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Abstract—Existing programming models lead to a tight inter-
leaving of semantics and computer optimization concerns in high-
performance simulation codes. With the increasing complexity
and heterogeneity of super-computers this requires scientists
to become experts in both the simulated domain and the
optimization process and makes the code difficult to maintain
and port to new architectures. This report proposes InKS, a
programming model that aims to improve the situation by
decoupling semantics and optimizations in code so as to ease
the collaboration between domain scientists and expert of high-
performance optimizations. We define the InKS language that
enables developers to describe the semantic of a simulation code
with no concern for performance. We describe the implementa-
tion of a compiler able to automatically execute this InKS code
without making any explicit execution choice. We also describe
a method to manually specify these choices to reach high-
performance. Our preliminary evaluation on a 3D heat equation
solver demonstrates the feasibility of the automatic approach
as well as the ability to specify complex optimizations while
not altering the semantic part. It shows promising performance
where two distinct specifications of optimization choices in InKS
offer similar performance as existing hand-tailored versions of
the solver.

Keywords—HPC, programming model, separation of concerns.

I. INTRODUCTION

It is more and more common to identify simulation as
the “third pillar of science”[15] together with theory and
experimentation. Parallel computers, sometimes heterogeneous
(e.g. GPGPU), provide the computing power required by
the more demanding of these simulations. The complexity
of these architectures do however force scientists to write
complex code (using vectorization, parallelization, etc.) to take
advantage of them. Since these optimizations depend on the
targeted machine, they have to be adapted whenever the code
is ported to a new architecture. Existing programming models
do unfortunately lead to a tight interleaving of semantics and
optimization concerns. It forces developers to become experts
of both the simulated domain and computer optimizations and
makes it difficult to maintain a code targeting multiple distinct
architectures.

Many approaches have been proposed to improve this
situation in the form of libraries or languages. Amongst those,
many do however still mix computations and optimizations
while others restrict the range of optimizations that can be
implemented.

In this report, we propose the independent kernel scheduling
(InKS) programming model that aims to separate semantics
from optimization in high-performance simulation codes. It
offers a language based on C where domain scientists can
express the semantic of the code with no concern for perfor-
mance. We describe the implementation of a compiler able
to automatically execute this code to test the validity of
the semantic. We also support the specification of execution
choices in a distinct file to obtain an optimized version.

The remaining of the report is organized as follows. Sec-
tion II identifies semantics and optimization aspects on a
simple example to determine the requirement for a model to
separate them and Section III presents and discusses related
work. Section IV defines the InKS programming model and
its implementation while Section V evaluates the approach.
Section VI concludes and presents some perspectives.

II. ANALYSIS

In this section, we categorize the various aspects interleaved
in simulation codes as either semantics or execution choices.
We do so by analyzing multiple optimized implementations
of a 7 points finite difference method 3D heat equation
solver described in [1]. Listing 1 shows the simplest of
those implementations, based on a double buffering strategy.
Another implementation provides cache blocking over two of
the three space dimensions that can be specifically tuned for
the machine cache size. A third implementation uses recursive
function calls to implement a cache oblivious method with
implicit blocking in four dimensions (3 in space, plus time).

In these three examples, linearized arrays (lines 4 and 5 of
Listing 1) store the temperature values. The Index3D macro
(line 1 and 2) maps from the 3D space coordinate of the mesh
to the linear memory space. The time coordinate accessible in



1 #define Index3D(_nx,_ny,_i,_j,_k) \
2 ((_i)+(_nx)*((_j)+(_ny)*(_k)))
3 size_t size = nx*ny*nz;
4 double* Anext = malloc(sizeof(double)*size);
5 double* A0 = malloc(sizeof(double)*size);
6 StencilInit(nx,ny,nz,A0);
7 for (int t = 0; t < timesteps; t++){
8 for (int k = 1; k < nz - 1; k++){
9 for (int j = 1; j < ny - 1; j++){

10 for (int i = 1; i < nx - 1; i++){
11 Anext[Index3D (nx, ny, i, j, k)] =
12 A0[Index3D (nx, ny, i, j, k + 1)] +
13 A0[Index3D (nx, ny, i, j, k - 1)] +
14 A0[Index3D (nx, ny, i, j + 1, k)] +
15 A0[Index3D (nx, ny, i, j - 1, k)] +
16 A0[Index3D (nx, ny, i + 1, j, k)] +
17 A0[Index3D (nx, ny, i - 1, j, k)] -
18 A0[Index3D (nx, ny, i, j, k)];
19 }
20 }
21 }
22 swap(A0, Anext);
23 }

Listing 1. Core of the 3D finite difference heat equation solver using a double
buffering strategy

1 double* A[2] = {A0, Anext};
2 //...
3 A[(t+1)%2][Index3D (nx,ny,x,y,z)] =
4 A[t%2][Index3D (nx,ny,x+1,y,z)] ...

Listing 2. Memory mapping of data for the cache oblivious example

the arrays evolves during the simulation but slightly differently
depending on the code version. In the version presented in
Listing 1, A0 contains the values for the current time-step
while Anext contains values remaining from the previous
time-step mixed with values being computed for the next time
step. In the cache oblivious version, the time-blocking aspect
requires a different memory storage. The A0 and Anext
arrays are stored inside an array of arrays (Listing 2) that
make it possible to access one array or another using a modulo
operation. One array contains values from odd time-steps only
while the other contains values from even time-steps only.
Many distinct time-steps are however stored inside each array
at any given time depending on the space coordinate. To
summarize, the set of values computed along the simulation
(in the 3D space + 1D time coordinate system) is the same
for all versions of the code and is part of the semantic but the
mapping of these values in memory differs depending on the
code version; it is an optimization choice.

