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We propose a method for detecting the presence of a single spin in a crystal by coupling it to a high-quality factor
superconducting planar resonator. By confining the microwave field in the vicinity of a constriction of nanometric
dimensions, the coupling constant can be as high as 5–10 kHz. This coupling affects the amplitude of the field
reflected by the resonator and the integrated homodyne signal allows detection of a single spin with unit signal-to-
noise ratio within few milliseconds. We further show that a stochastic master equation approach and a Bayesian
analysis of the full time-dependent homodyne signal improves this figure by ∼30% for typical parameters.
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I. INTRODUCTION

Because of their long coherence times, spins in solids
are attractive candidates for quantum information processing.
In pure and nuclear-spin-free crystals, electron spins such
as nitrogen-vacancy (NV) centers or donors in silicon can
reach second-long coherence times using dynamical decou-
pling sequences [1–3]. Nuclear spins can reach even longer
coherence times, up to several hours, as demonstrated recently
[4–6]. While these experiments were carried out on large
ensembles of spins, manipulation, readout, and entanglement
of individual spins remain outstanding challenges. Single-spin
readout has been demonstrated by several methods. Spin-to-
charge conversion has been used for detecting electron spins
in electrostatically defined quantum dots in two-dimensional
electron gases [7–9], as well as in individual donors [10,11],
and even the nuclear spin of individual molecular magnets
[12,13]. Spin-dependent photoluminescence has enabled the
detection of the spin of individual molecules [14,15] and defect
centers in wide-gap semiconductors such as diamond [16,17]
or silicon carbide [18]. Scanning-probe techniques have also
been successfully employed for single-spin detection, with
mechanical resonators [19], nitrogen-vacancy magnetometers
[20], or scanning tunneling microscope tips [21,22].

Here we discuss another method, consisting in pushing the
principle of inductive detection [23], which is the basis of all
existing commercial electronic paramagnetic resonance (EPR)
spectrometers, to the single-spin limit. Inductive detection
of EPR proceeds by inserting a sample that contains the
paramagnetic impurities of interest in a microwave resonator
of frequency ωr . In continuous-wave EPR spectroscopy,
it is the microwave absorption that occurs when the spin
Larmor frequency tuned by a dc magnetic field B0 matches
ωr that is detected, giving rise to a dip in the transmitted
signal amplitude. The most sensitive spectrometers based on
inductive detection so far are able to detect ∼106 spins per√

Hz [24]; reaching the single-spin limit requires therefore a
gain of several orders of magnitude in sensitivity. A first step
in that direction was taken in [25], where a sensitivity of 2000
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spins per
√

Hz was obtained by using a high-quality-factor
micron-scale superconducting resonator, combined with a
Josephson parametric amplifier [26–28] to detect a spin-echo
signal at the quantum limit of sensitivity (see also [29]). In
order to reach single-spin sensitivity, it is essential to enhance
the spin-resonator coupling constant g compared to g/2π =
50 Hz as obtained in [25]. One possibility is to hybridize the
spin and the charge degree of freedom, as proposed in [30–33]
and recently demonstrated with a carbon nanotube quantum
dot [34]. This comes nevertheless at the expense of a reduced
coherence time because of the ubiquitous charge noise.

Here we propose instead to enhance g by incorporating a
nanometric constriction in the resonator, as also proposed in
[35], which makes it possible to reach g/2π ∼ 5–10 kHz for a
realistic resonator design. We predict that the absorption dip in
the integrated homodyne signal due to the presence of a single
spin should be detectable with a unit signal-to-noise ratio in a
detection time of a few milliseconds, corresponding to a sensi-
tivity of ∼0.1 spin per

√
Hz. We also analyze the system from

a quantum optics perspective, beyond the simple integration of
the homodyne signal, using a quantum trajectory formalism.
Transient correlations in the signal carry information about
the system beyond the steady-state mean values and we show
that to discriminate the presence or absence of a spin with a
given confidence, the full trajectory analysis allows reducing
the measurement time further by ∼30%.

The article is structured as follows. In Sec. II we present the
physical system. In Sec. III we introduce the master equation
for the average system dynamics and we determine the mean
amplitude of the signal emitted by the resonator and the
fluctuations of its integral over time. In Sec. IV we introduce
the quantum trajectory dynamics of the spin-resonator system,
conditioned upon the noisy homodyne signal detection, and we
present a Bayesian analysis of the information available from
the full homodyne detection record. In Sec. V we summarize
our results.

