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1 Introduction

Accessing the properties of single nucleon and multi-nucleon
matter (or nuclear matter) in terms of skyrmions [1]#1 has
become an exciting new topic in nuclear physics on par with
condensed matter physics and string theory [2]. In the limit
of large number of colorsNc [3], the skyrmion is a baryon
in QCD and shares the same properties as constituent quark

#1By “skyrmion” will be meant the generic soliton model for baryons without specification of the degrees of freedom involved in the Lagrangian. The soliton
model built on the Skyrme Lagrangian consisting of the quadratic current-algebra term and the Skyrme quartic termonlywill be referred to as “Skyrme model.”
Whatever the degrees of freedom involved, the topology is carried by the pion field only.

http://arxiv.org/abs/1612.06600v2


model [4, 5]. From then on, Skyrme’s idea has been widely
accepted in the physics community and indeed, as one can see
in [2], has been spectacularly successful in condensed matter
physics and is beginning to have significant impact in nuclear
physics. Earlier achievements were reviewed in Refs. [6,7].

Since the 1980s, especially in the past decade, a consid-
erable progress has been made on describing dense nuclear
matter by putting skyrmions on crystal lattice, the strategy
initiated by Klebanov [8]. In this review we summarize what
we have learned from that approach on compressed baryonic
matter, an area of nuclear dynamics for which there are no
well-established theoretical tools or experimental data.The
lattice QCD technique, fruitfully applied to high tempera-
ture matter, is presently powerless in addressing dense mat-
ter and effective field theory models, presently available, or
phenomenological models based on energy-density function-
als are not predictive enough beyond the density regime near
normal nuclear matter density. It will be seen below that the
regime of large density above that of nuclear mattern0 ≃ 0.16
fm−3 is a total wilderness.

In the skyrmion approach, one starts with an effective La-
grangian, with as many relevant degrees of freedom as rel-
evant taken into account, and puts the resulting skyrmions
on the crystal lattice. It has become clear from the modern
development of holographic QCD for baryons (see [2] for re-
view) that, while the pion is essential for supplying topol-
ogy, there is no reason to suggest that the pion is enough
to arrive at a realistic description of the baryon and in par-
ticular baryonic matter. In fact an infinite tower of vector
mesons do and must intervene. Given a realistic Lagrangian
for skyrmion structure, dense matter can then be simulated
by putting multi-skyrmions on crystal lattice and squeezing
the crystal size. The Skyrme model can therefore provide
us a unified framework to study the single baryon, baryonic
matter and medium modified hadron properties [9]. We will
briefly discuss the basics of nuclear matter from skyrmions
and the potential power of the skyrmion model over other nu-
clear effective field theories in Sec. 2 and Sec. 3.

Since the discovery of the AdS/CFT correspondence [10],
the holographic QCD model [11–16] has provided a novel
approach to the strong interaction processes at low energy.
In this approach, one can access not only the elementary
meson and baryon dynamics [11–16] but more significantly
the dense baryonic matter using the topology profiles that
is difficult to access by methods that do not resort to topol-
ogy [17–22]. We will review the progress in this direction in
Sec. 4. Special emphasis is put on the impact of the infinite
tower of vector mesons on multi-skyrmion properties.

We have learned from the long history of nuclear phe-
nomenology that not only the pseudoscalar mesons, pions,
but also the lowest-lying vector mesons,V = (ρ, ω) and the
scalar meson (that we shall callσ) of comparable mass are
crucial for understanding the nuclear forces. In Sec. 5, we re-

view the effect of the lowest-lying vector and scalar mesons
on nucleon and nuclear matter properties by using a “chiral-
scalar effective theory” implementing hidden local symmetry
(HLS) [23,24] and hidden scale symmetry.

In Sec. 6.1, we discuss a variant soliton model which fo-
cuses on the BPS structure of heavy nuclei [25, 26]. This
model departs from the standard approach to skyrmion which
is anchored on chiral Lagrangians that describe low-energy
nonperturbative strong interactions typified by the nonlin-
ear sigma model. It starts from the characteristic features
of heavy nuclei and nuclear matter of incompressible liq-
uid structure and aims, ultimately, to go to the regime where
soft-pion dynamics are recovered so as to make a contact the
premise of QCD. In this model, the empirically small value
of the nuclear binding energy, especially for nuclei with large
mass numberA, can be well reproduced [27,28]. In addition,
it has been suggested that the BPS model can also give pre-
dictions of the mass and radius of massive compact stars [29],
addressing the recent observations [30,31].

The HLS#2, constructed up to, and including,O(p4) terms
used in the simulation of skyrmion matter, is quite involved
with 17 terms. It turns out however that one can simplify
considerably the full HLS Lagrangian by numerically ana-
lyzing the contributions from each term of the Lagrangian to
the skyrmion and skyrmion matter. In Sec. 6.2, it is shown
that one can reduce the 17 terms down to 7 terms with an
accuracy of∼ 97%.

Finally translating the features obtained in the skyrmion
crystal simulation, with focus on the special role of the topol-
ogy change in the nuclear tensor force, into the “bare pa-
rameters” of the effective baryonic Lagrangian that incorpo-
rates hidden symmetries – hidden local symmetry and scale
symmetry, the properties of both nuclear and dense matter
could be addressed in a unified way. This development, not
widely appreciated in nuclear physics community, is briefly
discussed in Sec. 6.3.

We finally provide our perspectives and discussions in
Sec. 7.

2 ABC of Baryonic Matter from Skyrmions

The original Skyrme model is a model describing baryons in
a mesonic theory in which the chiral symmetry is realized
nonlinearly with pion field only [1].

In the nonlinear realization of chiral symmetry, the pion
figures as the Nambu-Goldstone (NG for short) boson of the
spontaneous breaking of chiral symmetry. It is expressed in
the polar parameterization through

U(x) = exp(2iπaTa/ fπ) , (1)

where Ta is the generator of theS U(2) group satisfying
Tr(TaTb) = 1

2δ
ab and fπ is the pion decay constant with an

empirical valuefπ ≃ 92.4 MeV.
#2Unless specified otherwise, by HLS, we will mean hidden localsymmetry with the lowest-lying vector mesonsV.
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Since the unitary fieldU(x) satisfies U(x)U(x)† =

U(x)†U(x) = 1, for any fixed time, say,t0, the matrixU(x, t0)
defines a map fromR3 to the manifoldS3 in isospin space.
At the low-energy limit, QCD goes to the vacuum, i.e.,

U(|x| → ∞, t0) = 1, (2)

therefore, all the points at|x| → ∞ are mapped onto the north
pole of S3 and energy of the system is finite. We have the
nontrivial map

U(x, t0) : R3→ S3, (3)

for the static configurationU(x, t0). In the language of
topology, these maps constitute the third homotopy group
π3(S3) ∼ Z with Z being the additive group of integers
which accounts for the times thatS3 is covered by the map-
ping U(x, t0), i.e., winding numbers. Because a change of
the time coordinate can be regarded as a homotopy trans-
formation which cannot transit between the field configura-
tion in homotopically distinct classes, the winding number
is a conserved quantity in the homotopy transformation by
the unitary condition of the fieldU(x) and condition (2). In
skyrmion models, the conserved winding number represents
the conserved baryon number in QCD. The baryon arises as
a topological soliton with the topology lodged in the chiral
field U(x).

Note that, in the construction of the skyrmion-type model,
the unitary condition of the fieldU(x) and the condition (2)
are the essential characteristics that should be taken intoac-
count. Indeed, in the construction of the BPS-type skyrmion
proposed by Adamet. al.[25,26] that will be discussed later,
only these two conditions are imposed.

In the skyrmion approach to baryon-baryon interactions,
the baryon-baryon interaction at large separation is approxi-
mated by the product ansatz [1] of two undistorted skyrmions
with a relative rotation in spin-isospin space

U00(x, x1, x2) = U0(x − x1)A(α)U0(x − x2)A†(α), (4)

whereA(α) = exp(iτ ·α/2) is the rotation in the isospin space
with rotation angleα, U0(x) is the skyrmion configuration
satisfying the classical equation of motion of soliton,x1 and
x2 are the centers of the two skyrmions andr = |x2 − x1| is
the distance. To get the most attractive potential, the pairof
skyrmions should be arranged in such a way that they should
mutually rotate in the isospin space by angleπ about the axis
perpendicular to the line joining them. One can simulate the
nuclear matter by putting skyrmions onto the crystal lattice,
first put forward by Klebanov [8], and regarding the skyrmion
matter as baryonic matter. The density effect enters when the
crystal size is changed. Subsequently, Kugler and Shtrikman
proposed a new crystal structure [32, 33], the face-centered-
cubic (FCC) crystal, which gave the minimal energy of the

nuclear matter about 4% lower than that simulated by the cu-
bic crystal used by Klebanov. The arrangement of skyrmions
on an FCC crystal and the baryon number density distribution
in the crystal face are shown in Fig. 1. So far the FCC crystal
is the lowest energy crystal configuration known for nuclear
ground state.

x

y

z

Figure 1 The arrangement of skyrmions on the FCC crystal lattice (left
panel) and baryon density distribution (right panel). In the left panel, the
black dots stand for skyrmions at the lattice vertices and the red dots repre-
sent skyrmions on the face centers.

In the FCC configuration, the skyrmion number density,
which is the baryon number density with the skyrmion mat-
ter regarded as baryon matter, is expressed as 1/(2L3) where
2L is the crystal size. The size of the crystal lattice corre-
sponding to the normal nuclear densityn0 = 0.17 fm−3 is
then given byL = 1.43 fm.

To simulate the nuclear matter in the skyrmion crystal ap-
proach, it is convenient to decompose the skyrmion soliton
configurationU0 as

U0 = φ0 + i~τ · ~φ, (5)

with the constraintφ2
0+

~φ2 = 1. In this decomposition,φ0 ac-
counts for the magnitude of the quark-antiquark condensate
〈q̄q〉 which in the matter-free space satisfiesφ0(x→ ∞)→ 1
and φa(x) → 0, (a = 1, 2, 3), due to the parity invariance
of the strong interactions. However, in the inhomogeneous
medium, due to the interaction of the pion fluctuation with
the medium, the quantitiesφ0(x) andφa(x) measure the inho-
mogeneous quark condensate in the medium [34].

One convenient way to simulate the skyrmion matter in the
crystal is to introduce the unnormalized fields (φ̄0, φ̄1, φ̄2, φ̄3)
which have the Fourier series expansions as [35]#1

φ̄0 =
∑

a,b,c

β̄abccos(aπx/L) cos(bπy/L) cos(cπz/L), (6)

and

φ̄1 =
∑

h,k,l

ᾱhkl sin(hπx/L) cos(kπy/L) cos(lπz/L), (7)

φ̄2 =
∑

h,k,l

ᾱhkl cos(lπx/L) sin(hπy/L) cos(kπz/L), (8)

#1Instead of expanding with the unnormalized modes, one can also make a Fourier expansion of the normalized modesφα(α = 0, 1, 2, 3) defined by
Eq. (5) [36].
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φ̄3 =
∑

h,k,l

ᾱhkl cos(kπx/L) cos(lπy/L) sin(hπz/L). (9)

The fieldsφ̄α relate to the normalized fieldφα through

φα =
φ̄α

√

∑3
β=0

(

φ̄β
)2
, (α, β = 0, 1, 2, 3). (10)

By taking the Fourier coefficients β̄ and ᾱ as free param-
eters and varying them, the minimum energy per particle
at a specific crystal size renders the quasi-nucleon density-
dependent. Note that for a specific crystal structure, the
Fourier coefficientsβ̄ andᾱ are not independent, but are re-
lated. Note also that the normalization (10) does not spoil
any symmetries that the unnormalized fields possess, while
the expansion coefficientsᾱhkl andβ̄abc lose their meaning as
Fourier coefficients in the normalized fields [32,33].