All studied implementations of the heat equation solver use
loops. The content of these loops is made of computations
that operate on the arrays content (lines 11 to 18 of Listing 1)
and is very similar from one version of the code to the other
apart from indexing issues previously discussed. The control
part of the loops that gives values to indexes and schedules
computations inside the loops on the other hand differs from
one implementation to the other. In the example from Listing 1
the loops iterate in a pretty straightforward order whereas those
from Listing 3 used for cache blocking are more complex. In

1 int t, jj, ii, k, j, i;
2 for (t=0; t<timesteps; t++) {
3 for (jj=1; jj<ny-1; jj+=TJ) {
4 for (ii=1; ii<nx-1; ii+=TI) {
5 for (k=1; k<nz-1; k++) {
6 for (j=jj; j<MIN(jj+TJ,ny-1); j++) {
7 for (i=ii; i<MIN(ii+TI,nx-1); i++) {

Listing 3. Control parts of the loop creating the cache blocking

the cache oblivious examples, the loops are different again and
the iterations depend on parameters of the recursive function
calls. These schedules are different to improve cache behavior,
but all respect ordering constraints, namely that any value has
to be written to memory before it is first read and that its
storage space in memory must not be reused for another value
before it is last read. The content of the loops as well as these
ordering constraints thus constitute the semantic part while the
choice of a specific schedule that respects the constraints is
an optimization choice.

All the examples end with the values from the target time-
step in the A0 array. Among all the computed values, we can
consider this subset as the result of the program. This also
constitutes a part of the application semantic.

To summarize, we have identified four concerns that form
the semantics of the 3D heat equation solver: the values that
exist during the execution, the computations done inside the
loops, the constraints on computation order and the target
result. We also have identified two types of execution choices:
the memory mapping of data and the specific scheduling to
use. More optimization choices could appear, for example
in distributed memory parallel versions of the code where
choices related to the distribution of data on nodes and
communications would have to be made. If the semantic part
contains enough information to derive a sequential version of
the code however, there is no reason for a parallel version to
require more information.

All in all, these examples written in C interleave semantics
and optimization choices. A complete new code is written
to demonstrate each distinct optimization. In order to ease
the collaboration between specialists of the simulated domain
and specialists of computer optimizations, one would like a
programming model that clearly separates these two aspects.
Even if this is an important goal, this should however not come
at the cost of a much increased complexity for the specification
of the semantic and it should remain possible to test this
semantic without having to specify complex optimization
choices. It should also be possible to specify any optimization
and the specification of these choices should not be much more
complex than it currently is in existing imperative languages.
It should be possible to express a wide range of different
problems in this language so as to cover as many simulation
domains as possible and to include this inside another program
written in existing languages such as C or Fortran for example
to make the progressive adoption of the language possible. The
following section presents and discusses existing programming
languages with related goals.



III. RELATED WORK

Multiple approaches have been proposed to ease the de-
velopment of high-performance simulation codes. Some ap-
proaches aim to ease the implementation of execution choices.
For example, OpenMP [6] eases writing shared memory paral-
lel code with features such as the specification of independent
loop iterations that can be executed in parallel. Partitioned
global address space (PGAS) languages such as Co-Array
Fortran [14], UPC [11], X10 [7] or XcalableMP [13] simplify
the handling of distributed memory by presenting it to the
developer as a single global space. These tools can lead to
efficient code and make the implementation of some optimiza-
tion (typically those related to parallelization) much easier.
However, they only cover some optimizations and are based
on sequential languages similar to C that keep optimization
choices tightly coupled with semantic.

Others approaches like Kokkos [10] separate some exe-
cution choices but leave others interleaved with semantics.
Kokkos is a C++ library that offers multidimensional arrays
for which the memory mapping and iteration approach can be
separately chosen, either automatically or as a manual param-
eter. Other execution choices do however remain interleaved
with the semantic in the code. For example, a matrix operation
such as R = A ∗ B + C can also be written as two steps:
R1 = A∗B;R = R1+C. Both are equivalent from a semantic
point of view, but the first notation will lead to a single loop
nest while the second one will lead to two. Thus, while some
optimization choice are separated from the semantics, other
remain interleaved with it.

Similarly, approaches based on task scheduling such as
offered by StarPU [2] or Legion [4] let a runtime make choices
regarding the best execution order for a set of tasks given
dependency constraints. Making these choices at runtime does
however mean they have an impact on execution time and that
the tasks should be large enough to mask the overhead related
to the use of the runtime. The choice of whether to group
computations in a single task or to split them in two tasks is
thus an optimization choice that is mixed with semantics.

Finally, approaches based on domain specific languages
(DSLs) such as those offered by PATUS [8], PIPES [12],
Listz [9] or Nabla [5] offer to describe the semantic using
the DSL not taking optimization choices into account. Per-
formance is handled by the DSL compiler that is able to
generate efficient code because it embeds knowledge about
the specific domain the DSL targets. This makes it possible to
separate concerns quite well while offering good performance.
These approaches do however restrict the optimizations that
can be easily implemented. Since optimizations are embedded
in the compiler, one cannot implement a specific optimization
without modifying the compiler, which is complex.

The authors know of no single model that enables to com-
pletely separate semantics from optimization while keeping
the ability to easily implement any optimization choice. The
following section thus presents our proposition of a model
with that aim: InKS.

IV. THE INKS PROGRAMMING MODEL

Let us now define the InKS programming model intended to
address the issues identified in Section II. In order to separate
semantics from optimization concerns, we must first define a
language that supports the description of the semantic with no
concern for execution choices. We call it the InKS language. In
order to support testing InKS code without having to deal with
optimization choices, we must define an automated execution
strategy and we must define another language to support the
expression of specific execution choices. In order to support
mixing InKS code with more traditional programming models
in a single application, the result of both approaches should
lead to a code that can be inserted in an existing program.

One can first notice that languages that support the specifi-
cation of most potential execution choices already exist in the
form of traditional imperative languages such as C, Fortran or
C++. We therefore choose to use C as the language for the
definition of execution choices which has the additional ad-
vantage of being well known and not requiring any additional
knowledge for optimization of InKS code.

