t τ 0 θ , A (θ) = Γ(θ) Γ(1 -θ)Γ(2θ) . (4.10) 
By comparison, for the unconstrained renewal process [2],

N t ≈ A(θ) t τ 0 θ , A(θ) = sin πθ πθ . (4.11) Note that A (θ) > A(θ). Likewise L t n 0 n 2 f tn (t) = ρ(s)(1 + ρ(s)) (1 -ρ(s)) 3 ≈ 2 a 3 s 3θ .
(4.12)

By inversion and division by (4.6), we obtain N 2 t |t N = t ∼ t 2θ . As for the unconstrained case [2], we can set

N t = t τ 0 θ Y t , (4.13) 
where the random variable Y t has a limiting distribution when t → ∞. For instance, for θ = 1/2, we obtain

f Y (y) = π 2 y e -πy 2 /4 , y = n t/τ 0 , (4.14)
which is the counterpart of (2.48). More generally, we have

f Y (y) = π sin πθ dz 2πi
e z e -Γ(1-θ)yz θ . (4.15)

Marginal statistics of a single interval

We want to determine the tied-down conditional average of one of the τ i , say τ 1 ,

τ 1 |t N = t = n≥0 ∞ 0 d 1 . . . d n 1 f (t; 1 , . . . , n , n). (4.16)
Laplace transforming the numerator of the right side yields

- dρ(s) ds 1 1 -ρ(s) ≈ θ s . (4.17)
By Laplace inverting and dividing by (4.6), we obtain

τ 1 |t N = t ≈ B (θ)τ θ 0 t 1-θ , B (θ) = πθ sin πθ , (4.18) 
which turns out to be equal to t/ N t . By comparison, for the unconstrained renewal process [2],

τ 1 ≈ B(θ)τ θ 0 t 1-θ , B(θ) = θ 1 -θ . (4.19)
We conclude that N t |t N = t τ 1 |t N = t is proportional to t, as expected. Note that N t τ 1 = t N = t, identically. Here again, the amplitude of the tied-down case B (θ) is larger than the amplitude of the unconstrained case B(θ).

The longest interval

Let τ max (t) be the longest interval of the sequence τ 1 , . . . , τ N with the condition that their sum t N = t. We want to compute the conditional distribution function

F (t; ) = Prob(τ max (t) ≤ |t N = t) = n≥0 0 d 1 . . . 0 d n f (t; 1 . . . , n , n, y = t) = F (t; ) U (t) , (4.20) 
where the numerator is The expression (4.22) is the continuum counterpart of ṽk (z) given in (2.6). It holds for any distribution of intervals ρ(τ ). In the limit → ∞ the right side is equal to 1/(1 -ρ(s)), as it should (cf. (4.5)).

F (t; ) = n≥0 0 d 1 ρ( 1 ) . . . 0 d n ρ( n )δ n i=0 i -t . ( 4 
L t F (t; ) = n≥0 0 d 1 ρ( 1 )e -s 1 n = 1 1 -ρ(s; ) , ( 4 
We now perform the asymptotic analysis of (4.22) along the lines of [3]. An integration by parts yields 1 -ρ(s; ) = p 0 ( )e -s + s p0 (s; ), Laplace inverting with respect to s and dividing by t θ-1 sin πθ/(πτ θ 0 ) (given in (4.6)), we finally obtain, using notations akin to (3.15),

F R (r) = F V (v) = lim t→∞ F (t; ), = π sin πθ v 1-θ f II V (v), (4.28)
where f II V (v) is the inverse Laplace transform of (3.17). Note that the microscopic scale τ 0 altogether disappeared in (4.28), which demonstrates the universality of the result with respect to the distribution ρ(τ ). In particular (2.11), recovered for θ = 1/2, is universal. Equation (4.28) can be alternatively written as

L v v θ-1 F V (v) = π sin πθ f II V (x), (4.29) 
L v v θ-1 F V (v) = Γ(θ) x θ f III V (x), (4.30) 
using (3.18). This expression, as well as its generalizations to the case of the second (k = 2), third (k = 3), ..., longest intervals, are given in [1] (cf. § 5, theorem 4),

L v v θ-1 F (k) V (v) = Γ(θ) x θ f III V (x) k . (4.31) 
Note that Γ(θ)/x θ is equal to the Laplace transform of v θ-1 . Ref. [1] also gives the generalization of the density (3.16) for the k-longest interval, 

f (k)I V (x) = f I V (x) f III V (x) k-1 . ( 4 
f (k)II V (x) = f II V (x) f III V (x) k-1 , (4.33) 
and

f (k)III V (x) = f III V (x) k , (4.34) 
which can be summarized as

f (k)α V (x) = f α V (x) f III V (x) k-1
, (α = I, II, III). (4.35)