Among a variety of properties revealed in the crystal ap-
proach to dense matter, the most important of all is the ex-
istence of half-skyrmion configurations at some higher den-
sity. Being topological, its presence is a robust prediction
involving maximal symmetry [37]. Its does not depend on
what degrees of freedom other than the pion are involved.
The detailed discussions and extensive references are found
in [2], so we invite the interested readers to consult that vol-
ume. What is significant is that it involves a topology change
from skyrmions to half-skyrmions, which is responsible for
a dramatic change in the properties of the dense matter at a
densityn1/2 ∼ 2n0, a feature which is not visible in other
approaches in the literature. The topological change is essen-
tial in the given effective field theory (EFT) for the equation
of state for compressed baryonic matter relevant for massive
compact stars [38].

In Fig. 2 is shown the baryon number density distribution
of the skyrmion (left panel) and half-skyrmion states of mat-
ter (right panel). In the half-skyrmion phase, the vertices
where the baryon number density accumulates form the CC
crystal. The space averageφ0 defined as

〈φ0〉 =
1

(2L)3

∫ 2L

0
d3xφ0, (11)

which is nonzero in the skyrmion matter, is found to van-
ish in the half-skyrmion state. This implies that the quark
condensate〈q̄q〉 vanishes when the space is averaged. But
this does not imply a phase transition since chiral symmetry
is not restored with nonvanishing pion decay constant, that
is, the pion is still present. In fact there is no bona-fide or-
der parameter for this change of state, symptomatic of topol-
ogy change. Although it is not a paradigmatic phase change,
topology change can be considered as a phase transition, so
in what follows we will use “half-skyrmion phase.”

Figure 2 The distribution of the baryon number density in the skyrmion
(left panel) phase and half-skyrmion phase (right panel).

When the skyrmion-half-skyrmion phase transition takes
place, in addition to the original lattice vertices, the baryon
number density accumulates in the middle of the lines con-
necting the original FCC lattice vertices. If one integrates
the baryon number density in the region where baryon num-
ber density accumulates, each new crystal lattice has baryon
number one-half. At what density the transition can take
place in dense baryonic matter depends on, among others, the
degrees of freedom that intervene. Since in practice a large
number of mesons can be involved, e.g., the infinite tower of
holographic QCD, and one is limited to drastic approxima-
tions, it is difficult to pinpoint the changeover densityn1/2.
Given that there is no indication for half-skymrion phase at
nuclear matter density, it cannot be lower than the normal
densityn0. If it were much higher, say, in the regime where
the percolation transition can take place, then the model could
not be used. Thus the optimal density forn1/2 should be
somewhere aboven0. The present estimate based on detailed
analyses using a semi-realistic model that containsπ, ρ,ω and
σ indicates thatn1/2 ∼ 2n0. It is this density regime where
hadron-quark continuity seems to take place as we will men-
tion in Sec. 3. We will keep this as a typical value in applica-
tions to nuclear matter and denser matter.

It should be mentioned before we enter into detailed dis-
cussions that the skyrmion crystal picture would make sense
if Nc were very large. Indeed ifNc → ∞, then the bary-
onic matter would be a crystal. In realityNc = 3 is not so
“large” and normal nuclear matter is a liquid and not a crys-
tal. One might hope to arrive at a structure compatible with
nuclear matter by doing proper quantum-mechanical calcula-
tions taking into account 1/Nc corrections starting from the
crystal structure but nobody succeeded to do such calcula-
tions so far. Even within the largeNc scheme, indication
from holographic QCD calculations is that at high density,
a variety of different forms, such as dyonic salt (resembling
half-skyrmions), layers of “popcorns,” salty or sugared etc,
can be present [17–22]. All these exotic configurations could
be artifacts of the largeNc models but at present none of them
can be ruled out.

Given this wilderness of scenarios, what we will adopt
is the topology change of skyrmion-half-skyrmion phase
change and exploit it in both the crystal approach and con-
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tinuum approach that takes into account the topology change
in the parameters of the effective Lagrangian. We will eschew
relying on the numerical results coming from the crystal lat-
tice.

3 Dense Matter in the Skyrme Model

We first discuss certain generic properties of the skyrmion
approach in terms of the simplest model, the Skyrme model
(with pions only). The Skyrme model may be considered as
a simplified chiral Lagrangian with all heavy degrees of free-
dom than pion integrated out and all higher derivative terms
dropped. The resulting Lagrangian contains the current alge-
bra term and the quartic term, i.e., the Skyrme quartic term.
In fact the quartic term is essentially the leading term in the
next-to-leading orderO(p4) chiral Lagrangian that captures
π-π scattering [39]. For simplicity, we take the parameters
given by the free-space value rather than the effective val-
ues fitting nucleon properties or nuclear properties used in
the literature. Here the purpose is to obtain a qualitative idea
of what’s going on rather than fitting data. To have a bet-
ter view of what we are driving at, it is useful to recall the
currently popular approach anchored on phenomenological
Lagrangian to finite nuclei, nuclear matter and dense matter
relevant to compact stars, namely, the energy-density func-
tional approach (EDFA for short). Related closely to what
we are doing is the relativistic mean-field (RMF) theory, ini-
tiated by Walecka [40]. This theory works fairly well up to
the density appropriate for nuclear matter. This can be under-
stood in terms of Landau Fermi-liquid theory, to which the
RMF at large density is related.

A typical phenomenological Lagrangian used is of the
form

L = ψ̄
(

iγµ∂
µ −mN

)

ψ

+
1
2

(

∂µs∂µs−m2
ss2

)

+
1
2

(

∂µa0 · ∂µa0 −m2
a0

a2
0

)

− 1
4
ωµνω

µν − 1
2

m2
ωωµω

µ

− 1
4
ρµν · ρµν −

1
2

m2
ρρµ · ρµ

+ gsψ̄sψ + ga0ψ̄τ · a0ψ − gωψ̄γµω
µψ

− gρψ̄γµτ · ρµψ − eψ̄γµA
µψ − 1

4
FµνF

µν, (12)

whereψ = (p, n)T are the nucleon doublet,ρ is the iso-vector
vector meson,ω is the iso-scalar vector meson,s is the iso-
scalar scalar meson, anda0 is the iso-vector scalar meson.
Included is the photon fieldAµ. This Lagrangian, what one
might call “linear meson model,” can be related to chiral-
scale Lagrangian discussed below if the iso-vector scalar
mesons are ignored. In the mean field, this Lagrangian yields
a broadly successful description of nuclear matter [41]. There

are certain properties, such as compression modulus, that are
at odds with experiments in this linear model. When higher-
dimension meson fields are incorporated, consistently with
the given symmetries, this approach can post-dict∼ 2000 nu-
clear spectra with deviation6 0.5 MeV at the expense of∼ 50
parameters.

It will be discussed below that within the spirit of mean
field approximations, one can formulate an EFT with a La-
grangian that combines both chiral symmetry and scale sym-
metry with the parameters of the Lagrangian matched to the
correlators of QCD. The power of this approach will be to
make predictions at high density that are difficult to access
without ambiguity. The phenomenological approach, suc-
cessful up to nuclear matter density, can go wild, with the
numerous parameters at the disposal that are unconstrained
at high density with experimental guidance. A typical ex-
ample is given by the nuclear symmetry energy that strongly
controls the equation of state for compact-star matter. One
can see this in Fig. 3.

0 1 2 3
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 DD-RMF(2)
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 SHF(33)

Figure 3 Symmetry energy as a function of density. This illustrates that
one can obtain anything for the symmetry energy at densityn > n0 by adjust-
ing parameters of the mean-field or equivalently energy-density functional
without affecting the normal-matter properties. This figure is copied from
Ref. [42].

The power of the skyrmion crystal approach is that this
wildness can be cleared up, thanks to the topology change
that unifies baryon and nuclear structure and properties of
baryons in medium, obtaining a unique prediction. This feat
is the objective of what’s described below.

3.1 Nuclear matter from the skyrmion crystal model

In this and following subsections we discuss generic features
of the skyrmion model that follow from topology involved
with pion field. Other massive degrees of freedom that will
figure in the dynamics will influence the detailed structure
without affecting the characteristics of the model. Here we
first look at nuclear matter. In doing this we employ the
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Skyrme model following Ref. [9]. The Lagrangian is

L = − f 2
π

4
Tr

(

U†∂µUU†∂µU
)

+
1

32e2
Tr

[

U†∂µU,U
†∂νU

]2
.

(13)
Since we are aiming at a qualitative rather than quantitative
description of nature, we will not take effective parameters fit
to the structure of baryon and baryonic matter as was done in
the literature, but will take what’s determined in the vacuum.
Thus we takefπ to be the free-space pion decay constant≃ 93
MeV. For the Skyrme parametere, we takee= g = 5.93 with
g being the value of the gauge coupling constant of the HLS,
the chiral effective theory of vector mesons [23, 24], which
may be obtained by assuming theρ meson mass is “heavy”
#3. The robust, though qualitative, properties extracted there-
from will then be the basis for doing more realistic calcula-
tions including the other relevant degrees of freedom.

By putting the Skyrme solitons of (13) onto the FCC
crystal so as to simulate nuclear matter, one obtains the re-
sult of Fig. 4 for the skyrmion-matter per particle (or “per-
skyrmion”) energyE/B and 〈φ0〉 – which is related to the
quark condensate in QCD variables through decomposition
(5) – as a function of crystal sizeL. The vertical line indi-
cates the crystal size that corresponds to the normal nuclear
density. One notes that the system has a minimum at a density
considerably higher than what is normal density. This is not
surprising. It just indicates that the Skyrme Lagrangian writ-
ten to the lowest order chiral counting is missing some im-
portant components in nuclear interactions which give a net
repulsive force. In fact what corresponds in standard chiral
perturbative approaches to multi-body (i.e., three-body)re-
pulsive force – of the range of anω-exchange force that stabi-
lizes nuclear matter – is absent. Also the resulting large bind-
ing energy,∼ 200 MeV, is not surprising given that the typi-
cal energy scale involved in QCD is theΛQCD, which is a few
times the pion decay constantfπ ≈ 93 MeV. All these features
are understandable from the largeNc counting, on which the
skyrmion model is relying. These defects can be remedied
in refined, though involved, treatments. In fact when vec-
tor mesons and scalar mesons are included, the situation im-
proves substantially [43–46] and with an infinite tower one
obtains even agreement with experiments [44, 47, 48]. We
will return to this matter below.
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Figure 4 Per-skyrmion energyE/B (upper panel) and〈φ0〉 (lower panel)
as a function of crystal sizeL.