In order to make the use of the semantic part easy in this
process, we choose to also base the InKS language used to
define the semantic part on C. Amongst the four elements
of semantics identified in Section II, the computations done
inside the loops can directly be expressed in C, but the lack of
a notion of multi-dimensional array force to choose a memory
mapping for those. We therefore choose to use C++ instead
where dedicated classes can be used to support this abstraction.
To make the semantic code valid C++ that can be directly
included in the optimization part, we choose to express other
aspects of the semantic using #pragma annotations.

The most widely supported standard for inter-language calls
is C and to support the inclusion of InKS code inside a larger
application, we specify the interface offered by an InKS kernel
as a C interface. This can easily be achieved when specifying
optimizations manually since those are written in C/C++. We
choose to support automatic execution with a source-to-source
compiler that generates C++ for the same reason.

The remaining of the section defines the InKS language and
provides a rough sketch of proof that this language provides
the complete semantics of a program: i.e. enough information
to execute it. It then describes the implementation of the InKS
compiler for automatic execution and the approach for manual
execution choices specification.

A. The InKS language

In order to introduce the InKS language, let us rely on an
InKS implementation of the 3D heat equation solver presented
in Listing 4. The InKS language supports the specification of
the four semantic elements identified in Section II: the data
that exists during execution, the computations done inside the
loops, the constraints on computation order and the target
result. As previously specified, computations are specified
using the host C++ language while other aspects are specified
using directives of the form #pragma inks.



1 #define nx 1024
2 #define ny 1024
3 #define nz 1024
4 #define timesteps 3
5
6 #pragma inks declare double Heat(4)
7
8 #pragma inks Bound in Heat(x, y, z, t-1) \
9 out Heat(x, y, z, t)

10 #pragma inks Bound definition x(0); \
11 y(0, ny); z(0, nz); t(1, timesteps)
12 #pragma inks Bound definition x(nx-1); \
13 y(0, ny); z(0, nz); t(1, timesteps)
14 #pragma inks Bound definition x(0, nx); \
15 y(0); z(0, nz); t(1, timesteps)
16 #pragma inks Bound definition x(0, nx); \
17 y(ny-1); z(0, nz); t(1, timesteps)
18 #pragma inks Bound definition x(0, nx); \
19 y(0, ny); z(0); t(1, timesteps)
20 #pragma inks Bound definition x(0, nx); \
21 y(0, ny); z(nz-1); t(1, timesteps)
22 template <typename T>
23 void Bound(T& Heat, int x, int y, int z, int t){
24 Heat(x, y, z, t) = Heat(x, y, z, t-1);
25 }
26
27 #pragma inks Inner in Heat(x, y, z, t-1); \
28 Heat(x, y, z+1, t-1); Heat(x, y, z-1, t-1); \
29 Heat(x, y+1, z, t-1); Heat(x, y-1, z, t-1); \
30 Heat(x+1, y, z, t-1); Heat(x-1, y, z, t-1) \
31 out Heat(x, y, z, t)
32 #pragma inks Inner definition x(1, nx-1);\
33 y(1, ny-1); z(1, nz-1); t(1, timesteps)
34 template <typename T>
35 void Inner(T& Heat, int x, int y, int z, int t,

double fac){
36 Heat(x, y, z, t) = Heat(x+1, y, z, t-1) +
37 Heat(x-1, y, z, t-1) + Heat(x, y+1, z, t-1) +
38 Heat(x, y-1, z, t-1) + Heat(x, y, z+1, t-1) +
39 Heat(x, y, z-1, t-1) - 6.0 * Heat(x, y, z, t-1)

/ (fac*fac);
40 }
41
42 #pragma inks StencilInit in null \
43 out Heat(*, *, *, 0)
44 template <typename T>
45 void StencilInit(T& Heat){
46 read_file(Heat);
47 }
48
49 #pragma inks target Heat(*, *, *, timesteps-1)

Listing 4. InKS implementation of the heat equation in 3D

Data is represented using logically infinite multidimensional
arrays that have no direct link with memory. Arrays are de-
clared using the #pragma inks declare notation. These
are dynamic single assignment arrays where each coordinate
can only be written once but read as many times as required.
For example in line 6 of Listing 4, a four dimensional (3D
space + time) array named Heat is declared to store the
temperature values as it evolves during the simulation.

Computations are specified as C++ code enclosed in a
function template: a kernel. All logical arrays accessed are
taken as parameter of the function and the type of the array is
a template parameter. The function also takes coordinates as
parameters to access values in arrays. The array type passed
to the function supports the use of the parenthesis operator for

multi-dimensional indexing. For example, the Inner kernel
in line 17 of Listing 4 uses the Heat array and the coordinates
x, y, z and t to compute the stencil. On the other hand,
the StencilInit kernel in line 27 does not receive any
coordinate because it applies to a fixed location of the array
taken as parameter: the values at t = 0.

Constraints on execution order are based on data de-
pendencies of the kernel. Dependencies are defined using
the #pragma inks <kernel> in ... out ... no-
tation. They uses the coordinate system to declare data that
is used in input or created in output of a kernel. For example,
lines 8 to 12 of Listing 4 specify that the Inner kernel
accesses 7 points as input and generate the value of one as
output. The dependencies of the StencilInit kernel in
lines 24 and 25 express the lack of input using the keyword
null and the generation of every values in the first three
dimensions using the star (*).

Dependencies are not enough to fully specify execution
order. Indeed, both the kernels StencilInit and Inner
could be used to generate the values at t = 0 given this
information only. The coordinates for which a kernel is
valid (its evolution domain) thus also have to be specified.
They are specified using the #pragma inks <kernel>
definition notation. The bounds of these sets are ex-
pressions that can combine direct constants and constants
specified using #define. The lower bound is included and
the upper one excluded. For example, the evolution domain
of the Inner kernel in lines 13 and 15 of Listing 4 limits
prevent the values at t = 0 from being considered. The
StencilInit kernel on the other hand uses no coordinate
and does thus not need an evolution domain.

