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It is shown that explicitly broken scale symmetry is essential for dense skyrmion matter in hidden
local symmetry theory. Consistency with the vector manifestation fixed point for the hidden local
symmetry of the lowest-lying vector mesons and the dilaton limit fixed point for scale symmetry
in dense matter is found to require that the anomalous dimension (vyg2) of the gluon field strength
tensor squared (G2) that represents the quantum trace anomaly should be 0 < vg2 < 3.

PACS numbers: 11.30.Fs, 11.30.Rd, 12.39.Dc, 12.39.Fe

I. THE PROBLEM

It is well-recognized and generally accepted in nuclear
theory that two ingredients are essential in nuclear dy-
namics, a large attraction and a large repulsion balancing
each other providing the small nuclear binding energy ob-
served in nature. In an effective field theory description,
the former is simulated by the exchange of an iso-scalar
scalar meson (denoted by o) of mass ~ 600 MeV and the
latter by that of an iso-scalar vector meson of mass ~ 780
MeV (identified with w)[] It is also accepted that when
considered at the large IV, limit in QCD, baryons can be
described as skyrmions ﬂ, E] and hence nuclear matter
could be described as a skyrmion matter B]

In this short note we first point out that there is a
serious problem in describing dense matter in terms of
skyrmions due to a hitherto unobserved interplay be-
tween the scalar and vector degrees of freedom and then
show that the problem can be resolved by resorting to
an intricate interplay between scale-chiral symmetry and
hidden local symmetry (HLS for short).

It was discovered in [4] that when skyrmions are put
on lattice to simulate dense baryonic matter with a hid-
den gauge symmetric Lagrangian implemented with scale
symmetry to take into account the change of vacuum
in medium [5], the energy of the system, the medium-
modified pion decay constant f and masses of the vector
mesons and the pion diverge because of the divergence of
the medium-modified expectation value of dilaton (x)*.
This observation is in stark contrast to the intuitive ex-
pectation that, at very high density, chiral symmetry
should be restored and hadronic phase should transit to
quark(-gluon) phase. Moreover, in the HLS approach, it
was found that at very high density or temperature the
vector manifestation (VM for short) fixed point should
be approached with fr — 0,m, — m, =0 ﬂa] In ad-
dition, in the dilaton compensated chiral effective theory
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1 In chiral perturbation theory anchored on nonlinear sigma model,
those effects are simulated by high-order loop effects. The con-
nection could be made but we won’t dwell on it in this paper.

of baryonic matter, it was expected that at high density,
the theory should go toward a dilaton-limit (DL) fixed
point characterized by fr — 0 ﬂ, ] What’s observed
in M] is therefore consistent with neither the intuitive
expectation nor effective theory calculations.

The Lagrangian involved in M] consisted of the stan-
dard (normal-parity) HLS Lagrangian with an expicit
chiral symmetry breaking mass term, O(p?) in chiral
counting (with O(p?*) ignored), plus the anomalous, ho-
mogeneous Wess-Zumino (hWZ) term, O(p*) in chiral
counting. The w meson, crucial in nuclear dynamics, en-
ters by coupling to other degrees of freedom via the hWZ
term, so the latter is essential for taking into account the
w meson in the dynamics even though it is at the next-
to-leading order in the chiral counting, that is of O(p?*).
As has been well established, the skyrmion model with
HLS Lagrangian with 7 and p — and without w — fares
well in finite nuclei as well as in nuclear matter, so the
culprit in the trouble encountered in @] was the w asso-
ciated with the hWZ term. Indeed the presence of the
lowest iso-vector vector mesons p and iso-vector axial-
vector mesons a1 improves the structure of finite nuclei
over the Skyrme model (with pion only), with further im-
provement moving toward a BPS structure by an infinite
tower ﬂQ] The problem arises, however, when the hWZ7Z
term is taken into account HE]

By itself, the hWZ term is classically scale-invariant, so
the dilaton field x does not figure in that term. There-
fore, the condensate (x) which controls the in-medium
behavior of the Lagrangian ﬂﬂ] does not enter in the hWZ
term in medium. The hWZ contribution to the energy of
the skyrmion matter is found to diverge when integrated
over the space unless the strong w coupling to other de-
grees of freedom is suppressed. As a way-out, in ], a
factor (x/f»)™ was multiplied to the hWZ term, explic-
itly breaking the scale invariance, and n was varied so as
to tame the divergence. It was found that with n ~ 2 or
3, the problem was removed. However in ], this proce-
dure was totally arbitrary, with justification from neither
theory nor experiment. In this note we derive this result
by generalizing the notion of scale-chiral effective theory
proposed by Crewther and Tunstall [12] (CT for short)
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to hidden local symmetry [13].