On the contrary, what is highly non-trivial and of great
importance that can be exploited in our more realistic ap-
proach is the observation that the quantity〈φ0〉 representing
the quark condensate vanishes for density above normal nu-
clear density. At what precise density that takes place can-
not be pinned down. But it is a robust observation. One
observes in Fig. 4 that when the system is squeezed from
L = 2.5 fm to aroundL = 1.3 fm, the skyrmion system un-
dergoes a phase transition from the FCC skyrmion config-
uration to the CC half-skyrmion configuration. The system
has a minimum energy atL ∼ 0.85 fm with the energy per
baryonE/B ≃ 957 MeV. Of significance is that the value of
φ0 averaged over space rapidly drops as the system shrinks.
It reaches zero atL ∼ 1.3 fm where the system goes to a
half-skyrmion phase mentioned above. This “phase transi-
tion” can be interpreted, once the pion fluctuations are incor-
porated, as a signal forglobal chiral symmetry restoration
whereaslocally the system is still in the chiral symmetry bro-
ken phase#4. In this description there is no hint of QCD vari-
ables, i.e., quarks and gluons. However the skyrmion-half-
skyrmion transition can be reproduced in terms of a chiral-
quark model where the transition is captured in a delocaliza-
tion of the baryon number density leading tob = 1/2 struc-

#3 This assumption must break down at large density approaching the vector manifestation fixed point.
#4The density at which the skyrmion matter transits to the half-skyrmion phase obtained here is different from that obtained in Ref. [9] due to different

Skyrme parameters. If we took the empirically fit valuee = 4.75, the skyrmion to half-skyrmion phase transition would appear above the normal nuclear
density. One should not take the numerical values we are obtaining too seriously.
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ture [49]. There is another transition in this picture corre-
sponding to quark deconfinement at higher density, which is
however not in the half-skyrmion phase.

3.2 In-medium pion decay constant

One of the most crucial quantities in dense medium is the
effective in-medium pion decay constantf ∗π . It controls
medium modified hadron properties [9, 35]. Here, as a con-
crete example, we calculate the medium-modified pion de-
cay constantf ∗π , again taking the Skyrme model. The latter
contains the essential feature that is shared by more realistic
models given below.

The procedure is quite simple. We take the skyrmion crys-
tal solution as the background classical field and interpretthe
fluctuating fields on top of it as the corresponding mesons
in dense baryonic matter. Following Ref. [43], we write the
skyrmion crystal solution asU(0) and introduce the fluctuat-
ing fields as

U = u(0)Ǔu(0), (14)

whereǓ = exp(2iτaπ̌a/ fπ) stands for the corresponding fluc-
tuating field andu2

(0) = U(0). Since for each crystal size,
there is a solution forU(0), U(0) is dependent on the crystal
size, or equivalently, the baryon density. The decomposition
in Eq. (14) guarantees that to each order of the fluctuation
the chiral invariance of the model is preserved. By substitut-
ing the fields in Eq. (14) into the Skyrme model Lagrangian
one obtains the medium-modified Lagrangian for the pion.
Consequently the parameters in the pion Lagrangian become
density-dependent through their dependence onU(0).

(ii)

πJµ5 Jν5 Jµ5 Jν5

(i)

Figure 5 Two types of contributions to the correlator of Eq. (15): (i)the
contact diagram and (ii) the pion exchange diagram. Shaded blobs stand for
interaction vertices in the skyrmion matter.

To define the pion decay constant in the skyrmion matter,
we write the axial-vector current correlator

iGab
µν(p) = i

∫

d4xeip·x〈0|T Ja
5µ(x)Jb

5ν(0)|0〉 (15)

which is decomposed in medium as [50]

Gab
µν(p) = δab

[

PTµνGT(p) + PLµνGL(p)
]

, (16)

where the polarization tensorsPL,T are defined as

PTµν = gµi

(

δi j −
pi p j

|p|2

)

g jν,

PLµν = −
(

gµν −
pµpν
p2

)

− PTµν. (17)

Then the medium-modified (time component of) pion decay
constant is given by the longitudinal component in the low-
energy limit

f ∗2π ≡ − lim
p0→0

GL(p0, p = 0). (18)

Now for the calculation, we shall ignore the contributions
from the loop diagrams of the fluctuation fields. Therefore,
there are only two types of diagrams that contribute as il-
lustrated in Fig. 5: (i) the contact diagram and (ii) the pion
exchange diagram. They are given by

(i) : i f 2
π gµνδ

ab

(

1− 2
3

〈

φ2
π

〉

)

,

(ii) : −i f 2
π

pµpν
p2

δab

(

1− 2
3

〈

φ2
π

〉

)

. (19)

Summing the two contributions, one obtains

f ∗2π = f 2
π

[

1− 2
3

(

1−
〈

φ2
0

〉)

]

, (20)

where the intrinsic density dependence is brought in by the
minimal energy solutionφ2

0. To arrive at (20), we used the
relationφ2

0 + φ
2
π = 1. Equation (20) shows the direct rela-

tion between the medium-modified pion decay constantf ∗π
and the parameter〈φ0〉 which signals the phase transition in-
volving topology.

2.5 2.3 2.1 1.9 1.7 1.5 1.3 1.1 0.9 0.7 0.5
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0.2
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f*
/f

L (fm)
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1.0

Figure 6 f ∗π / fπ as a function of the crystal sizeL .

In Fig. 6 is plotted the crystal-size dependence off ∗π / fπ.
We see thatf ∗π decreases to∼ 0.65fπ at the densityn1/2 at
which skyrmions fractionize to half-skyrmions and then stays
constant forn > n1/2. In terms of the quark condensate〈q̄q〉,
〈φ0〉 corresponds to the space average of the latter. It should
be noted that〈φ0〉 → 0 does not signal the restoration of
chiral symmetry since the pions are still around with the non-
zero pion decay constant. This means that the quark conden-
sate is locally non-zero in the half-skyrmion phase, implying
that there is chiral-density wave. This was verified in [34].
This feature will remain unmodified when scale symmetry
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is implemented. This results from the locking of scale sym-
metry and chiral symmetry, consistent with the scale-chiral
effective field theory [51] – discussed below – with the con-
sequence thatf ∗π ≈ f ∗σ.

3.3 Kaons in dense matter

Another highly non-trivial prediction of skyrmion crystal
matter is the property of kaons in medium. Kaon property
in nuclear and denser matter has been an important issue for
the equation of state of compact stars [52] since kaon con-
densation was predicted on the basis of chiral symmetry in
1985 [53]. The issue is still far from being settled and is be-
coming an urgent matter, in particular with the discovery of
massive neutron stars. We will discuss here what one can say
about the properties of kaons in dense nuclear matter from the
skyrmion crystal point of view. Again we will use the Skyrme
model extended to three flavors including strangeness, thus
involving octet NG bosons, but minimally implemented with
dilaton dynamics. Although highly simplified, the model we
use exposes a non-trivial effect of the dilaton field that is ab-
sent in the usual chiral Lagrangian approaches.

Following [54], we take the Lagrangian

LK =

(

χ

fχ

)2

DµK†DµK −
(

χ

fχ

)3

m2
K K†K

− 2iNc

5 f 2
π

Bµ
(

DµK
†K − K†DµK

)

, (21)

whereK is the kaon doublet withK = (K+,K0), the last term
is the topological Wess-Zumino term present for three-flavor
systems, the covariant derivative is defined as

DµK = (∂µ + Γµ)K, (22)

where

Γµ =
1
2

[

u†∂µu+ u∂µu†
]

, (23)

with u ≡
√

U and the baryon number current as

Bµ =
1

24π2
ǫµναβtr

[

u†∂νu · u†∂αu · u†∂βu
]

. (24)

In Eq. 21, the dilaton fieldσ is introduced via what is called
“conformal compensator”χwhich has mass dimension-1 and
scale dimension-1,

χ = fσeσ/ fσ . (25)

This is because the dilaton field plays a specially important
role. How this field enters in chiral symmetry Lagrangians to
join in chiral-scale symmetry will be described later. Hereit
suffices to say that the Lagrangian accounts for scale symme-
try transformation to the leading order of scale-chiral count-
ing rule [51,55].

The kaon field is affected by the background of nuclear
matter through the skyrmion profileu. Taking the mean-field

approximation in (21), one obtains the kaon dispersion rela-
tion in the skymion matter as

α
(

ω2
K − ~p2

K

)

+ 2βωK + γ = 0, (26)

where

α =
1
4

〈(

χ

fχ

)2
(

u+ u† + 2
)

〉

,

β =
Nc

16f 2
π

〈

B0

(

u+ u† + 2
)〉

,

γ =
1
4

〈(

χ

fχ

)3
(

u+ u† + 2
)

〉

m2
K . (27)

Focusing on S-wave kaons with~pK → 0, the effective in-
medium kaon energy is obtained by solving the equation

m∗K ≡ lim
~pK→0

ωK =
−β +

√

β2 + αγ

α
. (28)
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Figure 7 Skyrmion matter modified Kaon massm∗K as a function of density
n/n0 for dilaton massmχ = 600 MeV. See Ref. [54] for an explanation of the
figure.

The medium-modified kaon massm∗K (energy for the S-
wave) is shown in Fig. 7 which is borrowed from Ref. [54].
The effect of〈φ0〉 → 0 towardn1/2 is visible for both with and
without the dilaton. However the dropping ofm∗K is accentu-
ated by the presence of the dilaton. Furthermore the mass
drops at a faster rate in the half-skyrmion phase. By itself,
this would have a big effect on the process of kaon conden-
sation in compact star matter. It should be noted that certain
baryonic short-range correlations, missing in mean-field-type
considerations (appropriate for Fermi-liquid fixed-pointtreat-
ments), should be included for realistic calculations. This
could apply both to kaon condensation and to hyperon inter-
actions in compact star matter. This would require an ap-
proach drastically different from the naive application of chi-
ral perturbation theory. We will see later such an effect could
have a strong impact on the formation of dense kaonic matter
at the hadronization phase in the cosmological evolution of
the Universe [56].
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3.4 The nuclear symmetry energy

Perhaps the most important impact of the skyrmion-half-
skyrmion (topological) phase change in the physics of dense
matter is on the nuclear symmetry energy that has defied the-
orists in compact-star physics since many years as discussed
above (See Fig. 3). It turns out that it is tightly connected to
the vector manifestation [57] for theρ meson in the skyrmion
approach and it is not at all clear how that translates into stan-
dard effective field approach based on chiral symmetry. Quite
remarkably it offers a compelling evidence that the topology
change, apparently absent in many-body interactions, is ro-
bust and can be exploited to construct a realistic model for
dense matter that cannot be accessed by other approaches. It
turns out that the change from skyrmions to half-skyrmions
plays a key role.

The energy per particleE(n, δ) of a dense system with den-
sity n and asymmetryδ can be written as

E(n, δ) = E0(n, x = 0)+ δ2Esym(n) +O(δ4) + · · · , (29)

whereδ = (N − P)/A with N(P) being the neutron (proton)
number andA = N + P. This equation defines the symmetry
energyEsym. It turns out that the above expansion is a good
one. The corrections entering atO(δ2) are estimated to be
quite small even forδ near 1. We will ignore them here.

In the skyrmion crystal approach, the symmetry energy
Esymcan be calculated for the neutron matter (δ = 1) for large
N by collective-rotating the whole system [55, 58]. After the
collective rotation, the energy of theA-nucleus is

EA = AESol+
1

2AI ITot
(

ITot + 1
)

, (30)

whereESol is the per-soliton energy in the nucleus andAI is
the iso-spin moment of inertia of theA = N system.ITot is the
total isospin of the whole system which could be the same as
the third component of the isospinI3 for pure neutron matter,
i.e., ITot = A/2. Forδ ≡ (N − P)/(N + P) . 1 we have

ITot =
1
2

(N − P) =
1
2

(N + P)
(N − P)
(N + P)

=
1
2

Aδ. (31)

The energy per nucleon can then be expressed as

ENucleon =
ENuclei

A
≃ ESol +

1
8Iδ

2, (32)

for a large mass numberA. Consequently, the symmetry en-
ergy takes the simple form

ESym =
1

8I . (33)

In Ref. [58], using the Skyrme model implemented with
scale symmetry,ESym was calculated on crystal lattice in the
way described above. The result is shown in Fig. 8 copied
from Ref. [58]. The symmetry energy first decreases with
density up to the densityn1/2 at which skyrmions fraction-
ize to half-skyrmions and then increases as density increases.
This is the appearance of the cusp in Fig. 8.