II. SYSTEM DESCRIPTION AND PHYSICAL
IMPLEMENTATION

A. Proposed setup

The proposed experimental setup for single-spin detection
is depicted in Fig. 1. The spin is magnetically coupled
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FIG. 1. Proposed setup. (a) Superconducting LC resonator con-
sisting of two pads (capacitor C) and wire (inductance L) placed
in a three-dimensional microwave cavity. (b) Nanometer-scale con-
striction made at the center of the inductance wire, below which a
single spin is located at 15 nm. (c) Cross section of the structure.
(d) Schematic of the considered measurement circuit. The signal
leaking out of the cavity is first amplified by a quantum-limited
Josephson parametric amplifier (JPA), followed by cryogenic low-
noise HEMT and room-temperature amplifiers.

to a planar superconducting lumped-element LC resonator,
with frequency ωr . In order to enhance the spin-resonator
interaction, the microwave field is strongly confined in the
vicinity of the spin with the help of a short (typically
200-nm-long) superconducting nanowire that is embedded in
the middle of the resonator inductance [35]. The resonator
is probed with microwave signals sent via a capacitively
coupled antenna. A possible arrangement, shown in Fig. 1,
is to have the sample mounted in a metallic enclosure and
the antenna soldered onto a microwave connector mounted
on the enclosure [25]. We assume that the resonator-antenna
coupling is chosen such that the loaded quality factor reaches
∼105, whereas the internal resonator losses are negligible due
to superconductivity; in that regime, all the available signal
is emitted into the measurement line, thus maximizing the
measurement efficiency. After routing by a circulator, this
signal is first amplified by a Josephson parametric amplifier
(JPA) and then by a low-noise high-electron-mobility transistor
(HEMT) amplifier at 4 K before demodulation at room
temperature, yielding the two signal quadratures I (t) and Q(t)
(see Fig. 1).

A key aspect of the proposal is the use of a JPA
to amplify the spin signal. The JPA is an ultralow-noise
microwave amplifier recently developed in the context of
circuit QED with performance close to the quantum limit
[26–28]. This performance is conveniently quantified by the
quantum efficiency parameter η ≡ 1/(1 + N ), N being the
number of noise photons added during the detection process.
If the signal detection is performed using the HEMT amplifier

with a system noise temperature TN ∼ 15 K, N = kTN/h̄ωr

yields η ∼ 0.02. Josephson parametric amplifiers, on the
other hand, are operated at 10 mK and have been shown
to add the minimum amount of noise required by quantum
mechanics. In the so-called degenerate mode where only one
quadrature is amplified, η approaches 1, whereas η � 0.5 in
the phase-preserving mode where both quadratures have equal
gain. For the purpose of our proposal, we will assume that
η = 0.5, a value that has been obtained in recent experiments
[36].

B. Spin-resonator coupling

We will assume in the following that the spin system
we want to measure is subject to a dc magnetic field B0

applied by an external coil parallel to the resonator inductance
in the sample plane (the z direction) in order to minimize
its detrimental effect on the superconducting resonator. The
spin is described by a Hamiltonian Hs(B0) that includes a
Zeeman term −h̄γeB0 · S, where γe/2π = 28 GHz/T is the
electron gyromagnetic ratio and S the dimensionless spin
operator, as well as possibly other terms originating either
from the hyperfine interaction with one or several nuclear
spins or from some zero-field splitting. In the following
sections we will provide two specific examples of such spin
Hamiltonians. The resonator is described by its Hamiltonian
Hr/h̄ = ωra

†a, with field annihilation and creation operators
a and a†, respectively. Finally, the spin is coupled by the
Hamiltonian Hint/h̄ = −γeB1 · S to the resonator magnetic
field B1 = δB(a + a†), where δB denotes the microwave field
zero-point fluctuations at the spin location.