The target result of the program is a subset of the declared
data. This is specified using the #pragma inks target
notation. For example in line 31 of Listing 4, the set of all
values at the last iteration is selected by using the star notation
for space coordinate and a single value for the time coordinate.

These elements constitute the InKS language and support
the expression of all elements of semantics identified in
Section II. Let us now roughly demonstrate that this constitute
the whole semantic of a program; i.e. that the language carries
enough information to execute it.

B. InKS language completeness analysis

The informations available in the InKS language are:
• the set of logical arrays A = {a1, ..., an}
• the dimension dim(a) ∈ N of each logical array a ∈ A,
• the set of kernels K = {k1, ..., kn},
• the definition domain dom(k) of each kernel k ∈ K with

its dimension n = dim(k), dom(k) ⊆ Zn

• the dependencies (inputs Ik and outputs Ok) of each
kernel k in the logical arrays,

• the set of targets T = {t1, ..., tn}.
We call kernel instance the association of a kernel k with a

coordinate from its domain dom(k) ⊆ Zdim(k) and we denote
K the set of all kernel instances.



k ∈ K : dom(k) 7→ K

K =
⋃
k∈K

 ⋃
i∈dom(k)

k(i)


Similarly, we call data instance the association of a logical

array a with a coordinate from its domain Zdim(a) and we
denote D the set of all data instances.

a ∈ A : Zdim(a) 7→ D

D =
⋃
a∈A

 ⋃
i∈Ndim(a)

a(i)


The inputs Ik and outputs Ok dependencies of a kernel k

map each instance of this kernel to the data it reads or writes.
We denote I and O the general input and output relations
formed as the union of all kernel dependencies that map kernel
instances to data.

Ik, Ok : K 7→ P (D)

I =
⋃
k∈K

Ik, O =
⋃
k∈K

Ok

In order for the program to be well formed, a given data
instance should only be produced by a single kernel instance.
That is, the intersection of the output relation applied to two
distinct kernel instances should always be empty. On the other
hand, multiple kernel instances can take the same data instance
as input.

∀k1, k2 ∈ K, k1 6= k2 ⇒ O(k1) ∩O(k2) = ∅

Each target t is a subset of the data that the computation
must generate, we denote T the union of all targets.

t ∈ T : t ⊆ D

T ⊆ D =
⋃
t∈T

t

The goal of the compiler is to generate a code that computes
T . Consequently, for the program to be well formed, T must
be the output of some kernel. We denote KT this set of kernel
instances that generate the target data.

KT ⊆ K,

( ⋃
k∈KT

O(k) ⊆ T

)
∧ (k1 ∈ KT ⇒ O(k) ∩ T 6= ∅)

In addition, a kernel instance k1 must be computed before
an instance k2, denoted k1 ≺ k2 if k1 generates data as output
that k2 accesses as input.

∀k1, k2 ∈ K, O(k1) ∩ I(k2) 6= ∅ ⇐⇒ k1 ≺ k2

For the program to be well defined, there must be no loop
in its dependencies and we can define ≤ the transitive closure

of ≺ that constitute a partial order relation on K. The set of
kernel instances Kx that must be executed to generate T is
the set of all instances that come before at least one instance
in KT .

Kx = {k ∈ K|∃kt ∈ KT , k ≤ kt}

The data Dx that will have to be allocated at some point for
the execution of all Kx is the data that is the input or output
of at least one such kernel instance. For the program to be
valid, all the data instances accessed as input of an executed
kernel instance must be part of the output of another kernel
instance, one can therefore define the allocated data from the
output only.

Dx =
⋃

k∈Kx

I(k) ∪O(k) =
⋃

k∈Kx

O(k)

One can augment the executed kernel instances with in-
stances representing the allocation ka(d) and deallocation
kd(d) of each data instance d. The order relation can also
be defined on these kernel instances by taking into account
that a data instance must be allocated before it written and
deallocated after it is last accessed.

K+
x = Kx ∪

⋃
d∈Dx

{ka(d), kd(d)}

∀(k, d) ∈ Kx ×Dx, d ∈ I(k)⇐⇒ ka(d) ≺ k

∀(k, d) ∈ Kx ×Dx, d ∈ O(k)⇐⇒ k ≺ kd(d)

To summarize, the InKS language provides enough infor-
mation to construct the K+

x set that specifies all memory
allocations and deallocations and kernel instances to execute
with a partial order relation that determines the constraint on
the scheduling of these operations. Let us now describes the
actual implementation of this process in the InKS compiler.

C. Source-to-source compiler

A naive approach for the implementation of the scheduling
could consist in enumerating the set of operations to execute
and to generate a source code that does each of them in a valid
order. The complexity of such an approach –both in time and
space– as well as the generated code size would however be
at least linear with the number of instances, i.e. the problem
size. In fact, if the kernels implemented by the user operate
at a fine enough grain, the compilation could easily require
more resources than the execution itself. This situation would
not be acceptable and we have to rely on a more compact
representation of the problem and generated code.

The polyhedral theory offers a solution in the case where
each domain can be described in terms of polyhedron. Given
the language introduced in Section IV this is the case since
we currently restrict ourselves to unions of rectangle regions.
We have therefore chosen to base our implementation on the
ISL [16] library that supports the manipulation of sets and
relations of integer points bounded by linear constraints.



1 #pragma inks Inner \
2 in H(x, y, z, t-1) \
3 out H(x, y, z, t)
4 template <typename T>
5 void Inner(T H, int x, int y, int z, int t)
6 {
7 //...
8 }

Listing 5. Example of input and output dependencies in InKS code

ISL provides functions to allocate multidimensional spaces
in which one can create multidimensional sets. These sets –
potentially parametric– contain every integer point between the
set bounds. One can also manipulate these sets with different
operations (i.e. projection, intersection, union, etc.). One also
can create relations from the spaces or create them to link two
sets. There are also many operations that involve relations or
sets (i.e. application, coalescing, transitive closure, etc.).