Figure 8 Symmetry energy as a function of density calculated in Ref. [58].
The cusp is located atn1/2. The low density part that cannot be located
precisely is not shown as the collective quantization method used is not ap-
plicable in that region.

Of high significance is that, strange or anomalous though
it may appear, the presence of the cusp, arising from the
skyrmion-half-skyrmion topology change involving the pion
field, is robust and does not depend on what other degrees
of freedom are incorporated in the dynamics. It turns out, as
pointed out below, that the cusp plays an essential role in the
EoS of massive compact stars [59,60].

A question that is immediately raised is whether this cusp
is not just an artifact of the crystal structure. We address this
question and show that there is neither abnormality nor mys-
tery in the cusp. How this cusp arises can be explained in
terms of standard nuclear many-body interactions involving
the nuclear tensor forces coming from the exchanges ofπ and
ρ whose properties are influenced by the topology change.
Quite independently of whether it is valid or not, it is a new
phenomenon hitherto undiscovered in the field.

The treatment is much more straightforward with HLS La-
grangian with nucleon fields put in explicitly rather than gen-
erated as skyrmions. To address the nuclear symmetry en-
ergy, the key ingredient is the nuclear tensor force, by which
the symmetry energy is dominated. Thus we can focus on
the structure of nuclear tensor forces. With nucleons suitably
coupled to HLS fields, the tensor force is given by the pion
exchange and theρ exchange. One can ignore higher reso-
nances for the latter. Theπ andρ tensor forces have the same
spin-isospin operator and radial form, differing in the overall
coefficients with opposite signs and the dependence of mass.
With the sign difference, the pion tensor gets reduced by the
ρ tensor in the intermediate and long range that the poten-
tials act. Now since theρ mass scales with density because
of the density dependence off ∗π , whereas the pion mass re-
mains unscaled, theρ tensor, becoming stronger at increasing
density, cancels the pion tensor, almost completely, nearn1/2.
However atn1/2, due to the topology change, theρ tensor
gets strongly suppressed because the hidden gauge coupling
drops rapidly due to the vector manifestation. Forn > 2n0,9



the pion tensor takes over. This can be seen in Fig. 9 bor-
rowed from [58].
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Figure 9 Tensor force as a function of density. For definitenessn1/2 = 2n0

is taken.

Although for a fair description it would require a lot more
detailed discussion involving ingredients that are not touched
upon in this review, such as renormalization-group treatment,
it is perhaps proper to mention that the property of the tensor
force in the density regime up ton0 accessible experimentally
is verified in the C14-dating Gamow-Teller transition [61].
There are different ways of explaining the same phenomena
but they are not alternatives but in some sense equivalent in
physics.

Assuming that the tensor force dominates the symmetry
energy – which is supported also by various conventional nu-
clear models – and given that the tensor force excites states
predominantly to those peaked at̄E ∼ 200 MeV, the sym-
metry energy can be approximately given by the closure for-
mula [62]

Esym≈

〈

∣

∣

∣VT
∣

∣

∣

2
〉

Ē
. (34)

From Fig. 9, it is immediately seen thatEsym will decrease
as density approachesn1/2 from below and then increase, re-
producing the cusp at the transition density of the skyrmion
crystal calculation, Fig. 8.

Two comments are in order regarding the cusp structure.
First, Esym given by (34) will, in nature, be smoothed by
higher-order nuclear correlations. Indeed a refined formu-
lation based on renormalization-group flow flattens, as will
be shown below, the cusp into a changeover from a soft to
hard EoS atn1/2 via the symmetry energy. Second, the cusp
form given by (34) provides a strong support to the topology
change taking place at∼ 2n0 with a qualitative effect at that
density.

4 Skyrmion Matter in Holographic QCD and
Infinite Tower of Vector Mesons

We have seen that the minimal skyrmion crystal approach us-
ing the pion-only Skyrme model, with or without a scalar
degree of freedom, simulates, semi-quantitatively correctly,
certain characteristic properties of nuclear matter. But there
are certain other properties difficult to access in the standard
chiral effective theory approaches, such as the symmetry en-
ergy at high density, that un-mistakenly indicate massive non-
NG bosons can be very important. In this section we explore
the effect of the vector resonances – including the infinite
tower inspired by the holographic model of QCD – on dense
skyrmion structure.

As mentioned above, a powerful – and rather mysteriously
efficient [63] – way of capturing the physics of vector mesons
is to resort to HLS [23,24]. It is also in the HLS approach that
the possibility of theρ mass approaching the zero-mass (in
the chiral limit) pion at high density can be treated systemati-
cally [24]. When the energy scale goes up, the number of re-
dundancies, therefore the number of gauge bosons, increases.
The infinite number of hidden gauge vector fields that arise
from the redundancies together with the pion field in 4D can
be dimensionally de-constructed to 5D Yang-Mills (YM) ac-
tion in curved space [64] with the 5th (holographic) direction
representing energy scale plus the Chern-Simons term encod-
ing chiral anomalies.

The construction of the holographic models of QCD has
two approaches, what one might call ”top-down” and the
other ”bottom-up”. In the ”top-down” approach, the action
of the 5D Yang-Mills is reduced from the gravity sector,
that is the “bulk” sector of gravity/gauge (holographic) du-
ality coming from string theory. Among a variety of models
given in the bulk sector, the so-called Sakai-Sugimoto (SS)
model [13, 14] is the one which has the symmetry properties
closest to QCD. When the model is dimensionally reduced
to 4D à la Kaluza-Klein, it has an infinite tower of vector
mesons plus pions [65,66]. This model is justified in the large
Nc and large ’t Hooftλ = Ncg2

YM limit and the chiral limit. In
these limits, there are only two parameters in the model and
they are fixed from meson dynamics. In the ”bottom-up” ap-
proach, instead of reducing the action from the gravity sector,
it is constructed from QCD in five dimensional anti-de Sitter
space [11,12] using the duality dictionary. In these models, in
addition to the gauge fields, the effect of the explicit breaking
of chiral symmetry encoded in the vacuum expectation value
(VEV) is included through that of the bulk scalars. In both
approaches, the generic model action has the structure

S5 = SDBI
5 + SCS

5 , (35)

whereSDBI
5 is the 5D Dirac-Born-Infeld (DBI) part andSCS

5
is the 5D Chern-Simons (CS) part. For different models the
expressions ofSDBI

5 could be different. In this review, we will
focus on the top-down holographic model. The application of
the bottom-up approach to the baryon structure is reviewed
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by Pomarol and Wulzer in [2]. No application of the bottom-
up approach to nuclear and dense matter is available in the
literature at this moment.

4.1 The holographic model from the “top-down” ap-
proach and its BPS limit

Since what we are interested in is the holographic model of
QCD, we consider the SS model [13,14] which has the prop-
erties closest to QCD. In this model, the DBI part is written
in terms of the pure burk gauge fields as

SDBI
5 ≈ SYM = − κ

∫

d4xdz
1

2e(z)2
trF 2 (36)

with κ = λNc

216π3 . e(z) is the effective YM coupling that depends
on the holographic directionz and is proportional to the KK
mass asM−1/2

KK . The 5D Chern-Simons term is

SCS
5 =

Nc

24π2

∫

d4xdztr

(

AF 2 +
i
2
A3F − 1

10
A5

)

. (37)

We use the indexm = (µ, z) with µ = 0, 1, 2, 3. The gravity
enters in thez dependence of the YM coupling, giving rise
to the warping of the space.A = Aµdxµ +Azdz is the five-
dimensional U(Nf ) gauge field andF = dA+ iAA is its field
strength. In the case ofNf = 2 flavors,

A = ASU(2)+
1
2

ÃU(1). (38)

The resulting YM action is

SYM = −κ
∫

d4xdz
1

2e2(z)

(

tr F2
mn+

1
2

F̃2
mn

)

, (39)

and the CS term

SCS =
Nc

16π2

∫

Ã∧ trF2 +
Nc

96π2

∫

Ã∧ F̃2. (40)

In Eqs. (39) and (40)Fmn is the field strength for the SU(2)
gauge field and̃Fmn stands for the field strength of the U(1)
gauge field.

We should stress that the SS model – which is holograph-
ically dual to QCD in the largeNc andλ limit (and the chiral
limit) – has no free parameters. To leading order inλ, that is,
to O(λ), e(z) is a constant, so the 5D YM action can be taken
to be in flat space. The Chern-Simons term, which comes
at O(Ncλ

0), does not contribute. Thus to leading order, i.e.,
O(Ncλ), the static baryon – which isB = 1 is given by the
instanton solution that is self-dual [19].

Let us first look at the instanton given by the SS action in
the leading order, say,O(Ncλ). At this order only theSDBI

5
in flat space contributes and theU(1) degrees of freedom de-
couple fromS U(2) degrees of freedom. The resulting 5D
Yang-Mills theory, in unit of an arbitrary mass dimension, is

S = − 1
2

∫

trF2
mnd

4x dz, (41)

where
Fmn = ∂mAn − ∂nAm+ [Am,An] (42)

with Am = TaAa
m normalized as tr(TaTb) = 1

2δab. The gauge
field transforms

Am→ g(Am+ ∂m)g−1 (43)

with g ∈ S U(2).
The static energy coming from the action (41), known

as BPS action, has a well-known bound, the Bogomol’nyi
bound,

E > 8π2B, (44)

whereB is the instanton number representing baryon number

B =
1

16π2

∫

tr(FMN
∗FMN)d3x dz, (45)

in which M = 1, 2, 3, z and∗FMN =
1
2ǫMNABFAB is the dual

field strength. Now the bound is satisfied ifFMN is self-dual,
i.e.,

FMN =
∗FMN. (46)

This means that the energy of the system cannot be lower than
the bound. In other words, a system of instanton numberA
describing mass-numberA nucleus has the binding energy
equal to zero. This can be referred to as “BPS skyrmion” as
will be explained below.

4.2 Packing vector mesons in an infinite tower

The 5D action (36), when KK-reduced to 4D, can be written
as the sum of an infinite number of vector and axial -vector
mesons possessing hidden local symmetry [14]. In leading
order, the gauge coupling constant will be a constant inde-
pendent of metric warping with no coupling to the infinite
tower of iso-scalar vector mesons. The skyrmion constructed
with this infinite tour will then be equivalent to the instan-
ton discussed above. A highly illustrative study was made
by Sutcliffe [47, 48] which showed how the vector mesons
entered in the tower.

Start with the pion only with all the vector mesons set
equal to zero. This is the Skyrme model. The soliton static
energy is∼ 1.24 times the Bogomol’nyi bound (88)#5

E(0) = 1.235 (8π2B). (47)

Next when the lowest-lying vector mesonρ is included, the
soliton mass is drastically reduced to

E(1) = 1.071(8π2B). (48)

The next-lying axial-vector mesona1 brings this further down
to

E(2) = 1.048(8π2B). (49)
#5This corresponds in the case of the Skyrme Lagrangian to the Faddeev bound 12π2B.
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Since the full tower of iso-vector vector mesons brings this
to the boundE(∞) = 8π2B, it follows that the high-lying vec-
tor mesons make the theory flow to a conformal theory. That
the lowest-lying vector mesonρ does nearly all the work in
flowing to the conformality is reminiscent of the near com-
plete saturation of the charge sum rule of the pion [13, 14]
and nucleon [15,16,67,68] form factors.