The spin Hamiltonian Hs(B0) can be diagonalized, yielding
energy states |n〉 with energies En. We will assume that B0

is chosen such that the transition frequency between two of
these levels, which we call |0〉 and |1〉 in the following, is
brought close to the resonator frequency ωr . Neglecting the
other levels, we represent the restriction of the Hamiltonian
to the two-level basis {|0〉 , |1〉} by the Pauli matrices σx,y,z.
The bare spin Hamiltonian thus is written Hs/h̄ = −(ωs/2)σz,
where ωs = (E1 − E0)/h̄, and we assume that the phases of
|0〉 and |1〉 are defined such that the interaction Hamiltonian
restricted to the |0〉 , |1〉 basis can be written

Hint/h̄ = g(σ+a + σ−a†), (1)

where

g = −γeδB · 〈0|S|1〉 (2)

is the spin-resonator coupling constant, σ+ = |1〉〈0|, and σ− =
|0〉〈1|. To obtain Eq. (1), the rotating-wave approximation
has been applied to remove nonresonant σ+a† and σ−a

terms. One can see that the total Hamiltonian Hs + Hr + Hint

takes a Jaynes-Cummings form and that cavity quantum
electrodynamics concepts can thus be applied to the spin-
resonator system. The coupling constant g is the key parameter
of the Jaynes-Cummings model. Efficient detection requires
maximizing g while keeping low decoherence rates of both
the cavity and the spin. As can be seen from Eq. (2), this
requires choosing spin systems and energy levels with large
matrix elements and most importantly designing the resonator
for large magnetic-field fluctuations |δB|.

022306-2



PROPOSAL FOR DETECTING A SINGLE ELECTRON . . . PHYSICAL REVIEW A 95, 022306 (2017)

e

(≡ |1(b)

(d)(c)

(a)

Magnetic field B0 (mT)

Magnetic field B0 (T)

V

15N
S=1

I=1/2

B0 // [110]

Si

Bi

I=9/2

ms = 0

ms= -1

ms= +1

F = 4

F = 5

(≡ |0

|0
|1

2.92

2.84

2.88

0
)z

H
G( h / y gren

E
210

)

)

0

E
ne

rg
y 

/ h
 (G

H
z)

-5

0

5

0.2 0.4

FIG. 2. The two spin systems studied in this paper. (a) Schematic
of a NV center in diamond crystal. Here 15N, which has a nuclear spin
I = 1/2, is assumed. (b) Energy levels of 15N-vacancy centers as a
function of external magnetic field. Here the external magnetic field
B0 is assumed to be parallel to the orientation of [110], so a factor
cos α is taken into account (see the text). (c) Schematic of a bismuth
donor in silicon (Bi:Si). (d) Energy levels of Bi:Si as a function of
the bias field B0.

C. Spin systems

In this section, two particular spin systems are consid-
ered for implementation of the proposed detection scheme:
nitrogen-vacancy centers in diamond [Fig. 2(a)] and bismuth
donors in silicon [Fig. 2(c)].

Nitrogen-vacancy centers are defects in diamond consisting
of a nitrogen atom sitting next to a vacancy of the diamond
lattice [17]. In their negatively charged state, the electronic
ground state is a spin triplet S = 1 with a natural quantization
axis given by the direction of the NV bond along one of the
four possible [111] directions of the diamond lattice, denoted
by Z in the following. We also introduce X and Y as arbitrary
axes orthogonal to Z. The NV center spin Hamiltonian is then
given by

HNV(B0)/h̄ = DS2
Z − γeB0 · S + AZIZSZ. (3)

The first term is the so-called zero-field splitting (D/2π =
2.88 GHz) due to the exchange interaction between the two
unpaired electrons of the NV center. The second term is the
electronic Zeeman splitting. The last term is the hyperfine
interaction with the nitrogen nuclear spin. Here we consider
the case of a 15N nucleus, which has a spin I = 1/2 and for
which AZ/2π = 3.1 MHz. The Hamiltonian (3) is a good
approximation to the full NV Hamiltonian in the limit where
the magnetic field B0 obeys AZ � γe|B0| � D, so that both
the strain-induced mixing between states mS = ±1 and the
electron-nuclear-spin mixing induced by transverse hyperfine
interaction terms have negligible effect; this applies well for
magnetic-field strengths B0 between 0.1 and 10 mT, which

we need to tune the spin into resonance with the resonator
frequency ωr .