One of the possible use of ISL is for dependency analysis
and it leads to many applications, such as loop optimiza-
tions [3]. In our case, we use ISL to compute a valid scheduling
of the required kernel instances. We therefore define sets using
ISL that corresponds to the kernel and data instances. This
vision enables the compiler to compute dependencies directly
on sets of kernel instances instead of individual instances and
makes the complexity depend on the number of such sets
instead of the number of instances in them. Eventually, we
generate the code to schedule the execution as loops which
largely reduces the size of the code compared to an approach
where each kernel instance would be explicitly executed.

The dependency analysis relies on a four steps algorithm:
1) creation of the spaces and sets that represent the data

and kernel domains;
2) creation of the relation between kernels and data in-

stances;
3) creation of the order relations between kernels;
4) computation of the kernel instances that need to be

executed to compute the targets.

1: procedure SETSCREATION(Kernels, Arrays)
2: for all A ∈ Arrays do
3: A.isl_space = isl_space_alloc(A.size)
4: end for
5: for all K ∈ Kernels do
6: K.isl_space = isl_space_alloc(K.domain.size)
7: K.isl_set = isl_set_alloc(K.isl_space, K.domain)
8: end for
9: end procedure

Algorithm 1: Sets creation step

First, the InKS compiler creates a space for each logical
array and kernel depending on its dimension and a creates
a set in each kernel space bounded by the kernel evolution
domain. This is summarized in Algorithm 1.

Then, the compiler creates the input and output relations.
For each kernel, we generate as many input relations as it
requires values and as many output relations as it generates
values. Input relations go from the data space to kernel space

H(x, y, z, t)
CI−−→ Inner(a, b, c, d)

CO−−→ H(x′, y′, z′, t′)

CI : x = a ∧ y = b ∧ z = c ∧ t− 1 = d

CO : a = x′ ∧ b = y′ ∧ c = z′ ∧ d = t′

Fig. 1. ISL relations defined by the constraints CI & CO matching the
dependencies of code from Listing 5

1: procedure RELATIONSCREATION(Kernels)
2: for all K ∈ Kernels do
3: for all Rel_In ∈ K.Rel_In do
4: isl_space Data_I = Rel_In.Data.space
5: isl_rel RI = isl_rel_alloc(Data_I, K.isl_space)

. RI: relation from data to kernel
6: isl_set_constraint(RI, Rel_In.constraint)
7: K.isl_rel_in.push(RI)
8: isl_set SI = isl_apply(RI.reverse(), K.isl_set)
9: K.isl_set_in.push(SI)

. SI: set required by this kernel
10: end for
11: for all Rel_Out ∈ K.Rel_Out do
12: isl_space Data_O = Rel_Out.Data.space
13: isl_rel RO = isl_rel_alloc(K.isl_space, Data_O)

. RO: relation from kernel to data
14: isl_set_constraint(RO, Rel_Out.constraint)
15: K.isl_rel_out.push(RO)
16: isl_set SO = isl_apply(RO, K.isl_set)
17: K.isl_set_out.push(SI)

. SO: set generated by this kernel
18: end for
19: end for
20: end procedure

Algorithm 2: Relations creation step

and opposite for output relations with constraints added to
match the dependencies specified in InKS. An example of the
constraints generated for the code presented in Listing 5 is
given in Figure 1. For each relation, the compiler also creates
a set that represents the data concerned by the relation. This
is summarized in Algorithm 2.

The third step computes the order relation for kernel in-
stances. A relation exists between two kernels k1 and k2 when
the output of k1 is required as input of k2. Using isl, the
compiler computes the intersection of the input set for each
kernel input relation with the output set of each kernel output
relation. If the intersection dio is not empty a dependency
relation is generated as the composition of the inverse of
the output relation and the input relation. This enables us to
generate Rmap as the union of all such relations that the
orders all kernel instances.

The last step computes the kernel instances the program
must actually execute. The compiler applies the inverse of the
output relation to the target data set to determine the set of
kernel instances that generate the target. Then it inverses the
Rmap order relation and computes its transitive closure. The
resulting relation is applied to the set of kernel instances that
generate the target to determine the complete set of instances
to execute.

ISL propose a feature to generate a schedule that passes
through all the points of a set by respecting an order relation.
We use this feature to generate a schedule that iterates over



1 InKSArray<4, double> Heat(nx,ny,nz,timesteps);
2 {
3 if((ny>=1&&nz>=1&&timesteps>=2)||

(nx>=1&&nz>=1&&timesteps>=2)||
(nx>=1&&ny>=1&&timesteps>=2)||
timesteps==1) {

4 StencilInit(Heat);
5 }
6 for(int c0=1; c0<timesteps; c0+=1) {
7 for(int c1=0; c1<ny; c1+=1)
8 for(int c2=0; c2<nz; c2+=1) {
9 if(nx<=0)

10 Bound(Heat,nx-1,c1,c2,c0);
11 Bound(Heat,0,c1,c2,c0);
12 if(nz>=2&&ny>=c1+2&&c1>=1&&c2+1==nz) {
13 for(int c3=1; c3<nx-1; c3+=1)
14 Bound(Heat,c3,c1,nz-1,c0);
15 }
16 elseif(ny>=c1+2&&c1>=1&&c2==0) {
17 for(int c3=1; c3<nx-1; c3+=1)
18 Bound(Heat,c3,c1,0,c0);
19 }
20 elseif(ny>=2&&c1+1==ny) {
21 for(int c3=1; c3<nx-1; c3+=1)
22 Bound(Heat,c3,ny-1,c2,c0);
23 }
24 elseif(c1==0) {
25 for(int c3=1; c3<nx-1; c3+=1)
26 Bound(Heat,c3,0,c2,c0);
27 }
28 if(nx>=2)
29 Bound(Heat,nx-1,c1,c2,c0);
30 }
31 for(int c1=1; c1<ny-1; c1+=1)
32 for(int c2=1; c2<nz-1; c2+=1)
33 for(int c3=MAX(1,-nx+c0+2); c3<c0; c3+=1)
34 Inner(Heat,c0-c3,c1,c2,c3,fac);
35 }
36 for(int c0=timesteps; c0<nx+timesteps-2; c0+=1)
37 for(int c1=1; c1<ny-1; c1+=1)
38 for(int c2=1; c2<nz-1; c2+=1)
39 for(int c3=MAX(1,-nx+c0+2); c3<timesteps;