Now suppose that the same packing strategy is applied to
many-skyrmion or nuclear systems. The above result implies
that the nuclear binding energy,∼ 24% of the nucleon mass
with the pion field only, will reduce to near zero as the higher-
lying vector mesons are packed in. This tendency is beauti-
fully illustrated in Fig. 10.

Figure 10 The energy per baryon, in units of the single baryon energy
vs. baryon number up toA = 4. Squares are the experimental data, circles
are the skyrmion energies with only pions, and diamonds are the skyrmion
energies in the extended theory with pions,ρ anda1 mesons. This figure is
taken from [48].

4.3 Theω meson

In the SS holographic QCD model, theω meson figures at
the next order inλ. It figures via the Chern-Simons term.
In standard paradigm of nuclear physics, as stressed above,
theω degree of freedom is indispensable. In chiral perturba-
tion theory, its effect, at least partially, is captured in short-
range three-body and higher-body forces brought in by high-
order derivative counter terms in the chiral Lagrangian. Itis
also indicated in lattice simulations of nuclear forces [69].
To confront the predictions of the holographic model on
nuclear physics with the empirical values, therefore, one
should consider the warped space in the YM action and the
Chern-Simons term. By dimensionally de-constructing the
SS model and keeping only the lowest-lying vector mesons
ρ andω, theω meson is indeed found to be significant for
describing the nuclear force [43–46,70,71].

Here we analyze how theω influences the flow to con-
formality seen above with the iso-vector vector mesons.
To explore the effect of theU(1) degrees of freedom, one
should include the effect of the CS term. The CS term is

background-independentand hence should be independent of
the warping. Using our energy unit, we have the BPS mass
MBPS ≈ λNc

27π MKK ≈ 559 MeV [15, 16, 67]#6, in agreement
with Ref. [47]. When the CS term contribution is added, we

get MBPS−CS = MBPS +

√

2
15NcMKK ≈ 1038 MeV which

shows that the contribution from CS term to the soliton mass
is significant. Along the same procedure applied before, we
found that, for the givenM, using the HLS given by Eq. (57)
in the following and determining the low energy constants by
the 5D YM theory (41), the results are [44,46]:

• M = π, ρ, ω:

M“BPS”(π, ρ, ω) ≈ 1162 MeV. (50)

• M = π, ρ:

M“BPS”(π, ρ) ≈ 577 MeV. (51)

• M = π:

M“BPS”(π) ≈ 673 MeV. (52)

Theω meson is seen to block the flow to the conformal fixed
point. In Eqs. (50), (51) and (52), the subindex “BPS” means
the parameters are calculated from the 5D YM theory (41).

We next examine the effect of the tower of the infinite
vector mesons from the SS model in which the warp effect
is included. A direct calculation of the mass of the topo-
logical object, here, theapproximateinstanton, yields the
mass [15,16,67,68,72]

M(approx)instanton≃ 1800 MeV, (53)

with fπ = 92.4 MeV andλ = 17 fixed in the meson sec-
tor [13, 14]. Note that the mass (53) corresponds to the mass
of a skyrmion with the effect of the infinite tower of vector
mesons in a warped space and the Chern-Simons term taken
into account.

By dimensionally de-constructing the 5D SS model to the
4D hidden local symmetric mesonic theory, one can check
the effect of the tower of vector mesons. It was found
that [44,46]:

• M = π, ρ, ω:

MSS(π, ρ, ω) ≈ 1184 MeV. (54)

• M = π, ρ:

MSS(π, ρ) ≈ 835 MeV. (55)

• M = π:

MSS(π) ≈ 922 MeV. (56)

#6Here we usedλ = 16.66,MKK = 948 MeV determined from our inputs.
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In the above calculation, the parameters are fixed by the two
empirical values,fπ and mρ, in the meson sector [13, 14].
It was found that, if the parameterMKK is reduced to∼
500 MeV, one gets∼ 950 MeV for the soliton mass and
∼ 300 MeV for the∆-N mass difference, both consistent
with experiments [72]. In addition, by using the truncated
modelM = π, ρ, ω, one can fit the nucleon mass and the
∆ − N mass splitting if one usesfπ ≃ 62.2 MeV andmρ ≃
417.5 MeV [73]. In sum, what is found is the following:
In the holographic QCD of SS, to the leadingλ order, the
more iso-vector vector mesons are included, the lighter soli-
ton mass becomes and the sum of the contributions from the
infinite tower reduces the soliton mass to the BPS instan-
ton limit. The residual interaction between the skyrmions
(as quasiparticles) gets weaker and the size becomes smaller,
all going in the right direction. However this tendency gets
blocked at the next order inλ, namely atO(λ0), primarily by
the presence of theω meson present in the CS term with the
effect of metric warping less significant. This is at odds with
nature. We address this problem and point at a possible res-
olution with intervention of a scalar dilaton in the effective
Lagrangian.

5 The Effect of the Lowest-Lying Vector
Mesonsρ andω and the Scalar Dilatonσ

In the above section, we have seen that the infinite tower of
the vector meson resonances plays an important role in the
skyrmion physics. Here we focus on the nuclear matter from
the chiral effective theory including the lowest-lying vector
resonances,ρ andω, based on the HLS approach.

The effect of the lowest-lying vector mesons on dense
skyrmion matter was first studied in Ref. [74] by using a mini-
mal model including vector mesons [75]. In this model, theω

meson couples only to the baryon density throughωµBµ (with
Bµ being the baryon number current) representing the homo-
geneous Wess-Zumino term present in HLS theory. From
this model, the attractive force due to theρ meson and re-
pulsive force arising fromω meson between nucleons in both
skyrmion and skyrmion matter were illustrated clearly. More
recently, this study was refined in HLS including the next-
to-leading order terms of the chiral counting [43–46, 70, 71].
In these calculations, the anomalous part of the effective the-
ory that encodes theω contribution corresponding to theU(1)
gauge field in the CS term of the SS model was fully taken
into account.

5.1 Hidden local symmetry Lagrangian toO(p4)

As will be mentioned below, there is an indication that HLS
to the leading order, that is,O(p2), has a hidden power that is
not obvious from general EFT considerations. We comment
on this later. Here we will consider up toO(p4) in the power
expansion.

The most general HLS Lagrangian responsible for the soli-
ton mass – which isO(Nc) – can be expressed as

LHLS = L(2) +L(4) +Lanom, (57)

with

L(2) = f 2
π Tr

(

α̂⊥µα̂
µ
⊥
)

+ a f2
π Tr

(

α̂‖µα̂
µ

‖

)

+ Lkin, (58)

where fπ is the pion decay constant,a is the parameter of the
HLS. The two 1-forms, ˆα‖µ andα̂⊥µ in (58) are defined by

α̂‖µ =
1
2i

(DµξR · ξ
†
R + DµξL · ξ

†
L), (59)

α̂⊥µ =
1
2i

(DµξR · ξ
†
R − DµξL · ξ

†
L), (60)

with the chiral fieldsξL andξR, which in the unitary gauge
are

ξ†L = ξR = eiπ/2 fπ ≡ ξ with π = π · τ, (61)

whereτ’s are the Pauli matrices. The covariant derivative
associated with the HLS is defined as

DµξR,L = (∂µ − iVµ)ξR,L (62)

whereVµ represents the gauge boson of the HLS,

Vµ =
1
2

(

gωωµ + gρρµ
)

(63)

and

ρµ = ρµ · τ =












ρ0
µ

√
2ρ+µ√

2ρ−µ −ρ0
µ













. (64)

In (58),Lkin is the kinetic term of vector mesons with

Lkin = −
1

2g2
ρ

Tr
(

V(ρ)
µν V(ρ),µν

)

− 1
2g2

ω

Tr
(

V(ω)
µν V(ω),µν

)

, (65)

with the field-strength tensors of the vector mesons

V(ρ)
µν = ∂µ

(

1
2

gρρν

)

− ∂ν
(

1
2

gρρµ

)

− i

[(

1
2

gρρµ

)

,

(

1
2

gρρν

)]

,

V(ω)
µν = ∂µ

(

1
2

gωων

)

− ∂ν
(

1
2

gωωµ

)

. (66)

TheO(p4) Lagrangian in Eq. (57) is given by

L(4) = y1Tr
[

α̂⊥µα̂
µ
⊥α̂⊥να̂

ν
⊥
]

+ y2Tr
[

α̂⊥µα̂⊥να̂
µ
⊥α̂

ν
⊥
]

+ y3Tr
[

α̂‖µα̂
µ

‖ α̂‖να̂
ν
‖
]

+ y4Tr
[

α̂‖µα̂‖να̂
µ

‖ α̂
ν
‖
]

+ y5Tr
[

α̂⊥µα̂
µ
⊥α̂‖να̂

ν
‖
]

+ y6Tr
[

α̂⊥µα̂⊥να̂
µ

‖ α̂
ν
‖
]

+ y7Tr
[

α̂⊥µα̂⊥να̂
ν
‖ α̂

µ

‖

]

+ y8

{

Tr
[

α̂⊥µα̂
µ

‖ α̂⊥να̂
ν
‖
]

+ Tr
[

α̂⊥µα̂‖να̂
ν
⊥α̂

µ

‖

]}

+ y9Tr
[

α̂⊥µα̂‖να̂
µ
⊥α̂

ν
‖
]

,

+iz4Tr
[

V(ρ)
µν α̂

µ
⊥α̂

ν
⊥
]

+ iz5Tr
[

V(ρ)
µν α̂

µ

‖ α̂
ν
‖
]

. (67)
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Note thatV(ω)
µν does not appear in thez4 andz5 terms. Finally,

the anomalous parity the hWZ term,Lanom, is

ΓhWZ =

∫

d4xLanom=
Nc

16π2

∫

M4

3
∑

i=1

ciLi , (68)

whereM4 stands for the 4-dimensional Minkowski space and

L1 = i Tr
[

α̂3
Lα̂R − α̂3

Rα̂L
]

, (69a)

L2 = i Tr
[

α̂Lα̂Rα̂Lα̂R
]

, (69b)

L3 = Tr
[

FV
(

α̂L α̂R − α̂Rα̂L
)]

, (69c)

in the 1-form and 2-form notations with

α̂L = α̂‖ − α̂⊥,
α̂R = α̂‖ + α̂⊥,

FV = dV− iV2. (70)

In the Lagrangian (57) there appear numerous many pa-
rameters,fπ, a, gρ, gω, yi(i = 1, · · · , 9), zi(i = 4, 5), and
ci(i = 1, 2, 3). It is very difficult to fix them all in a phe-
nomenological way. A possible approximation is to use a re-
cently developed holographic QCD model in which the coef-
ficients can be completely fixed by means of a set of “master
formulae” that match the four-dimensional effective (HLS)
theory to the five dimensional holographic QCD (hQCD)
model. In the largeNc and largeλ limit, the hQCD has, as
mentioned above, two parameters which can be related to the
empirical values of the pion decay constant and theρ meson
mass. Here we take the SS model [13, 14] and the following
empirical values:

fπ = 92.4 MeV, mω = mρ = 775.5 MeV. (71)

5.2 Skyrmion properties in hidden local symmetry

In addition to the the soliton masses obtained above – in
Eqs. (54), (55) and (56), one can also study other properties,
i.e., the soliton winding number radius

√

〈r2〉W and energy
radius

√

〈r2〉E. The results are:

• M = π, ρ, ω:
√

〈r2〉W ≈ 0.433 fm,
√

〈r2〉E ≈ 0.608 fm. (72)

• M = π, ρ:
√

〈r2〉W ≈ 0.247 fm,
√

〈r2〉E ≈ 0.371 fm. (73)

• M = π:
√

〈r2〉W ≈ 0.309 fm,
√

〈r2〉E ≈ 0.417 fm. (74)

These results support the intuitive picture that the soliton is
compressed due to the attractive force from theρ meson,
while it is expanded by the repulsive force from theω me-
son. The potentially important contribution from a dilaton,
particularly to nuclear and dense matter, will also figure in
the balance between the attraction and the repulsion.