II. HIDDEN-SCALE AND HIDDEN-LOCAL
SYMMETRIC LAGRANGIAN

We start with the HLS Lagrangian proposed in ﬂﬂ, |E]
implemented with scale symmetry that was used in M]
It is in the form
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where the relevant degrees of freedom that figure are —
in addition to the pion field U = e/ f= = ¢l (z)¢x(z)
the U(2) vector fields V,, = $(p, +w,,) and the conformal
compensator field y = f,e?/f> with ¢ being the dilaton
field. In Lagrangian (), Lnwz is the homogeneous Wess-
Zumino term that consists of three independent terms
that are reduced to one term in @] as specified below
and V(x) is the dilaton potential term that accounts for
the trace anomaly of QCD. For simplicity, without the

2

2
Lis, = Iz (%) Trla 1@’ + af7hs (f—i) Tefay,af] -

o

loss of generality in our discussion, we can take the chiral
limit.

Several comments are in order before proceeding fur-
ther. Apart from the dilaton potential V(x), the La-
grangian () is scale invariant. It is of O(p?) in the
chiral-scale counting except for V() and Lywz. We will
explain later why O(p*) terms in the HLS sector will not
affect our argument. The hWZ term is scale-dimension-4,
hence scale invariant. But it is of O(p*) in the chiral-scale
counting. It is this term that does the havoc to the dense
skyrmion matter but cannot be ignored because it is the
only way the w meson enters in nuclear dynamics.

In order to resolve the disaster encountered in M],
we resort to the strategy proposed by Crewther and
Tunstall ﬂﬁ] in implementing scale symmetry to chi-
ral Lagrangian. How this strategy resolves a variety
of scalar-meson conundrum in nuclear physics was dis-
cussed in ﬂﬂ] Here we follow CT formulated for non-
linear sigma model and apply it to HLS. This is made
feasible given that HLS is gauge-equivalent to non-linear
sigma model ﬂﬁ, ] The dilaton implemented HLS,
Lurs,, generalized from CT considered in this note is
given by [13]

Lurs, ‘CHLS +£%iég +V(x), (2)

with
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In this Lagrangian that takes into account the quan-
tum anomaly to the leading order in chiral-scale symme-
try, the scale-invariant term LHLS comes directly from
the conformal compensated HLS Lagrangian while the
scale-noninvariant term E;ﬁ‘é arises from the explicit
scale symmetry breaking accounted for by the slope of the
beta function 3" which is equal to the anomalous dimen-
sion of yg2 at a (presumed) IR fixed point. Because of
the slope of the beta function, or equivalently the anoma-
lous dimension of the gluon G2, 442, although the hWZ
terms Lpwy is scale-invariant at the classical level, the

2 A similar idea was used by Yamawaki ] in a somewhat different
context in a dilatonic Higgs approach to beyond the Standard

dilaton couples to them due to the quantum anomaly. As
mentioned before, we ignore the O(p*) terms in the HLS
sector.

In the Lagrangian (@), the low-energy constants
hi(i = 1,---,6) cannot all be fixed unambiguously.
Here, however, modulo explicit scale symmetry break-
ing which brings in additional O(p?) chiral-scale order &
la Crewther and Tunstall m], we can take h; = 1,(i =
1,2,3,4). As mentioned in the last section, this is justi-
fied as we are working with O(p?) normal-parity compo-
nent of HLS. With this choice, the Lagrangian (2)) reduces
to

Model.
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As stated, we reduce the hWZ term to a single term
which can be obtained by a suitable choice of the coeffi-
cients of the three terms,

P
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where B, is the topological (baryon) current. The
constant ¢, is an unknown constant together with the
anomalous dimension 3’. One can actually treat all three
hWZ terms as was done in HE] For our purpose this is
unnecessary. We have assured ourselves that the quali-
tative feature we are treating is not affected.

Fluctuating the dilaton field with respect to its vacuum
value and keeping the leading-order fluctuation, one can
express the dilaton potential as

Com22 (x m(X)_ 1
-5 () ()]
To obtain this expression we have used that, in the chiral
limit, m2 f2 = —4p'hs = 3'(4+ ') hg which is the dilaton
analog to the Gell-Mann-Oakes-Renner relation for the
pion with m2 ~ O(p?) [12]. If § were < 1, at the
leading order of 8, the dilaton potential would go to the
log-type potential widely used in the literature HE] But
here we will keep it as a parameter since it should be of
O(1) to realize the VM and the dilaton-limit as we will
see later.

V(x) (6)

III. THE SOLUTION

The solution to the problem encountered in M] turns
out to be amazingly simple. The solution given in ﬂﬂ]
corresponds to (@) with

2<0 <3, w0 (7)
with no other modifications. There the same Lagrangian
as (@) and the potential (6] were used but the factor
(x/ fs)™ with n < 3 was multiplied without any justifica-
tion to gw,B* to simply quench the gauge coupling g for
increasing density. Here, as explained in the last section,
the QCD trace anomaly is seen to do the job.

It is extremely interesting to explore what information
one can get on the role of explicit scale symmetry break-
ing characterized by 8’ # 0 from dense baryonic matter.
There is no information that can be trusted on 4’ in QCD
with N, = 3 and Ny < 8 from experiments or theory. We
are aware of calculation of 3’ in scheme-independent se-
ries expansion for Ny > 9 but it does not give any hint on
QCD proper with three flavors. Therefore it is intriguing
that dense nuclear matter may be able to say something,

a
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tentative though it may be, about the anomalous dimen-
sion of the gluon field strength tensor squared.