c3+=1)
40 Inner(Heat,c0-c3,c1,c2,c3,fac);
41 if(ny<=0)
42 for(int c0=1; c0<timesteps; c0+=1) {
43 for(int c2=0; c2<nz; c2+=1)
44 for(int c3=0; c3<nx; c3+=1)
45 Bound(Heat,c3,ny-1,c2,c0);
46 for(int c2=0; c2<nz; c2+=1)
47 for(int c3=0; c3<nx; c3+=1)
48 Bound(Heat,c3,0,c2,c0);
49 }
50 if(nz<=0)
51 for(int c0=1; c0<timesteps; c0+=1)
52 for(int c1=0; c1<ny; c1+=1) {
53 for(int c3=0; c3<nx; c3+=1)
54 Bound(Heat,c3,c1,nz-1,c0);
55 for(int c3=0; c3<nx; c3+=1)
56 Bound(Heat,c3,c1,0,c0);
57 }
58 }

Listing 6. Array and loop nest generated by the InKS compiler for the
semantic of Listing 4

the kernel instances that must be executed in a valid order.
First, the compiler creates a schedule constraint using the
kernel instances set and the order relation. Then it creates
a schedule from this schedule constraint. ISL also supports
the conversion of this schedule into an abstract syntactic tree
(AST) that the compiler then transforms into valid C++ loop
nests. The generated code is valid C++ that can be called from
any other C++ code. For example for the 3D heat solver InKS
semantic presented in Listing 4, the compiler generates the
code presented in Listing 6.

Regarding logical arrays memory mapping and allocation,
an efficient solution can not only take into account depen-
dencies for allocation and deallocation of data. Allocating
memory at the point granularity would lead to huge overheads
as do irregular memory accesses. This aspect is still a work
in progress in our compiler and the current implementation
allocates all memory before starting to execute kernels and
deallocates it after all executions. The mapping uses a distinct
rectangle line major allocation for each logical array and
makes no provision for memory reuse at all. It is implemented
by instantiating a dedicated InKSArray class locally to let
the C++ constructor/destructor mechanism handle memory
management. This naive approach leads to extreme memory
consumption that depends on the product of all dimensions
sizes (including time) and offer very bad performance. It does
however make it possible to test the other aspects of the
compiler.

D. Manual specification of execution choices in InKS

1 #include "inks_file.cpp" //Contains inks code
2 #include "InKSArray.h" //Ease code writing
3
4 //Overload parenthesis operator
5 InKSArray Heat(nx, ny, nz, 2);
6 StencilInit(Heat);
7
8 for(int t=1; t<timesteps; t++){
9 for(int z=1; z<nz-1; z++){

10 for(int y=1; y<ny-1; y++){
11 for(int x=1; x<nx-1; x++){
12 Inner(Heat, x, y, z, t);
13 }
14 }
15 }
16 Heat.swap();
17 }

Listing 7. Naive version using InKS manual approach

The manual specification of execution choices consist in im-
plementing code equivalent to that of Listing 6 manually. The
developer must provide classes that overload the parenthesis
operator for the arrays and loop nests that schedule kernels
execution in a valid order. The kernels can however be seen
as black boxes whose understanding is not required. This code
can #include the semantic part of the code so as to inline
function calls and offer similar performance as if it was written
in a single file.

Listings 7 and 8 show examples of execution choices imple-
menting the naive and cache oblivious optimizations respec-



1 #include "inks_file.cpp"
2 #include "InKSArray.h"
3
4
5 void walk(IArray& Heat,int t0,int t1,int x0,
6 int dx0,int x1,int dx1,int y0,int dy0,
7 int y1,int dy1,int z0,int dz0,int z1,
8 int dz1)
9 {

10 int dt=t1-t0;
11
12 if(dt==1||(x1-x0)*(y1-y0)*(z1-z0)<4) {
13 int x,y,z,t;
14 for(t=t0; t<t1; t++) {
15 for(z=z0+(t-t0)*dz0; z<z1+(t-t0)*dz1; z++) {
16 for(y=y0+(t-t0)*dy0; y<y1+(t-t0)*dy1; y++) {
17 for(x=x0+(t-t0)*dx0;x<x1+(t-t0)*dx1;x++) {
18 Inner(Heat,x,y,z,t+1);
19 }
20 }
21 }
22 }
23 } else if(dt>1) {
24 if(2*(z1-z0)+(dz1-dz0)*dt>=4*dt) {
25 int zm=(2*(z0+z1)+(2+dz0+dz1)*dt)/4;
26 walk(Heat,t0,t1,x0,dx0,x1,dx1,y0,dy0,y1,dy1,
27 z0,dz0,zm,-1);
28 walk(Heat,t0,t1,x0,dx0,x1,dx1,y0,dy0,y1,dy1,
29 zm,-1,z1,dz1);
30 } else if(2*(y1-y0)+(dy1-dy0)*dt>=4*dt) {
31 int ym=(2*(y0+y1)+(2+dy0+dy1)*dt)/4;
32 walk(Heat,t0,t1,x0,dx0,x1,dx1,y0,dy0,ym,-1,
33 z0,dz0,z1,dz1);
34 walk(Heat,t0,t1,x0,dx0,x1,dx1,ym,-1,y1,dy1,
35 z0,dz0,z1,dz1);
36 } else {
37 int s=dt/2;
38 walk(Heat,t0,t0+s,x0,dx0,x1,dx1,y0,dy0,y1,
39 dy1,z0,dz0,z1,dz1);
40 walk(Heat,t0+s,t1,x0+dx0*s,dx0,x1+dx1*s,dx1,
41 y0+dy0*s,dy0,y1+dy1*s,dy1,z0+dz0*s,dz0,
42 z1+dz1*s,dz1);
43 }
44 }
45 }
46
47 //...
48
49 IArray Heat(nx,ny,nz,2);
50
51 StencilInit(Heat);
52 walk(Heat,1,timesteps,1,0,nx-1,0,1,0,ny-1,0,1,0,
53 nz-1,0);