Putting the skyrmions given by (57) onto crystal lattice –
here FCC, one can also study the effect of the lowest-lying
vector mesons in dense skyrmion matter. Here and in what
follows, HLSmin(π, ρ, ω) will stand for the minimal model of
Ref. [75] – which can be obtained from (57) by switching off
L(4) and takingc1 = −c2 = 2/3 andc3 = 0 in theLanom

term. The energy per skyrmion and the vacuum expectation
value〈φ0〉 ≡ 〈q̄q〉 as functions of the crystal size (density) are
plotted in Fig. 11.

Figure 11 The energy per skyrmion and the vacuum expectation value of
φ0 as a function of the crystal size. The vertical line indicates the crystal size
corresponding to the normal nuclear density.

From Fig. 11 we can draw the following conclusions: the
critical densityn1/2 at which the half-skyrmion phase appears
in HLS(π, ρ, ω) is larger than that in HLSmin(π, ρ, ω). This
is because in HLS(π, ρ, ω) the skyrmion size is smaller so
that it needs a smaller distance to have a significant force be-
tween skyrmions. This conclusion is supported by then1/2 in
HLS(π, ρ) which yields a much smaller skyrmion size. From
HLS(π, ρ) one sees that the binding energy in this case is
much smaller than that in the other two cases. This is be-
cause, the model HLS(π, ρ) includes only the lowest-lying
isovector vector mesons which do the most efficient drive to-
ward the conformal limit. Note also that accounting for the
full hWZ terms is important for the location ofn1/2.14



5.3 Skyrmion matter in hidden local symmetry

For confronting nature, the relevant observables are the in-
medium properties discussed in Sec. 3. The interesting quan-
tities are the in-medium pion decay constantf ∗π and the effec-
tive nucleon massm∗N. What turns out to be the most remark-
able is the close relation between the two in the half-skyrmion
phase. The relation remains valid even in the presence of
scale invariance that will be taken into account below.

Consider the pion decay constant. The axial correlator
(15) receives an additional contribution to Fig. 5 for the
Skyrme model from theρ exchange as depicted in Fig. 12.

(ii) (iii)

π ρJµ5 Jν5 Jµ5 Jµ5Jν5 Jν5

(i)

Figure 12 Three types of contributions to the correlator of Eq. (15): (i) the
contact diagram, (ii) the pion exchange diagram, and (iii) the rho exchange
diagram. Shaded blobs stand for the skyrmion matter interaction vertices.

The three graphs contribute

(i) : i f 2
π gµνδab

〈

1+ 1−a
2

[(

1− 2
3φ

2
π

)

− 1
]〉

(ii ) : − i f 2
π

pµpν
p2 δ

ab
〈(

1− 2
3φ

2
π

)

− 1
〉

(iii ) : iδab
〈

a2g2 f 4
π

p2−m2
ρ

(

gµν − pµpν
m2
ρ

)

[(

1− 2
3φ

2
π

)

− 1
]

〉

. (75)

To the order of expansion considered, the sum of the three
terms is Lorentz invariant and has the same expression off ∗π
as that from the Skyrme model, Eq. (20). The crystal size
dependence off ∗π from HLS skyrmion is plotted in Fig. 13.
In the skyrmion phasen < n1/2, f ∗π decreases as density
increases. This tendency is supported in observations with
deeply bound pionic nuclei. What is noteworthy and is of im-
portance in the development is that this tendency stops atn1/2.
After n1/2, f ∗π stays more or less constant nearly (modulo ap-
proximations) independent of density. The behavior off ∗π in
HLS theory is the same as that in the Skyrme model shown in
Fig. 6.This robust property of the pion decay constant, strik-
ingly independent of the degrees of freedom included, is the
key feature of the approach anchored on the topology change.
The topology is dictated by the pion field and theρ field does
not carry any influence on the topology.
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Figure 13 Crystal size dependence of thef ∗π normalized by its vacuum
values.

In the present approach, the skyrmion properties are calcu-
lated with the parameters fixed by meson dynamics in HLS.
Hence, by taking the medium modified parameters as input,
one can calculate the medium-modified skyrmion (or baryon)
properties. This allows us to calculate the skyrmion-crystal
matter to obtain modified baryon properties withf ∗π plotted
in Fig. 13 as input. The in-medium nucleon massm∗N ∼ M∗sol
so obtained is plotted in Fig. 14. This result shows that the
density dependence of the nucleon mass is surprisingly sim-
ilar to that of f ∗π . The simple way to understand this close
connection is the largeNc property of the skyrmion model
which seems to hold for low as well as high density. The nu-
cleon mass should behave as∼ ξ f ∗π with ξ scale independent
(and density independent)O(

√
Nc) constant.
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Figure 14 Crystal size dependence of the medium modified nucleon mass.

5.4 Scale symmetry: Explicit breaking and impact on
dense matter

What is strikingly clear from the results discussed above is
that the presence of theω field substantially worsens the com-
parison of the skyrmion matter with nature. We show here
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that what’s involved is the role of the scalar degree of free-
dom [76]. In what we discussed so far, no scalar degree of
freedom has figured explicitly in the hidden local symmet-
ric Lagrangian, either with the lowest-lying vector mesons
or with the infinite tower. The standard strategy in nuclear
physics based on effective Lagrangians, both nonlinear sigma
model and hidden local symmetric model, is that the effect
of the iso-scalar scalar excitations are generated at high or-
der of chiral expansions. However in the approach exploit-
ing HLS, it is natural to consider explicitly the scalar exci-
tations of mass∼ 600 MeV, given that this mass scale is
comparable to that of vector mesons and that tensor forces,
essential in nuclear dynamics, involve theρ meson in addi-
tion to the pion and theω meson provide the crucial repul-
sion that stabilize the nuclear matter. First in 1991 [77] and
since then [43,54,58,78], the scalar, interpreted as a Nambu-
Goldstone boson, say, dilatonσ, was introduced to describe
the properties of light-quark hadrons on dense medium, as a
means of simulating a precursor signal for chiral restoration
expected at high density. The basic idea there was that chi-
ral symmetry characterized by the quark condensate〈q̄q〉 is
locked to the dilaton condensate〈χ〉. It has become clear that
describing dense baryonic matter in HLS, above the normal
nuclear matter densityn0, is unrealistic without incorporat-
ing the dilaton degree of freedom. This is because there is an
intricate interplay between the role ofω providing repulsion
and that of dilaton providing attraction. Thus much of the
difficulty in the single baryon as well as in baryonic matter
we observed above when theω degree of freedom is incorpo-
rated is caused by what we consider as inadequate treatment
of scale symmetry broken both explicitly and spontaneously.
This comment applies to both HLS-skyrmion matter (4D) and
holographic matter (5D).

One powerful way to implement scale symmetry in HLS
approach was recently suggested by Crewther and Tunstall
(CT) [51] #7. This approach is anchored on the possible ex-
istence in QCD of an infrared fixed point at which the trace
anomaly is to vanish in the chiral limit#8

We start with the leading order nonlinear sigma model La-
grangian to which scale symmetry is implemented as written
by CT. For simplicity in notation, we work in the chiral limit.
The CT Lagrangian, in terms of the conformal compensator
field χ = fσeσ/ fσ , is

L = Linv +Lanom+ V(χ), (76)

Linv = c1
f 2
π

4

(

χ

fσ

)2

Tr
(

∂µU∂
µU†

)

+ c2
1
2
∂µχ∂

µχ,(77)

Lanom =

{

(1− c1)
f 2
π

4

(

χ

fσ

)2

Tr
(

∂µU∂
µU†

)

+ (1− c2)
1
2
∂µχ∂

µχ

} (

χ

fσ

)β′

, (78)

V(χ) =

(

χ

fσ

)4 













c3 + c4

(

χ

fσ

)β′














. (79)

Following [51], we set, in the chiral limit,c1 = c2 =

1+O(p2) which can be arrived at by setting the dilaton field
equal to zero for processes that do not involve scalar excita-
tions. The best way to understand this relation is that thereis
hidden scale symmetry in Standard Higgs-type Lagrangian
that yields both the scale-symmetric form and the nonlin-
ear sigma model form that can be reached when one dials a
constant, respectively, to weak coupling limit and to strong-
coupling limit [80]. Keeping toO(p2) in the leading-order
Lagrangian, we have

Linv =
f 2
π

4

(

χ

fσ

)2

Tr
(

∂µU∂
µU†

)

+
1
2
∂µχ∂

µχ +O(p4). (80)

Hidden-local-symmetrizing this, we have [76]

LsHLS = f 2
π

(

χ

fσ

)2

Tr
[

â⊥µâ
µ
⊥
]

+ a f2
π

(

χ

fσ

)2

Tr
[

â‖µâ
µ

‖

]

− 1
2g2

Tr
[

VµνV
µν
]

+
1
2
∂µχ∂

µχ +O(p4). (81)

The dilaton potential is of course unaffected.
In the presence of vector fields, the anomalous-parity ho-

mogeneous Wess-Zumino termLan, Eq. (68) needs to be
taken into account. There are three terms. For an approxi-
mate calculation we take only one term in the form,gωµBµ

whereBµ is the baryon current. It is straightforward to treat
all three terms involved therein at the cost of more parame-
ters. ThegωµBµ term considered here isO(p4), higher order
than what’s treated above. It cannot however be ignored be-
cause it is through this term that theω field couples to the
other degrees of freedom of HLS Lagrangian. Without it, the
ω does not figure in the interactions. By itself, this term is of
scale dimension 4, hence scale-invariant. Therefore it hasno
coupling to the dilaton fieldχ. This is however not consistent
with scale-chiral symmetry à la CT. The correct expression
should be [76]

LhWZχ =















ch + (1− ch)

(

χ

fσ

)β′














LhWZ. (82)

Unlike c1,2 in (77), there is no reason whych should be close
to 1. In fact there is an indication thatch = 1 at which there is
no coupling toχ is found to be violently at odds with nature.