Average longest interval

The method follows that of section (2.4). The average longest interval is computed as

τ max (t) = ∞ 0 d F (t; ). (4.36) 
We have (see (4.20))

F (t; ) + F (t; ) = U (t). (4.37) 
Laplace transforming this equation with respect to time, we get

L t F (t; ) = 1 1 -ρ(s) - 1 1 -ρ(s; ) (4.38) ≈ s -θ a 1 -(s ) θ Γ(1 -θ) f II V (s ) = s -θ a f III V (s ). (4.39) 
After integration upon , inverse Laplace transform with respect to s, and division by U (t) (given by (4.6)), we obtain

R = lim t→∞ τ max (t) t = 1 θ ∞ 0 dx f III V (x) (4.40) = 1 θ lim t→∞ τ III max (t) t = 1 θ R III . (4.41) 
For θ = 1/2 we recover (2.33).

Using the same method, we find, for the k-th longest interval,

R (k) = lim t→∞ τ (k) max (t) t = 1 θ ∞ 0 dx f III V (x) k = 1 θ R (k)III . (4.42)
Since the sum of the intervals τ This result can indeed be proved by direct computation of the integral of the geometrical series in f III V (x) in the right side, which gives the value θ. One can also note that the R (k)III sums up to t N /t and that t N /t → θ [2]. (See also [16,5].)

Remark The last equality in (4.42) can be obtained by the methods of Appendix D (see [16]). A list of values of R (k)III for θ = 1/2 can be found in [16]. One could generalize the results of [16] to find

R (k)I = ∞ 0 dx f (k)I V (x), R (k)II = ∞ 0 dx f (k)II V (x). (4.44) 4.6. Characterization of the densities f V and f R The denominator of f II V (x) in (3.16), D(x) = 1 + x θ e x x 0 du u -θ e -u , satisfies the following differential equation xD (x) = D(x)(x + θ) -θ. (4.45) 
The residues at the poles x k of f II V (x) are therefore equal to -x k e x k /θ, so

F R (r) = F V (v) = π θ sin πθ v 1-θ ∞ k=-∞ (-x k )e x k (1+v) , (4.46) 
which generalizes (2.10) [1]. Hence the asymptotic behaviour at large v (small r) of the corresponding densities is obtained as in section 2.3 (cf. (2.21), (2.22)), yielding

f V (v) ≈ πx 2 0 θ sin πθ v 1-θ e -|x0|v , f R (r) ≈ π x 2 0 θ sin πθ e -|x0|/r r 3-θ . (4.47) 
The density f R (r) for 1/2 < r < 1 has a simple expression,

f R (r) = θ Γ(θ) 2 sin πθ πΓ(2θ) (1 -r) 2θ-1 r 1+θ , (4.48) 
which, for θ = 1/2, yields back f R (r) = r -3/2 /2. This expression is obtained by the following reasoning, adapted from that used in [1] for the tied-down random walk, and reproduced in section 2. 

F R (r) = 1 - C(θ) t θ-1 t rt d -1-θ (t -) 2θ-1 , (1/2 < r < 1), (4.53) 
where

C(θ) = θ Γ(θ) 2 sin πθ πΓ(2θ) , (4.54) 
yielding (4.48), by derivation with respect to r. It is also possible to derive (4.48) from eq. ( 6.1) of [1]. As a consequence

f V (v) = θ Γ(θ) 2 sin πθ πΓ(2θ) v -θ (v -1) 2θ-1 . (4.55) 4.7. Probability of record breaking Q (t)
The probability that the last interval is the longest one is defined as

Q (t) = Prob(τ max (t) = τ N |t N = t) = Prob(τ N > max(τ 1 , . . . , τ N -1 )|t N = t). (4.56)
This probability is given by the sum (see [3] for similar reasonings)

Q (t) = n≥1 Q n (t) = n≥1 Prob τ N > max(τ 1 , . . . , τ N -1 ), N t = n|t N = t . (4.57) Explicitly, Q n (t) = ∞ 0 d n n 0 d 1 . . . n 0 d n-1 f (t; 1 , . . . , n-1 , n , n) (4.58) = Q n (t) U (t) , (4.59) 
where