Diagonalizing HNV(B0) yields energy eigenstates whose
dependence on B0 is shown in Fig. 2. In the magnetic-field
range that we are interested in, the Hamiltonian can be further
approximated by neglecting components of the B0 field that are
transverse to the NV axis so that HNV/h̄ = DS2

Z − γeB0ZSZ +
AZIZSZ , with B0Z the B0 component along Z. Since this
Hamiltonian contains only SZ and IZ operators, its eigenstates
are of the form |mS,mI 〉 and have energies m2

SD − γeB0ZmS +
AZmSmI , mS ∈ {−1,0, + 1}, and mI ∈ {−1/2, + 1/2} being
the projection of the electronic and nuclear spins along Z.
Transitions between levels |mS,mI 〉 and |m′

S,m
′
I 〉 verifying

|m′
S − mS | = 1 and m′

I = mI have a nonzero matrix element
〈m′

S |SX|mS〉 = 1/
√

2 and 〈m′
S |SY |mS〉 = ±i/

√
2. Note that

diamond samples commonly have a surface oriented along
the [100] direction. Assuming that the z axis, along which
B0 is applied, is aligned parallel to the [011] crystalline axis,
a NV center oriented along the [111] direction experiences
a magnetic field B0Z = ‖B0‖ cos α, with α = 35.3◦. For
instance, one can define |0〉 ≡ |mS = 0,mI = +1/2〉 and
|1〉 ≡ |mS = −1,mI = +1/2〉. Assuming ωr/2π = 2.9 GHz,
a field B0Z = 0.7 mT is sufficient to bring the |0〉 → |1〉
transition into resonance.

An important parameter is the spin decoherence rate. Here
one needs to distinguish several distinct quantities. First of
all, we note that the relaxation rate of an NV center due to
exchange of energy with the phonons of the diamond lattice
can be neglected at millikelvin temperatures (γdec < 10−3 s−1

[37,38]). The only relevant decoherence phenomenon is the
loss of phase coherence occurring due to fluctuations of the
spin resonance frequency, caused by noise in the magnetic
environment experienced by the spin. It has been extensively
studied in the case of individual NV centers [39]. Two time
scales are relevant for our discussion. The first one is the
free-induction decay time T ∗

2 measured by a Ramsey fringe
sequence; it quantifies the time over which the phase of
a coherent superposition (|0〉 + |1〉)/√2 is preserved. The
second one is the time T2 over which a Hahn echo signal
decays. Whereas a Ramsey fringe signal probes very slow
fluctuations of the magnetic environment (with a cutoff
frequency of the order of 1 mHz, determined by the total
time of the experiment), a Hahn echo is sensitive to noise
with frequencies larger than the inverse of the duration of a
single echo sequence, which is of order few kHz. Because
the magnetic environment evolution is usually slow, T2 � T ∗

2
in general. Nitrogen-vacancy centers in ultrapure diamond
crystal where most of the carbon atoms are isotopically
enriched with nuclear-spin-free 12C atoms have been shown
to reach T ∗

2 � 400 μs [40]. Hahn-echo decay times in such
crystals T2 have been measured up to 5 ms at 300 K [41],
where they were limited by the spin-lattice relaxation time and
have been shown to increase at low temperatures [1]. Note,
however, that these numbers were obtained for NV centers
implanted deep in the bulk crystal. Nitrogen vacancies closer
to the surface are known to have shorter coherence times,
due to the presence of a bath of electron spins of unknown
origin at the diamond-air interface [42]. Overall, NVs at 15 nm
from the surface can realistically reach T ∗

2 = γ −1
φ = 10 μs and

T2 = 100 μs [43].
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A neutral bismuth donor in silicon [44–46] [Fig. 2(c)]
consists of a single electronic spin S = 1/2 in hyperfine
interaction with the Bi nuclear spin (I = 9/2), resulting in 20
hybridized electron-nuclear-spin states. The spin Hamiltonian
of bismuth in silicon is

HBi/h̄ = AI · S − γeB0 · S, (4)

with A/2π = 1.48 GHz; its eigenstates are shown in Fig. 2.
In magnetic fields verifying B0 � A/γe (i.e., B0 � 50 mT),
which we assume is the case here, the dominant term is the
hyperfine electron-nuclear interaction. In that limit, the energy
levels are well approximated by eigenstates of the total spin
operator F = I + S, characterized by their F2 and Fz eigen-
values F (F + 1) and mF . They are grouped in two multiplets:
9 low-energy levels (with F = 4) and 11 high-energy levels
(with F = 5). Nonzero Sx and Sy matrix elements are found
exclusively between any pair of levels |F,mF 〉 and |F ′,m′