In [74], when skyrmions, obtained with the Lagrangians
(81) and (82) withch = 1 andV(χ) of the Coleman-Weinberg
type, were put on crystal lattice to simulate dense matter, the
contribution to the energy of the system from the hWZ term

#7There is an alternative approach that involves an IR fixed point [79] in which the role of IR fixed point is given in terms of a critical number of fla-
vors/number of colorsnf = Nc

f /Nc in what corresponds to the Veneziano limit. A comparison of this approach and C-T was given in Ref. [55].
#8Whether such an IR fixed exists in QCD with the number of flavorsNF < 8 is not yet settled. This matter is discussed elsewhere in the context of applica-

tions in nuclear system and we won’t go into it. This issue, clearly important for the fundamental structure of QCD, is however not so crucial in applications to
dense matter because our approach does not require the precise nature of QCD in the chiral limit, which is not honored in dense matter.
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diverged at high density unless the pion decay constant (or
equivalently theω mass) went to∞. This defect can be elim-
inated if the explicit breaking of scale symmetry dampens the
strength of the hidden gauge couplingg. In [78], the problem
was resolved when the factor (χfσ )n with 1 < n <∼ 3 wasarbi-
trarily multiplied toLhWZ. This happens because in medium
f ∗σ/ fσ decreases monotonically at increasing density, there-
fore the coupling gets sufficiently suppressed. This means
that the solution to the problem found in [78] corresponds to
(82) with [76]

1 < β′ <∼ 3, ch ≈ 0. (83)

It seems that this solution is consistent with the bound for the
anomalous dimension ofG2 β′ = γF2,IR given in [81]

γF2,IR 6 3. (84)

If this turns out to be a possible solution to the problem, then
the analysis reported above would need to be reexamined
with the potentialβ′ corrections in the hWZ terms including
the CS term in holographic models [43].

What we learned in this subsection is that to correctly de-
scribe baryonic matter at high density, scalar degrees of free-
dom are indispensable. They could perhaps be generated
at high (chiral) orders in perturbative scheme. In the spirit
espoused in this review, they could come in as a dilaton in
the broken scale symmetry. For this, it seems essential, if
the analysis described in this subsection is correct, that how
the scale symmetry is explicitly broken has to be understood.
What we have observed above regarding the disastrous role
of theω meson in dense matter in the presence of a dila-
ton indicates the necessity of the dilaton coupling to theω

in the hWZ term in 4D skyrmion matter or the Chern-Simons
term in 5D instanton matter. And this requires understanding
how the explicit scale symmetry breaking manifests in dense
medium. This is an open problem to be resolved.

6 Other Developments

In this section we discuss a few interesting developments that
are not directly related to what we discussed above anchored
on topology change present in the description of dense mat-
ter with skyrmions on crystal lattice. The premise is that the
effective Lagrangian that is taken has a connection to QCD in
the sense of Weinberg’s “folk theorem” on effective field the-
ories [82]. The basic assumption is that the theory has a valid
contact with strong interactions at low energy, beginning with
low-energy theorems based on current algebras. Thus the
standard nuclear physics approach to dense matter has been
to first start with pions only with baryons put in explicitly or
brought out as solitons, describe well nuclear matter and then
extrapolate to the regime that is outside of the range that isfit
to the theory. Here we discuss a few cases where this standard
procedure is not adhered to.

6.1 The (near-)BPS skyrmion model

In the “derivation” of the small binding energy from a flat-
space YM Lagrangian discussed above, the relevant degrees
of freedom in nuclear physics, namely, the pion and the
lowest-lying vector mesons, are augmented with the infinite
tower leading to the BPS structure. Now instead of adding
the infinite tower to arrive at the BPS limit, one simply posits
a BPS structure in 4D. So the philosophy would then be, in-
stead of starting from a chiral Lagrangian with pions only and
building up the tower to go to heavy nuclei, why not start with
the simplest structure that could work for heavy nuclei with
nearly vanishing binding energy and then go from there mak-
ing appropriate corrections? This is the point of view taken
by Adamet al. [25, 26]. (For a recent review, see Ref. [83]).
The parameters entering in this approach will have no direct
connection with QCD proper, in a spirit totally different to
what has been resorted to above.

The justifications offered for this drastically unorthodox
approach are:

1. The binding energy is zero at theleading ordereven
though highly non-linear strong interactions may be in-
volved. One might think of this as an extreme quasi-
particle description with no residual interactions.

2. The model effectively describes a perfect fluid with its
energy-momentum tensor in the perfect fluid form, and
the static energy functional is invariant under volume-
preserving diffeomorphisms.

3. While the standard quasiparticle description of bary-
onic matter, namely, Landau Fermi-liquid theory, can
be approximately given in the mean field of a relativis-
tic field theory, here the quasiparticle picture is to cap-
ture theexactresult of the theory. The mean-field result
of the relativistic field theory can be an approximation
that is obtained by “averaging” the BPS theory.

In the BPS skyrme model of [25], the basic quantity is the
S U(2) valued fieldU(x, t) in which topology is lodged. The
Lagrangian picked is

LBPS= − λ2π4BµBµ − µ2V(tr(U)), (85)

whereλ andµ are parameters that are not related to QCD
paramters. They will be fit to nuclear binding energies that
are focused on. The potentialV(tr(U)) is a suitably chosen
potential involving nonderivative terms. In [29], it is taken
in the forms

V(tr(U)) = Vπ =
1
2

tr(1− U), model I;

V(tr(U)) = (Vπ)2, model II. (86)

The baryon numberBµ takes the familiar expression

Bµ =
1

24π2
ǫµναβtr

(

U†∂νUU†∂αUU†∂βU
)

. (87)
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First to see that the BPS skyrmion has zero binding en-
ergy, one shows that it satisfies the Bogomoln’yi equation.
The static energy given by Eq. (85) has the bound

E =

∫

d3x
(

π2λB0 ± µ
√

V
)2
∓ 2π2λµ

∫

d3xB0

√
V

> ∓ 2π2λµ

∫

d3xB0

√
V

= 2π2λµ|B|
〈√

V
〉

S3
, (88)

where
〈√

V
〉

S3
is the average value of

√
V on the target space

S3. The last equality follows from the condition thatB > 0.
The bound is saturated by the solutions of the BPS equation
of motion from (85).

π2λB0 ± µ
√
U = 0. (89)

By coupling gravity to (85), one can write the action of the
BPS model in curved space as

SBPS=

∫

d4x|g| 12
(

−λ2π4|g|−1gρσBρBσ − µ2V
)

. (90)

From this action, one can show that the energy-momentum
tensor has the perfect fluid form

Tρσ = (p+ ε)uρuσ − pgρσ (91)

with the four-velocityuρ, energy densityε and pressurep
given by

uρ = Bρ/
√

gσπBσBπ,
ε = λ2π4|g|−1gρσBρBσ + µ2V,

p = λ2π4|g|−1gρσBρBσ − µ2V. (92)

Going further, it can be shown that the BPS skyrmion is
equivalent to a non-barotropic, relativistic perfect fluidin the
Eulerian formulation.

The energy of the BPS system described by the Lagrangian
(85)

E =
∫

d3x
{

π4λ2B2
0 + µ

2V(trU)
}

(93)

has, as stated above, a Bogomoln’yi bound. In fact it has in-
finitely many BPS solutions saturating the bound. The topol-
ogy is lodged in the fieldU which is of the pion field type as
in the usual chiral Lagrangian. In this approach, the pion field
is a highly correlated nuclear collective excitation of pionic
quantum number that supports a solitonic structure that has
no fluctuation component that enters in the low-energy theo-
rems of strong interactions. This would naturally exclude the
possibility that the pion field that enters in this description
be directly related, if any, to the asymptotic pions observed
in nature. Assuming that it is of the soltion structure similar
to that of largeNc QCD model, i.e., the Skyrme model, one

takes the axial symmetric ansatzU(r) = ei~τ·~rθ(r). With this it
is straightforward to calculate the soliton energy for the BPS

Esol =
64
√

2π
15

µλN, (94)

whereN = B is the winding number, i.e., baryon number.
Note that the soliton energy per particle then is just a con-
stant∝ µλ given by the combination of the potential and the
constant multiplying the topological term, so the energy ofN
baryon number system is a multiple of baryon number and
hence zero binding energy at the level of the soliton.

To go beyond the classical soliton structure, one needs to
perform the collective quantization. The resulting rotational
spectra are given by

Erot =
~

2

2

(

j( j + 1)
J1

+
i(i + 1)
I1

+

(

1
I3
− 1
I1
− B2

J1

)

k2
3

)

,

(95)
whereJi andIi are, respectively, the angular momentum
moment of inertia and the isospin moment of inertia. For
evenB nuclei,k3 = 0. The resulting binding energy including
the Coulomb energy and isospin violation is given in Fig. 15.
The theoretical prediction with only 3 fit-parameters agrees
very well with the experimental data and the Weizsacker’s
empirical formula.
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Figure 15 Binding energies per nucleon in MeV. The diamond is from the
present BPS model. The triangle is from the Weizsacker’s formula. And, the
solid line is from experimental data. The figure is borrowed from Ref. [27].

The model was applied also to nuclear matter and
compact-star matter. The latter is done by coupling the BPS
skyrmion model to gravity using the action (90) and the re-
sulting energy-momentum tensor of a perfect fluid (91). The
maximum mass and the radius obtained therefrom – without
resorting to the EoS and the Tolman-Oppenheimer-Volkoff

(TOV) equation – come out to be [29]

• Model I: Mmax = 3.734M⊙; Rmax = 18.456 km.

• Model II: Mmax = 2.439M⊙; Rmax = 16.801 km.
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Figure 16 Mass-radius relation calculated from the BPS model with po-
tential I (dotted line) and model II (box line). This figure isborrowed from
Ref. [29].

The results plotted in Fig. 16 show that both the mass and
the radius – which depend appreciably on the unknown po-
tential – tend to be a bit too big in comparison with what’s
observed [30, 31]. Given that the model exploits only a few
parameters and there is a plenty of room available for refine-
ment, one cannot consider this as a criterion to consider the
model failing.

A comment on the contrast of the BPS approach to the
current lore of nuclear physics is in order here. There are two
key ingredients in the currently predominant attitude among
nuclear theorists: The first is that the small binding energy
observed in nuclei is an interplay between a big attraction
characterized by scalar degrees of freedom and a big repul-
sion provided by vector degrees of freedom and the second,
the theory has be able to accurately satisfy the conditions met
both experimentally and theoretically at around nuclear mat-
ter density. The BPS model is contrary to the first in that
the BPS “nucleon” is a topological blob ignorant of the in-
tricate interactions that lead to its property. As it stands, it
cannot account for low-energy pionic processes that are de-
scribed by low-energy theorems that are the ground to ef-
fective chiral theories. As for the second, it cannot access
the accurately measured nuclear response functions to the
electroweak (EW) fields. For instance, while it may provide
bulk properties of nuclear ground states, it cannot accountfor
the important role of meson-exchange currents that are accu-
rately described by effective chiral Lagrangian approaches.
One should however not dismiss this model. It may be pos-
sible to start from the BPS matter and develop a theory that
can access those processes given by soft-pion theorems. This
is in the same spirit as starting from Landau Fermi-liquid
fixed point applicable to the regime of nuclear equilibrium
density and arriving at processes involving soft-pions. This
is exemplified by relativistic mean-field approaches that are
connected to Landau Fermi-liquid theory. There pionic inter-
actions can be – and are – readily incorporated.

6.2 The simplified HLS (SHLS) for dense matter

As mentioned above, the HLS Lagrangian (57) yields re-
markable predictions for nucleon and nuclear matter. How-
ever, even limited to the next-to-the leading order, it involves
much too many parameters and while straightforward, is not
very illuminating. Fortunately it turns out that the Lagrangian
(57) can be vastly simplified. This is feasible not only in the
matter-free vacuum but more significantly in dense matter as
described above and elaborated further below.