Q n (t) = ∞ 0 d n n 0 d 1 . . . n 0 d n-1 ρ( 1 ) . . . ρ( n ) δ n i=0 i -t . (4.60)
In Laplace space, after summing on n, we have The same result can be recovered by assuming that the N t intervals τ 1 , . . . , τ N should all play the same role, hence that the probability of record breaking is equal to the inverse number of these random variables, as for i.i.d. random variables. So, let us assume that

Q(s) = ∞ 0 d ρ( )e -s 1 -0 dτ ρ(τ )e -sτ = ρ(s) 0 dρ(s; ) 1 -ρ(s; ) , ( 4 
Q n (t) = p n (t) n , (n > 0), (4.63) 
where p n (t) = Prob(N t = n|t N = t) (see (4.7)). Thus

Q (t) = n≥1 Q n (t) = N -1 t |t N = t . (4.64)
In Laplace space, the numerator of this expression is

Q(s) = n≥1 ftn (s) n = n≥1 ρ(s) n n , = -ln(1 -ρ(s)), (4.65) 
which is (4.62) above. The last step consists in Laplace inverting with respect to s, then dividing by U (t). We thus find, at large times,

Q (t) ≈ πθ sin πθ τ 0 t θ ≈ 1 N t , (4.66) 
where the right side pertains to the unconstrained case (see (4.11)). There is no universality of the result with respect to the choice of distribution ρ(τ ) since the microscopic scale τ 0 is still present. We also recall, for comparison, that Q III (t) ∼ ln t/t θ [3].

Narrow distribution of intervals

The aim of this subsection is to determine the distribution of τ max (t) and the probability of record breaking Q (t) for a narrow distribution of intervals, taking the exponential distribution of intervals, ρ(τ ) = e -τ , as an example. We first note that, by inversion of (4.5), we have U (t) = 1 for t > 0. where Z G follows the standard Gumbel distribution, with Z G = γ. This behaviour coincides with that found for the three sequences (3.9) in [3]. We also find, from (4.65) that Q (t) ≈ 1/t. Since N t |t N = t ≈ t, as can be inferred from (4.9), Q (t) behaves qualitatively as if the N t intervals were i.i.d. random variables. This is akin to what was found for the cases of Q I (t) and Q III (t), the probabilities of record breaking for the sequences I and III [3].

4.9. Broad distribution of intervals with θ > 1

We first find, by inversion of (4.5), that

U (t) ≈ 1 τ + τ θ 0 (θ -1) τ 2 t 1-θ . ( 4 

.73)

We then compute the average number of renewals, using the first equality in (4.9). We obtain, after division by 1/ τ ,

N t |t N = t ≈ t τ + 2τ θ 0 (θ -1)(2 -θ) τ 2 t 2-θ . (4.74)
We restart from (4.22) in order to compute the distribution of τ max (t). Following the asymptotic analysis made in [3], we find

L t F (t; ) ≈ 1 τ 1 s + ( /τ 0 ) -θ / τ , (4.75) 
hence

F (t; ) ≈ 1 τ e -t/ τ ( /τ0) -θ . (4.76) 
Dividing this expression by the leading order 1/ τ in (4.73), we have

F (t; ) ≈ e -t/ τ ( /τ0) -θ . (4.77) Setting τ max (t) = τ 0 t τ 1/θ Z t , (4.78) 
we have, as t → ∞, Z t → Z F , with limiting distribution Prob(Z F < x) = e -1/x θ (4.79) which is the Fréchet law. Therefore

τ max (t) ≈ τ 0 t τ 1/θ Z F Γ(1-1/θ) . ( 4 

.80)

This is exactly the result found for the three sequences (3.14) in ref. [3]. The tied-down condition does not change the asymptotic distribution of the longest interval if θ > 1.

Finally, from (4.65) we find

Q (t) ≈ τ t , (4.81) 
which has therefore the same time dependence as Q III (t) [3].

Discussion

The tied-down renewal process studied in the present paper is equivalent to the stable process considered in [1] if the tail exponent of the distribution of intervals is comprised between 0 and 1. The results of [1] concerning the statistics of the longest interval are thus recovered in a simple manner. This study is extended in several directions such as the statistics of the number of intervals or the probability of record breaking, both for the tied-down random walk, the Brownian bridge and the tied-down renewal process. We also discuss the cases of a narrow distribution of intervals or of a distribution with a tail exponent θ > 1. A summary of some important results for the tied-down random walk and the tied-down renewal process (for 0 < θ < 1) is given in table 2.

tied-down random walk tied-down renewal proc.