Listing 8. Cache oblivious version using InKS manual approach

tively based on the semantic in Listing 4. It demonstrates that
while the classes used for array implementation must support
the parenthesis operator, they can implement any additional
required behavior. In Listing 7, the array supports a swap
member function for double buffering while the IArray used
in Listing 8 transparently implements the modulo on the time
dimension. One could imagine other such tools to ease the
implementation of well known optimization patterns. Such
tools could even at least partly be generated using the semantic
code using a compiler similar to that previously described.

This ends the presentation of the InKS model. The following
section focuses on the evaluation of the approach.

V. EVALUATION

In order to evaluate InKS, we compare our implementation
with the 3D heat equation solver implementations discussed
along the report [1]. We have implemented the same solver
using InKS. The semantic code is the one presented in
Listing 4. We have implemented two versions of optimization
choices: the naive version (Listing 7) matches the simplest
version from the reference and the cache oblivious version
matched the similarly named one from the reference. We have
evaluated the complexity of the generated code using the GNU
complexity tool that generates a score based on cyclomatic
complexity. For performance evaluations, we have compiled
all codes using the GCC 4.7.2 compiler with the -O3 flag
and executed the result on a single core of an Intel Xeon E5-
2670 node with 32 GB of RAM. Both aspects are presented
in Table I.

This evaluation based on a single solver can of course not
be used to discuss the applicability of InKS to a wide range of
simulation domains. As a matter of fact, the InKS language is
most likely not even Turing complete as it does for example
not support the expression of unbounded loops (such as those
used when iterating until convergence for example). The use
of InKS for unstructured of adaptive meshes is also something
that has to be explored. However, while the language has some
technical limitations that will be explored in future work, it
does not make any assumption regarding the simulated domain
and offers abstractions that are close to the computer rather
than from a specific domain. This enables us to be confident
regarding its adaptability to multiple domains.

As it was the main target of this work, InKS supports
the specification of semantics and optimization choices in
completely distinct sets of files. All elements identified in
Section II pertain to the right file. and two distinct optimization
choices (naive vs. cache oblivious) have been implemented
for a single semantic file. It thus offers a clear separation of
concerns between these aspects.

We have not found any pertinent metric to evaluate the
simplicity of writing the semantic code. The code presented in
Listing 4 is however very close to the most naive implemen-
tation possible where loops are replaced by evolution domains
and access descriptors for kernels. The difficulty to write such
a code can thus be compared to writing the most naive code
possible where one does for example not have to worry about
iteration orders. The situation could be improved even further
by automatically detecting access descriptors when possible.
Syntactic sugar could also be added to simplify expressing
some recurrent patterns such as reductions or equality kernels.

The InKS compiler supports the automatic execution of this
code. The compilation takes in the order of the second to
generate the code presented in Listing 6. Execution is currently
very inefficient and is nearly 40 times slower than the naive
approach. It also consume much more memory that depends
on the number of time-steps where manual implementations
do not. Preliminary tests have however shown that solving the
memory problem should also largely improve the execution



Execution time (1 time-step) GNU Complexity score
Code version Reference InKS Reference InKS

Automatic N/A 112 s (±0.0%) N/A 0
Naive 3.33 s (±0.8%) 3.06 s (±0.2%) 5 3

Cache oblivious 2.19 s (±0.0%) 2.20 s (±0.0%) 22 13

TABLE I
EXECUTION TIME AND CODE COMPLEXITY FOR FIVE VERSIONS OF THE 3D HEAT EQUATION SOLVER ON A CASE OF SIZE (x× y × z) =

(1024× 1024× 1024). RUNS HAVE BEEN EXECUTED 20 TIMES FOR 30 TIME-STEPS EACH, EXCEPT FOR THE AUTOMATIC VERSION WHERE ONLY 3
TIME-STEPS HAVE BEEN USED DUE TO MEMORY LIMITATIONS. THE MEDIAN OF THE TIME-STEP DURATION OVER THE 20 EXECUTIONS IS PRESENTED

WITH THE MAXIMUM DIFFERENCE OBSERVED IN PARENTHESIS.

time problem as discussed in Section IV.
Both the automatic and manually optimized versions of the

code are standard C++ code that offer a C compatible interface.
This code can easily be called from a larger program imple-
mented in a language that supports the C calling convention.
This is the case of most existing languages including C, C++,
Fortran but even also python or Julia for example.

The specification of optimization choices is very close to
their expression in C for example. The GNU complexity score
is slightly lower due to the fact that the optimization code does
no include the core of the kernels. The fact that an already
existing language is used means that specialists of optimiza-
tions can reuse their knowledge in InKS. The existence of
a reference code automatically generated from the semantic
only also makes it possible to easily test the optimized code
validity. In addition, in future work, information from the InKS
annotations of the semantic could be used to automatically
generate code representing common optimization patterns that
the specialist could use.

Finally, when it comes to performance, the approach makes
it possible to express optimizations that does not change
the semantic. Optimizations such as changing the numerical
scheme or changing the order of operations, potentially making
the code generate different results is however out of the
scope of this work. In the case of the 3D heat equation
solver, both the naive and cache oblivious versions were
trivial to implement and their performance match (or slightly
outperform) the reference performance.