F 〉
verifying |mF − m′

F | = 1. Nonzero Sz matrix elements
are found exclusively between pairs of levels verifying
mF = m′

F . For instance, in B0 = 3 mT, one gets 〈F =
4,mF = −4|Sx |F = 5,mF = −5〉 = 0.47, 〈F = 4,mF =
−4|Sx |F = 5,mF = −3〉 = 0.07, 〈F = 4,mF = −3|Sx |F =
5,mF = −4〉 = 0.42, and 〈F = 4,mF = −4|Sz|F = 5,mF =
−4〉 = 0.3. The strongest transition, therefore yielding the
largest coupling constant to the resonator, is thus mF = −4 →
mF = −5; its matrix element is very close to 1/2, the Sx matrix
element of an isolated electron in vacuum. We will thus define
|0〉 ≡ |F = 4,mF = −4〉 and |1〉 ≡ |F = 4,mF = −5〉, with
a transition frequency that can be tuned to a resonator
frequency ωr/2π = 7.3 GHz in a B0 = 3 mT field.

As for NV centers, energy relaxation of donors in silicon by
interaction with the lattice phonons can be entirely neglected at
millikelvin temperatures, reaching there also γdec < 10−3 s−1

[2]. The Hahn-echo decay time T2 of bismuth donors in isotopi-
cally purified silicon has been measured to be between 1 and
1000 ms, depending on the donor concentration and applied
magnetic field B0 [3,25,47]. The phase coherence time T ∗

2 of
individual bismuth donors in silicon has never been measured
so far; however, one can rely on results obtained recently with
phosphorus donors in a 28Si substrate, where a remarkably
narrow linewidth of 1.8 kHz was measured (corresponding to
T ∗

2 = 300 μs) for donors located at nanometric distances from
the sample surface [48]. Assuming γφ = 104 s−1 therefore
seems reasonable.

D. Resonator design

The spin-resonator coupling constant g depends on the
quantum fluctuations δB of the microwave magnetic field
sustained by the resonator mode at the spin location. The quan-
tum fluctuations of the resonator microwave current δi, which
give rise to the magnetic field fluctuations, are linked to the
resonator frequency ωr and impedance Zr = √

L/C by [49]

δi = ωr

√
h̄

2Zr

. (5)

A simple estimate of |δB| is obtained by assuming a
circular cross section of the nanowire, in which case Biot
and Savart’s law yields an orthoradial δB with the amplitude
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FIG. 3. Magnetic field δB generated by vacuum fluctuations
of the current δi in a constriction 20 nm wide and 10 nm thick.
(a) Magnetic-field map analytically derived from the Biot-Savart law
for a conductor with uniform current density and rectangular cross
section. Here δB is given for δi = 35 nA, as in the NV center case.
(b) Cut at a distance of 15 nm from the constriction. For δi = 35 nA,
we can expect δB = 0.33 μT. The red line is the result of the exact
analytical formula and the black dashed line shows the approximation
μ0δi/2π

√
x2 + y2. (c) Cut along the vertical crossing through the

constriction. The green solid line is the exact formula and the black
dashed line is μ0δi/2π

√
x2 + y2.

δB = μ0δi/2πr at the spin location at a distance r from the
center of the nanowire. Analytical results exist also for a wire
of rectangular cross section as shown in Fig. 3, while in general
geometries the field can be computed with finite-element
methods. Since the resonator frequency ωr should be chosen
close to the spin transition frequency, maximizing δB requires
reducing as much as possible the resonator impedance Zr and
bringing the spin as close as possible to the resonator, i.e.,
minimizing r .