M N |S 2N = 0 ≈ √ πN N t |t N = t ≈ Γ(θ) Γ(1-θ)Γ(2θ) t τ0 θ R (k) = 2 R (k)III R (k) = 1 θ R (k)III Q N ≈ √ π 2 √ N Q (t) ≈ πθ sin πθ τ0 t θ
Table 2: Some important results for the tied-down random walk of section 2 (starting and ending at the origin) and the continuum renewal process of section 4 (with 0 < θ < 1). The results in the left column correspond, respectively, to the mean number of interval (2.47), a generalisation of (2.33) for the asymptotic mean ratio of the longest interval to the total length of time, and the probability of record breaking (2.56). Those in the right column correspond to the equivalent quantities (4.10), (4.42), and (4.66), in the continuum formalism.

Some related works, that we now review, can be put in perspective with the present study.

(i) As mentioned in the course of this study, there are close connections between the tied-down renewal process, including the Brownian bridge, and the cases (I, II and III) considered in [3,11]. In particular, the connection with case III is clearly seen in table 2.

(ii) In the recent past, the distribution of the longest interval for the tied-down random walk and the Brownian bridge of section 2 was investigated in [4]. The results of this analysis can be usefully completed by the studies made in [1,7,9] and in the present work.

(iii) Recently, a study of the longest domain in a specific one-dimensional system of Ising spins has been given in [5]. In this model, introduced in [START_REF] Bar | [END_REF]19], the probability density associated to the Boltzmann weight of a spin configuration can be expressed in terms of the lengths of domains. It turns out that, at criticality, this density can be seen as the discrete version (2.34) of the tied-down conditional density (4.2), for a particular choice of distribution of intervals f . Thus, the expression given in [5] for the distribution of the longest spin domain at criticality (with 0 < θ < 1) coincides with the distribution of the longest interval (4.30) for the tied-down renewal process, as a consequence of the universality of this result with respect to the choice of distribution of intervals ρ(τ ), when 0 < θ < 1, as demonstrated in the present work.

In a companion paper [20] we will complete the study done here by addressing the statistics of other quantities, such as the occupation time or the two-time correlation function.

Remark Laplace transforming (C.4) with respect to t and y (with s conjugate to t and u conjugate to y), yields L t,y f τ ,Nt,t N (t; 1 , . . . , n , n, y) = ρ( 1 )e -(s+u) 1 . . . ρ( n )e -(s+u) The second integral is equal to 1, since it represents p 0 (t) for t = 0. We thus recover (4.5).

Appendix D. Second, third, . . . , longest intervals

For independent, identically distributed (i.i.d.) random variables X 1 , . . . , X n , the distribution function of the k-th largest random variable X (k) can be obtained by noting that the event {X (k) ≤ } means that at most k -1 variables X i are larger than , so

F (k) ( ) = Prob(X (k) ≤ ) = k-1 j=0
Prob(j r. v. where F ( ) = Prob(X ≤ ), F ( ) = Prob(X > ).

For the intervals τ 1 , . . . , τ N , the conditional distribution function where the first group of integrals is done j times, and the second group nj times. Summing on j and Laplace transforming with respect to time, we obtain for the numerator of F (k) (t; ), denoted by F (k) (t; ) = Prob(τ (k) max ≤ , t N = t), (D.6)

Figure 2 .

 2 Figure 2. Probability density f V (v) for the tied-down random walk obtained from (2.6) for N = 40 and N = 80. The black dashed curve (v > 2) corresponds to (2.21), the red dashed curve (1 < v < 2) to (2.23).

Figure 3 .

 3 Figure 3. Probability density f R (r) obtained from the data of figure 2.

. 6 )

 6 Equations (4.2)-(4.6) are the cornerstone of the present study.

F (t; ) ≈ τ 0 θ e s 1 +

 1 s; ) = 0 dτ p 0 (τ )e -sτ . Then, using the asymptotic estimates in the regimes → 0, → ∞, with s fixed [3], p0 (s; ) ≈ τ θ 0 s θ-1 s 0 du u -θ e -u ,(4.25)and 1 -ρ(s; ) ≈ τ θ 0 s θ (s ) -θ e -s + s 0 du u -θ e -u , (s ) θ e s s 0 du u -θ e -u .(4.27)

  is, by definition of the process, equal to t, one should have k≥1R (k) = 1.(4.43)

  .61) where ρ(s; ) = 0 dτ ρ(τ )e -sτ . Finally, Q(s) = -ln(1 -ρ(s)).(4.62)

  j F ( ) n-j , (D.2)