VI. CONCLUSION AND PERSPECTIVES

This report has presented InKS, a programming model
intended to decouple optimization choices from semantics in
high-performance simulation codes. InKS offers a language
based on C++ and pragma annotations to express the se-
mantics of simulations and supports automatic execution as
well as manual specification of execution choices. Preliminary
evaluations show that InKS manages to completely separate
semantics from execution choices while enabling any opti-
mization that can be expressed in C++ to be used. They
also show that with manual choice of optimizations, InKS
performs similarly to hand-tailored code in a more classical
language while the automatic execution does not currently
offer very good performance. One should however note that
this automatic execution is only intended to test the semantic
of the code and that the expression of both the semantic and

optimization choices is typically no more complex than with
an imperative language like C.

Many directions for future work have been identified in
this report. The first such work we plan to tackle is the
improvement of the memory management in the InKS au-
tomatic compiler so that the generated code does not differ
by orders of magnitude in terms of performance from a
typical implementation. A maybe more interesting feature is
to support tools to ease the expression of optimizations. Many
of the runtimes and languages identified in Sections III such as
OpenMP, Kokkos or StarPU could be wrapped to ease their use
in optimization. By generating code that uses information from
the InKS pragma annotations, a lot of tedious code could be
automatically generated, thus easing the work of the developer.

REFERENCES

[1] Stencilprobe: A microbenchmark for stencil applications. http://people.
csail.mit.edu/skamil/projects/stencilprobe/. Accessed: 21-02-2017.

[2] AUGONNET, C., THIBAULT, S., NAMYST, R., AND WACRENIER, P.-
A. Starpu: A unified platform for task scheduling on heterogeneous
multicore architectures. Concurr. Comput. : Pract. Exper. 23, 2 (Feb.
2011), 187–198.

[3] BASTOUL, C. Code generation in the polyhedral model is easier than
you think. In PACT’13 IEEE International Conference on Parallel Archi-
tecture and Compilation Techniques (Juan-les-Pins, France, September
2004), pp. 7–16.

[4] BAUER, M., TREICHLER, S., SLAUGHTER, E., AND AIKEN, A. Legion:
Expressing locality and independence with logical regions. In Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (Los Alamitos, CA, USA, 2012), SC
’12, IEEE Computer Society Press, pp. 66:1–66:11.

[5] CAMIER, J.-S. Improving performance portability and exascale software
productivity with the &nabla; numerical programming language. In Pro-
ceedings of the 3rd International Conference on Exascale Applications
and Software (Edinburgh, Scotland, UK, 2015), EASC ’15, University
of Edinburgh, pp. 126–131.

[6] CHANDRA, R., DAGUM, L., KOHR, D., MAYDAN, D., MCDONALD, J.,
AND MENON, R. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[7] CHARLES, P., GROTHOFF, C., SARASWAT, V., DONAWA, C., KIEL-
STRA, A., EBCIOGLU, K., VON PRAUN, C., AND SARKAR, V. X10: An
object-oriented approach to non-uniform cluster computing. SIGPLAN
Not. 40, 10 (Oct. 2005), 519–538.

[8] CHRISTEN, M., SCHENK, O., AND BURKHART, H. PATUS: A Code
Generation and Autotuning Framework for Parallel Iterative Stencil
Computations on Modern Microarchitectures. In Parallel & Distributed
Processing Symposium (IPDPS), 2011 IEEE International (May 2011),
IEEE, pp. 676–687.

[9] DEVITO, Z., JOUBERT, N., PALACIOS, F., OAKLEY, S., MEDINA, M.,
BARRIENTOS, M., ELSEN, E., HAM, F., AIKEN, A., DURAISAMY,
K., DARVE, E., ALONSO, J., AND HANRAHAN, P. Liszt: A Domain
Specific language for Building Portable Mesh-based PDE Solvers. SC
’11, ACM, pp. 9:1–9:12.

http://people.csail.mit.edu/skamil/projects/stencilprobe/
http://people.csail.mit.edu/skamil/projects/stencilprobe/


[10] EDWARDS, H. C., TROTT, C. R., AND SUNDERLAND, D. Kokkos:
Enabling manycore performance portability through polymorphic mem-
ory access patterns. Journal of Parallel and Distributed Computing 74,
12 (2014), 3202 – 3216. Domain-Specific Languages and High-Level
Frameworks for High-Performance Computing.

[11] EL-GHAZAWI, T., CARLSON, W., STERLING, T., AND YELICK, K.
UPC: Distributed Shared Memory Programming (Wiley Series on Par-
allel and Distributed Computing). Wiley-Interscience, 2005.

[12] KONG, M., POUCHET, L.-N., SADAYAPPAN, P., AND SARKAR, V.
Pipes: A language and compiler for task-based programming on
distributed-memory clusters. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (Piscataway, NJ, USA, 2016), SC ’16, IEEE Press, pp. 39:1–
39:12.

[13] LEE, J., AND SATO, M. Implementation and performance evaluation of
xcalablemp: A parallel programming language for distributed memory
systems. In 2010 39th International Conference on Parallel Processing
Workshops (Sept 2010), pp. 413–420.

[14] NUMRICH, R. W., AND REID, J. Co-array fortran for parallel program-
ming. In ACM Sigplan Fortran Forum (1998), vol. 17, ACM, pp. 1–31.

[15] PRESIDENT’S INFORMATION TECHNOLOGY ADVISORY COMMITTEE.
Computational science: Ensuring america’s competitiveness. Report to
the President, June 2005. https://www.nitrd.gov/pitac/reports/20050609_
computational/computational.pdf.

[16] VERDOOLAEGE, S. isl: An Integer Set Library for the Polyhedral Model.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 299–302.

https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf
https://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

	Introduction
	Analysis
	Related work
	The InKS programming model
	The InKS language
	InKS language completeness analysis
	Source-to-source compiler
	Manual specification of execution choices in InKS

	Evaluation
	Conclusion and perspectives
	References