For practical and physical reasons the wire cannot be
designed with a width much below �20 nm as electron-beam
lithography can only yield reproducible nanowires with a
width larger than �15–20 nm; nanowires with transverse
dimensions below �10 nm may undergo a superconducting-
to-insulating transition [50], which would be detrimental to
the resonator quality factor. Bringing the spin too close to
the surface may lead to reduced coherence times, as has been
demonstrated with NV centers in diamond at a depth less
than �20 nm from the surface. Taking these aspects into
account, a nanowire width of 20 nm, thickness of 15 nm,
and a spin-nanowire distance r = 20 nm seem appropriate
parameters, as proposed in [35].
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The resonator design aims at minimizing its impedance,
which implies maximizing the capacitance C while minimiz-
ing the inductance L. We propose to use an interdigitated
capacitor, which is known to be compatible with high quality
factor resonances required by the experiment provided the fin-
ger dimension and spacing is large enough (above 10–20 μm
[51]), in parallel with an inductor made out of a straight
superconducting wire. Large pads facilitate the capacitive
coupling to the antenna. To minimize the impedance, the width
of the inductive wire should be as large as possible outside of
the nanowire region. The total resonator inductance should
also include the kinetic inductance of the nanowire, which can
be evaluated as [52]

Lk = l

w

R�
2π2

h




1

tanh 

2kBT

,

where 
 is the aluminum superconducting energy gap, T is
the temperature, R� is the sheet resistance in the nonsupercon-
ducting state, and l and w are the nanowire length and width,
respectively. For a 10-nm-thick aluminum film, R� = 4.5�

[53] and 
 = 230 μeV [54] yield Lk = 50 pH for l = 250
nm and w = 20 nm.

The proposed resonator geometry for the NV centers is
shown in Fig. 4(a). A geometrical inductance Lg = 790 pH
is achieved by using a 30-μm-wide central wire, while the
capacitor includes 36 pairs of 20-μm-wide fingers separated by
20 μm. With the nanowire modeled as an ideal inductor Lk =
50 pH, electromagnetic simulations give ωr/2π = 2.9 GHz
and Zr = 15.3 �, yielding δi = 35 nA. For a distance of 15
nm, we get a field δB = 0.33 μT (see Fig. 3). Using the |0〉 →
|1〉 transition described earlier, one obtains a coupling constant
g/2π = 6.5 kHz if the NV center is positioned right below the
wire so that δB is perpendicular to the NV axis Z.

A similar geometry is proposed for coupling to individual
bismuth donors in silicon [see Fig. 4(b)]. There the geometrical
inductance Lg = 530 pH is obtained with a 50-μm-wide
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FIG. 4. Resonator geometries, with the nanowire depicted in red.
(a) For an NV center spin, the central wire is 30 μm wide and 0.96 mm
long. Two large pads of 3 × 1 mm2 ensure the coupling to the cavity
and 72 pairs (only half are drawn) of 20-μm-wide fingers spaced
by 20 μm are used as additional capacitance to bring the impedance
down to Zr = 15.3�. (b) For bismuth in silicon, the central wire is
50 μm wide and 0.83 mm long. Two large pads of 1.4 × 0.18 mm2

ensure the coupling to the cavity and six pairs of 50-μm-wide fingers
spaced by 50 μm are used as additional capacitance to bring the
impedance down to Zr = 26.5�.

TABLE I. Parameters used in this paper to calculate expected
signals and measurement time.

Spin g (rad/s) κ (s−1) γ −1
φ (s) γ −1

p (s)

NV 2π×6.5×103 0.9×105 10−5 3×10−5

Si:Bi 2π×8×103 2.3×105 10−4 4.5×10−5

wire and the capacitor includes six pairs of 50-μm-wide
fingers separated by 50 μm. This yields ωr/2π = 7.3 GHz
and Zr = 26.5 �, implying δi = 65 nA, resulting in a field
δB = 0.61 μT at the spin location. With the choice of levels
|0〉 and |1〉 described in the preceding paragraph, we get
g/2π = 8.0 kHz.

Table I summarizes the expected parameters (coherence
times, coupling constants, resonator damping rates) for the
spin systems and resonator design discussed above.

III. MASTER EQUATION AND STEADY-STATE SIGNAL
AMPLITUDE

In this section we determine the steady state of the spin-
resonator system and quantify the dependence of the amplitude
of the field emitted by the resonator on the physical parameters
of the problem. To this end, we must establish the master
equation, which is of the general Lindblad form

dρ = − i

h̄
[H,ρ]dt +

∑
j

D[cj ]ρdt. (6)

The Hamiltonian of the spin, interacting with a coherently
driven resonator, can be written in a frame rotating with the
driving field βin = βe−iωd t ,

H = h̄
ra
†ar + ih̄

√
2κ1(βa† − β∗a) + h̄
s

2
σz

+h̄g(σ+a + σ−a†), (7)

where 
r(s) = ωr(s) − ωd is the detuning between the res-
onator (spin) and the driving frequency. The field inside the
resonator is described by annihilation and creation operators
a and a†, respectively, and κ1 is the damping rate of the
resonator field through the coupler. The total damping rate
of the resonator field κ = κ1 + κL taking into account internal
resonator losses with rate κL is linked with the total resonator
quality factor Q by κ = ωr/2Q. We obtain information about
the presence of the spin by detection of the field leaking with
damping rate κ1 from the resonator through the coupler.