For this purpose, we proceed to look at the model de-
fined above and simulate dense skyrmion matter with
two parameters ' and c¢j,. To gain a rough idea, we
take the parameters used in [12], m, = 550 MeV and
fo = 100 MeV. Other values in the vicinity of these would
not affect the results qualitatively.

To confront nature, i.e., the EoS for compact stars,
the U(2) symmetry for the vector mesons V = (p,w)
that holds well in the matter-free vacuum cannot remain
unbroken at density n 2 2no [20, 21]. With breaking of
U(2) symmetry for the vector mesons, the half-skyrmion
phase which controls the symmetry energy in compact-
star matter sets in at n ~ 2ng ﬂﬁ] This structure is not
present with the U(2) symmetry for the V,, and the low-
mass dilaton, m, = 550 MeV. Both of these features are
not realistic since the U(2) symmetry should be strongly
broken in dense matter Eﬁ] and the dilaton mass could
be higher in the matter-free vacuum. However the quali-
tative feature we are concerned with is the divergence of
the decay constant f, ~ fr and the consequent violent
deviation from the concordant VM /DL fixed point, and
this behavior is indifferent to the presence of the half-
skyrmion phase.

In the model so defined, the density dependent
Jrsmy,mg, and f7 can be expressed as i, é]

() b-50-3or)])
Fern ()

The possible values of ¢, and 3’ to avoid the divergence
problem and yield VM and dilaton limit fixed point at
high density are summarized in Table[[lmarked with ”/.”
Those indicated by ” x” are excluded because the VM
and DLFP set in at much too low densities. From this
table, one can conclude that, to be consistent with the
VM and DL fixed points, the ranges of values acceptable
are 0 < ' < 3.0 and 0 < ¢, < 0.3. It seems safe to say
that 8’ = 0 is ruled out from what’s found in dense mat-
ter. These ranges could be sharpened if the unrealistic
features mentioned above were suitably accounted for.

We next show the effect of the parameters ¢, and S’
on hadron properties in Fig. [[I This figure shows that
the hadron properties are not significantly changed by ¢
as long as it is < 0.3. However, a smaller ', even though
it avoids the divergence, pushes chiral restoration to an
unacceptably high density.

In
fr

Q

(8)



TABLE I. Possible values of ¢;, and 8’ to yield VM and DLFP.

n F 1.0 15 20 25 30 35
0.0 v vV Y X X
0.1 vV oV VX
0.2 vV vV VX
0.3 vV NV VY

{i=niim=nijm,
Hr=niimz=rim,

FIG. 1. The effects of ¢, (left panel for 8’ = 2.5) and 8’ (right
panel for ¢, = 0.2) on the hadron properties as a function of
crystal size L. The similar plots hold for fr/fx.

IV. THE IMPLICATIONS

Several intriguing predictions follow from the above
observation.

The first is that in dense matter, the w coupling to
other degrees of freedom is suppressed by the explicit
breaking of scale symmetry. This would also ameliorate
a similar disturbing situation in holographic models. For
instance in the Sakai-Sugimoto model @], at the leading
order O(N.\) where )\ is the t' Hooft constant, the 5D YM
Lagrangian in flat space describes baryonic matter as a
BPS-instanton matter. It has zero binding energy, which
is close to nature where the binding energy of heavy nu-
clei is tiny. However this picture breaks down at the next
order in A, i.e., at O(N\"). At that order, the Chern-
Simons term with U(1) vector field — which corresponds
to the w meson in 4D — enters and spoils drastically the

4

nice agreement obtained at the leading order [23]B This
can also be seen in the bottom-up approach of Sutcliffe ﬂg]
where it is found that the “good result” obtained by
adding more and more iso-vector and axial-vector mesons
in the skyrmion structure gets spoiled when the w fields
are taken into account. The result we obtained here sug-
gests that this problem can also be resolved by the 3’
effect when the broken scale symmetry is suitably imple-
mented into the Chern-Simons term.

A potentially more significant implication of this result
is that dense baryonic matter can provide information
on the fundamental quantity, the anomalous dimension
B’, and the constant ¢j,. There is a recent work which
purports to access this quantity in gauge theories, but
for Ny > 9 [24[1. So this quantity — as well as ¢, — is
essentially unknown. What one gets in dense matter is
therefore quite suggestive and deserves further studies.

There is an intriguing hint that HLS limited to O(p?)
gives highly non-trivial predictions that are unavailable
from other approaches [16, 27]. For instance, the KSRF
relation, which works surprisingly well, is found to hold
to allloop orders HE] There is also the vector dominance
phenomenon which is otherwise hard to derive. All this
put together would suggest that in scale-invariant HLS
applied to dense matter, one may ignore O(p*) terms
except for the hWZ terms — which are essential. A nu-
merical evidence for this is given in ﬂﬁ] In medium, the
same suppression as is observed in the hWZ terms could
be effective for all O(p*) terms, in which case the leading
order Lagrangians given above should be reliable, making
the theory much simpler than thought.
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