To simplify the model , we first analyze how each term of
theO(p4) terms in the HLS sector contributes to the soliton
mass. The results are summarized in Table. 1. From this ta-
ble, we can conclude that theO(p2), z4 and hWZ terms give
dominant contributions, say, about 97.28% of the total, to the
soliton mass. The simplified Lagrangian takes the form

LSHLS = f 2
π Tr[â⊥µâ

µ
⊥] + a f2

πTr[â‖µâ
µ

‖ ] −
1

2g2
Tr[VµνV

µν]

+ iz4 Tr
[

Vµνα̂
µ
⊥α̂

ν
⊥
]

+LhWZ. (96)

We next study the skyrmion matter properties from
model (96) and compare the result with that from full
HLS (57). Our results of the crystal sizeL dependence of the
per-skymrion energy and〈φ0〉 are plotted in Fig. 17. This fig-
ure tells us that the SHLS model indeed captures the essence
of the skyrmion dynamics. Moreover,n1/2 is pushed to a
somewhat larger value which makes it more consistent with
nature.
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Figure 17 Comparision of theE/B and 〈φ0〉 calculated from HLS and
HSkyrme model as a function of L.

In summary, the model (96) is verified to capture the dom-
inant physics of HLS (57). The crucial observation is that, as
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Table 1 Ratio (%) of the contribution from each term of HLS to the soliton mass.

O(p2) y1 y2 y3 y4 y5 y6 y7 y8 y9 z4 z5 c1 c2 c3

73.89 1.29 0.35 0.03 − 0.02 − 1.64 0 − 0.07 − 0.49 3.04 − 13.24 0.22 14.21 4.54 17.88

with the full HLS calculation [45], the densityn1/2 at which
the transition from skyrmions to half-skyrmions takes place
lies higher than that of normal nuclear matter,n0. The reason
that the terms in (96) more or less fully capture the physics of
HLS (57) is the following: TheO(p2) terms encode the cur-
rent algebra of hadron physics, so they are dominant in low-
energy nuclear interactions. Theω meson – which is indis-
pensable for stability of nuclear matter – figures through the
hWZ terms. Among all theO(p4) terms – apart from the hWZ
terms – thez4 term, involving the strongρ-π-π interaction,
contributes most importantly whereas thez5 term, describing
ρ-ρ-ρ interactions, is suppressed. In fact it is this simplified
Lagrangian that through the effect of explicit scale symmetry
breaking removes the “ω disaster” in dense skyrmion matter
discussed in Section 5.4.

6.3 Emerging symmetries in dense matter?

That symmetries may emerge in highly correlated systems is
rapidly becoming a highly plausible and acceptable concept
in physics. This tendency is strikingly visible not only in con-
densed matter physics but also in particle physics including
gravity and dark matter, see e.g., [84]. Dense compact-star
matter we have been addressing is equally highly-correlated
matter and it would not be an idle conjecture that certain sym-
metries could emerge as density increases beyond the normal
n0. This we claim is indeed the case with both hidden scale
symmetry and HLS in dense nuclear systems [85]. This is a
notion eminently novel in nuclear/hadron physics.

An approach that exploits robust topological features of,
but bypassing the complexity of, the skyrmion crystal method
is a continuum Lagrangian that relies on “sliding vacuum”
for dense matter developed first in 1991 [77] and then elabo-
rated further in [86]. The starting ingredient is an effective
Lagrangian constructed along the line of Weinberg’s “folk
theorem (FT)” that combines scale symmetry and chiral sym-
metry (scale-chiral symmetry) of QCD discussed in Section
5.4. The effective Lagrangian is built with the pseudo-NG
boson, pion, the lowest-lying vector mesons and the dilaton,
encoding hidden scale symmetry and HLS and the baryons
as relevant degrees of freedom. The Lagrangian is defined
at a scaleΛM, referred to as “matching scale,” at which the
correlators of QCD (high-energy scale) and the correlatorsof
the effective theory, dubbed asbsHLS (low-energy scale) are
optimally matched. It is an open issue as to whether such a
matching is feasible. It is usually assumed that the relevant
ΛM can be the chiral scale∼ 4π fπ ∼ 1 GeV. In practice in
nuclear applications, it is taken just above the vector-meson
mass scale,mV ∼ 600− 700 MeV. At the matching, the EFT

Lagrangian,bsHLS, inherits from QCD the dependence on,
among others, nonperturbative QCD quantities, such as the
condensates〈q̄q〉, 〈G2〉 etc. injected from QCD correlators
into the parameters of thebsHLS. Therefore the effective La-
grangian will carry information on the “vacuum.” Now the
basic assumption in the present approach is that those con-
densates scale as the density of the system described by the
Lagrangian. This will then constitute a Lagrangian defined in
a “sliding vacuum” which would provide the tool to access
dense nuclear matter.

This approach has been applied to various properties of
baryonic matter up to the density commensurate with nor-
mal nuclear matter, making connection with Landau Fermi-
liquid fixed point theory. The application relies on Wilsonian
renormalization-group strategies [86]. Early discussions on
this matter can be found in [87].

The novelty in applying the sliding-vacuum strategy to
density regimes higher thann0 is that the intrinsic density
dependence of QCD condensates in the parameters of the La-
grangian takes into account the topology change observed in
the skyrmion crystal model. The topology change that takes
place atn1/2 ∼ 2n0 is then encoded in how the various param-
eters of the Lagrangian behaves as density goes from below
to aboven1/2.

The characteristic features resulting frombsHLS with the
topology change atn = n1/2 incorporated are: As density
goes higher thann1/2, (1) the baryonic matter flows to the
vector manifestation at which theρ massm∗ρ → 0 [57],
(2) the nucleon massm∗N → f ∗π ≈ f ∗σ ≈ m0 , 0 and
(3) such thatm∗ρ/m

∗
N → 0. With these taken into account

and with n1/2 ≈ 2n0, the theory has been applied to both
normal nuclear matter and dense compact-star matter using
the well-establishedVlowk renormalization group (RG) tech-
nique [59, 88]. This approach is verified to work well for
nuclear properties and predicts the mass and radius in fair
agreement with the observed massive stars [30,31].

A full description of the calculation is rather involved, in-
cluding the subtle issue of double decimations in doing RG
calculation in nuclear systems, etc. It suffices for our pur-
pose to give a few results to illustrate the main point of this
subsection.
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Figure 18 The symmetry energy predicted by theVlowk with bsHLS with
n1/2 = 2n0 [59]. The eye-ball slope change is indicated by the colored
straight lines. The lines labelled as A, B, C are empirical constraints coming
from heavy-ion experiments.

First of all, it gives a unique prediction for the symmetry
energy Fig. 18, weeding out the wilderness in Fig. 3. The
topology change that gave the cusp in the skyrmion crystal
is manifested here as a changeover from soft-to-hard EoS at
n1/2. Secondly, as shown in Fig. 19, the topology change
increases dramatically the maximum mass from (C)∼ 1.7
M⊙ (no topology change) to (A) or (B)>∼ 2 M⊙ (topology
change). The changeover resembles hadron-quarkyonic tran-
sition [89], suggesting a quark-hadron duality.
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Figure 19 Mass-radius relation calculated from thebsHLS [59]. (C) is
gotten with no topology change and (A) & (B) with topology change.

Another feature, hitherto undiscovered in the field, is the
possibility that the sound velocity of massive compact stars
could approach, forn > n1/2 ∼ 2n0, what is conventionally
referred to as “conformal,”v2

s/c
2 = 1/3 [85]. This is shown in

Fig. 20. The trace of energy momentum tensor is not equal to
zero but density-independent constant, so the half-skyrmion
state is not strictly scale-invariant but hints at the dilaton limit
fixed point at which the dilaton condensate goes toward zero.
This is an extremely interesting possibiltiy to explore experi-
mentally.

Figure 20 The sound velocity predicted inbsHLS model [85]. α ≡
(N − Z)/(N + Z) whereN(Z) is the neutron(proton) number.

7 Perspectives and Discussions

Skyrme’s pioneering idea of getting baryons from mesonic
theories was not only to unify the mesons and baryons in a
single framework but also to treat the nucleon, elementary
particle, and the nucleus, complex system of many nucleons,
on the same footing. One is then to arrive at nucleus from
pion as one does to nucleon. It is now established that the
skyrmion out of the pion field is a nucleon in the largeNc

limit of QCD in which quarks and gluons are the elemen-
tary constituents. In making these multiple connections, at
the core lies the topology. In fact, topology figures strik-
ingly in all aspects of physics, as one can gather from the
volume entitled “The Multifaceted Skyrmion” [2], ranging
from quarks/gluons to nucleons to nuclei to condensed mat-
ter to string theory. Numerous startling new discoveries are
being made involving topology in 2 and 3 dimensional sys-
tems, such as topological supeconductivity, and some daring
mathematical framework is brought out to organize all visible
matters, molecules, atoms, nuclei, in complex geometry [90].
While a great progress with amazing applications is being
made in condensed matter, with new experimental discover-
ies, the progress in nuclear physics for which Skyrme’s orig-
inal idea was put forward has met with much less success.
This has in part to do with that direct experimental observa-
tions are difficult to come by and theories, involving strong
interactions, are harder to control.

There, however, have been efforts since a decade or so,
with some notable progress in difficult fundamental problems
of nuclear physics. The principal effort has been directed to
decipher what takes place at high density relevant to the in-
terior of compact stars, an extremely difficult problem which
is currently out of reach by the only known nonperturbative
tool of QCD, lattice QCD, at high density.

The progress made so far comes from several different di-
rections. With the understanding of the Cheshire Cat Phe-
nomenon, what is confined – color – and what is not confined
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– baryon charge – is clarified in terms of quark-bag-skyrmion
duality. This then hints at the origin of the proton mass via an
intricate interplay involving topology between confinement, a
mathematically daunting problem, and spontaneous breaking
of chiral symmetry [91]. It is now becoming clear that the ori-
gin of mass for bosons is most likely different from that for
baryons. It is the topology change from skyrmions to half-
skyrmions in dense matter atn >∼ 2n0 that gives the signal for
this difference. In the density regimen >∼ n1/2 ∼ 2n0, the hid-
den gauge symmetry associated with the vector mesons and
the hidden scale symmetry associated with the dilaton scalar
intervene in nuclear dynamics in such a way that while theρ

mass tends toward zero, the nucleon mass goes to a chirally
invariant massm0 which is non-zero and largem0 ∼ O(mN).
Thus going toward possible deconfinement densityndc≫ n0,
the ratio of the effective masses in mediummρ/mN → 0,
which is at odds with the standard “Nambu scenario” for the
origin of mass based on the NJL model.

In the range of densities relevant to compact stars, there is
neither indication nor need for quark-gluon degrees of free-
dom. In fact, the EoS described by the topology change at
n1/2 ∼ 2n0 has a certain similarity to the smooth hadron-
quark or hadron-quarkyonic phase change that is assumed to
take place at∼ (2 − 3)n0 [89]. It is also possible that the
half-skyrmion phase – which may be dual to the quarkyonic
phase – is a precursor to (emergent) scale invariance with the
sound velocityv2

s/c
2 = 1/3. In the spirit of the Cheshire Cat,

this seems to suggest that “deconfinement” is irrelevant in
compact-star physics (See [92] for an argument that there is
no deconfinement in QCD.). If deconfinement should inter-
vene at some density, this would mean that the treatment an-
chored on topology should break down at that density. Clar-
ifying this issue is beyond the framework that is taken in the
works reviewed here.
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