All dissipation processes are treated in the Born-Markov
approximation in (6) with Lindblad master equation terms of
the form

D[c]ρ = cρc† − 1
2 {c†c,ρ}. (8)

The relevant damping processes are the decay of the resonator
field c1 = √

2κa, population decay of the spin c2 = √
γdecσ−,

and spin dephasing c3 =
√

γφ

2 σz.

A. Adiabatic elimination and steady-state expectation values

Due to the relatively weak value of the spin-resonator
coupling constants derived in Sec. II, one can assume that
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the resonator lifetime is the shortest time scale of the problem
(κ � g) and that the resonator field closely follows the values
of the driving field and the spin coherence. In this so-called
bad-cavity limit, one can adiabatically eliminate the resonator
field mode to obtain an effective master equation for the spin
degrees of freedom [55].

The spin-resonator Hamiltonian yields the Heisenberg
equation of motion for the resonator annihilation operator

ȧ = −i
ra +
√

2κ1β − igσ− − κa + F̂ , (9)

where the damping term −κa follows by incorporating a
non-Hermitian term −ih̄κa†a in the Hamiltonian and F̂ is
a Langevin noise term with vanishing expectation value. In
the absence of the spin, the resonator will be excited into a
coherent state with a steady-state amplitude α that follows by
taking expectation values on both sides of (9) and setting the
time derivative to zero,

α =
√

2κ1β

κ + i
r

. (10)

The spin perturbs the field only weakly and, following [55],
we write the resonator field operator as a = α + a′, where the
Heisenberg equation of motion for the operator a′ follows from
Eq. (9). Since the spin operator term in the equation evolves at
the natural frequency ωs , we assume the adiabatic following
(vanishing time derivative of a′) in a frame rotating at that
frequency. This yields the operator replacement a′ = −igσ−

κ+i
rs
,

where 
rs = 
r − 
s , and hence the expression for the total
resonator field operator

a =
√

2κ1β

κ + i
r

− igσ−
κ + i
rs

. (11)

Inserting this expression and its adjoint for a† in the original
Hamiltonian and Lindblad operators, we obtain an effective
master equation involving only the spin degree of freedom.
The system is thus governed by an effective spin Hamiltonian

Heff = h̄
s

2
σz + h̄g(ασ+ + α∗σ−) − h̄εsσ+σ−,

where εs = 
rsg
2/(κ2 + 
2

rs) denotes a small ac-Zeeman-like
shift of the spin energy levels.

Similarly, the damping terms become

c1,eff = √
γpσ−, c2 = √

γdecσ−, c3 =
√

γφ

2
σz,

where the rate γp = 2g2κ/(κ2 + 
2
rs) represents the Purcell

enhanced damping of the spin by spontaneous emission of a
photon into the output line due to the coupling to the cavity
mode. This cavity-enhanced decay is an essential point of our
proposal: Due to the coupling to the cavity mode, the signal
reflected by the resonator will be appreciably influenced by
the spin and, as we will see below, the Purcell rate γp is the
crucial parameter for the sensitivity of the scheme. We note
that cavity-enhanced spin relaxation was observed recently
[56].

From the simple two-level master equation of the spin we
find the steady-state value

〈σ−〉SS = − igαrγ1γ
∗
2

4g2|α|2Re(γ2) + γ1|γ2|2 , (12)

with γ1 = γdec + γp and γ2 = γ1/2 + γφ − i(
s − εs). As
explained in Sec. II, in the situations that we consider here
the spin population decay rate γdec is negligible compared to
the Purcell rate γp [56] and we will hence assume γ1 = γp.