F

  (k) (t; ) = Prob(τ (k) max ≤ |t N = t) (D.3)still obeys (D.1). We have likewise, using (C.6), Prob(j r. v. τ i > )

  with n fixed (compare to(2.40) for the discrete case). The quantity (4.3), which is the continuum counterpart of the probability u N of section 2.1 (cf. (2.35) and (2.41)), can be intuitively thought of as giving the fraction of 'tied-down' histories. It is the edge value of the probability density of t N at its maximal value t

N = t (see (C.7) and (C.12)). In Laplace space with respect to t, we have

  Then summing upon the i and n yields the double Laplace transform of f t N (t; y)[2] In order to get the edge value of this density at y = t, we invert (C.10), = t and w = s + u, yielding, with the shorter notation (C.8),

										1 1 -ρ(s) s	.	(C.9)
	L t,y	f t N (t; y) =L t	e -ut N =	1 1 -ρ(s + u)	1 -ρ(s) s	.	(C.10)
	f t N (t; y) =	du 2iπ	e uy	ds 2iπ	e st	1 1 -ρ(s + u)	1 -ρ(s) s	,	(C.11)
	we then set y U (t) =	dw 2iπ	e wt	1 1 -ρ(w)		ds 2iπ	1 -ρ(s) s	.	(C.12)

‡ From now on, when no ambiguity arises, we drop the time dependence of the random variable if the latter is itself in subscript.

Appendix A. Notations

The distribution function of the random variable X is denoted by

If X is a continuous random variable, it has a density

For several random variables we have F X1,X2,... (x 1 , x 2 , . . .) = Prob(X 1 ≤ x 1 , X 2 ≤ x 2 , . . .), (A. 3) with associated density f X1,X2,... (x 1 , x 2 , . . .). When permitted by the context, we will omit the variables in subscript. Let X and Y two random variables with joint density f X,Y (x, y) and marginal densities f X (x) and f Y (y). For discrete random variables the conditional distribution function of X given Y = y is simply

For continuous random variables, the conditional distribution function of X given Y = y is defined as follows [START_REF] Grimmett | Probability and Random Processes[END_REF],

Therefore the conditional density reads 

Appendix C. The tied-down conditional density

Let us add some details on the definition of the tied-down conditional density (4.2) given in the bulk of the paper. Consider the conditional probability

where = { 1 , . . . , n } is a realization of the sequence of intervals

The associated conditional density is a generalization of (A.6), with X = { τ , N t } and

The numerator is explicitly obtained by multiplying f III (•) (given by (3.12)) by δ( i -y), i.e., f τ ,Nt,t N (t; 1 , . . . , n , n, y)

The denominator, f t N (t; y), obtained from the numerator by integration on 1 , . . . , n and summation on n, is the probability density of the random variable t N . The double Laplace transforms with respect to t and y of the numerator and of the denominator are respectively given in (C.9) and (C.10).

The tied-down conditional density (C.6) is defined as (C.3), however with the condition that t N = t. Setting y = t in (C.4) amounts to suppressing the first delta function in the right side of the equation. The remaining integral upon a is equal to 1, so f τ ,Nt,t N (t; 1 , . . . , n , n, y = t) = ρ( 1 ) . . . ρ( n )δ n i=1 i -t .

(C.5)

The same result can also be obtained by setting a = 0 in (3.10). Thus, using a shorter notation for the tied-down conditional density, we have

where the denominator reads §

denoting by f tn (t) the density of the sum t n = τ 1 + • • • + τ n , with n fixed. In the bulk of the paper we use the shorter notation

for the edge value of the probability density of t N at its maximal value y = t. § n = 0 corresponds to δ(t) in (C.5), and therefore to 1 in Laplace space.

the expression

In the scaling limit of large times, i.e., s → 0, using the asymptotic estimate (4.26), this expression becomes

By Laplace inversion with respect to s, and division by (4.6), we obtain Wendel's result (4.31). A similar computation is done in [5] for the case of a specific choice of discrete distribution of intervals. We can finally derive (4.32) by the same methods. We start from the distribution f I (•), given by (3.10), for the N t + 1 intervals τ 1 , . . . , τ N , A t . In order to evaluate the probability of having j of these random variables larger than , we have to separate the cases where A t belongs to the group of random variables smaller than or to the group of random variables larger than . Hence Prob(j r. v. (τ i and A In the first line of the right side, the first group of integrals is done j -1 times, and the second group nj + 1 times, with j ≥ 1, while in the second line, the first group of integrals is done j times, and the second group nj times, with j ≥ 0. The rest of the computation follows as above, using the asymptotic estimates (4.25) and (4.26).