The largest modification of the intracavity field (11) due to
the spin is found when the resonator is on resonance with both
the spin and the driving field 
r = 
s = εs = 0, with the
corresponding decay rates γp = 2g2/κ and γ2 = γ1/2 + γφ ,
and when |α| = |α|sat = √

γ1γ2/2g = √
γ2/κ . In the rest of

the article we will assume this optimal regime for which we
find the expression

〈σ−〉SS = − i
√

2

4

g√
γ2κ

. (13)

The modification to the steady-state cavity field (assuming
κL � κ1) is then given by

√
2κ〈a′〉SS = −1

2

g2

√
γ2κ

. (14)

While the spin energy decay rate is negligible compared to
the Purcell rate γp, this is not necessarily the case for the spin
dephasing rate γφ , which leads us to distinguish two limiting
cases. If the spin coherence is radiatively limited (γp � γφ ,

implying that γ2 = γp/2), one obtains 〈σ−〉SS = − i
√

2
4 and

√
2κ〈a′〉SS = − g

2
√

κ
. (15)

If instead the spin coherence time is limited by dephasing so
that γ2 = γφ , we get

√
2κ〈a′〉SS = − g2

2
√

γφκ
. (16)

B. Detection of the microwave field reflected by the resonator

The microwave signal reflected by the resonator has the
operator expression

cout =
√

2κ1

(
α − ig

κ + i
rs

σ−

)
− β

=
(

2κ1

κ + i
r

− 1

)
β − i

√
2κ1g

κ + i
rs

σ−. (17)

This signal is amplified and demodulated to yield a voltage
signal, similar to the one obtained in optical homodyne
detection,

dY = η〈cm + c†m〉dt + √
ηdW, (18)

composed of a mean value governed by the expectation value
of the output field,

cm = coute
−iθ , (19)

where the local oscillator phase θ is applied to choose the
appropriate quadrature component measured by the setup. The
Wiener noise term dW has zero mean and variance dt and it
represents detector shot noise. The parameter η � 1 denotes
the detector efficiency introduced in Sec. II.

We choose the phase of the driving field such that α

is real and assume that all but a negligible fraction of the
photons lost from the resonator are available for homodyne
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FIG. 5. Integrated currents when there is a spin interacting with
the resonator (represented with blue) and when there is no spin
(represented with gray). The simulated voltage signals were obtained
with the parameters g = 2π × 10 × 103 rad/s, κ = 4.6 × 105 s−1,
γφ = 104 s−1, and η = 0.5. In (a) the solid lines correspond to values
of the integrated current for single simulations and the dotted lines to
mean values for 3000 simulations. The distributions of the ensembles
of simulations at time t = 20 τ1 � 5 ms are shown in (b), where the
solid lines are Gaussian fits to each distribution. The threshold value
ζc is shown as the vertical dotted line.

detection, κ ≈ κ1. In that case (and assuming vanishing
detuning parameters), cout = β − i

√
γpσ− and it is convenient

to introduce the normalized integrated signal

ζ (t) = 1√
t

∫ t

0
dY

≈ 2η cos θ
√

t[β − i
√

γp〈σ−〉SS] + √
η
W, (20)

where 
W is a Gaussian-distributed noise term with zero mean
and unit variance. The mean integrated signal is maximal when
θ = 0. For short times it is dominated by the noise fluctuations,
while for longer times the integrated currents differ by more
than the fluctuations and enable discrimination of whether the
spin is present in the resonator or not.

In Fig. 5 we show simulations of the noisy integrated cur-
rents corresponding to measurement signals from a resonator
interacting with a spin and to measurement currents with no
spin. Typical trajectories obtained by the stochastic master
equation, presented in Sec. IV, are shown for both scenarios
as the solid blue and black lines, respectively. The distributions
of the integrated signals (20) can be used to estimate the error
in assigning a given value of the integrated signal to the spin or
the no-spin hypothesis. Figure 5(b) shows that the integrated
currents, normalized by

√
t , are Gaussian distributed with a

constant variance η. The mean values evolve as ∼√
t [dotted

lines in Fig. 5(a)] and the separation of the two distributions is
given by


μ = 2η
√

γpt |〈σ−〉SS|. (21)

For the parameters leading to Eq. (13), we thus obtain a unit
signal-to-noise ratio by integrating the signal for a duration of
τη = 1

η
τ1, where

τ1 ≡ 1

4γp|〈σ−〉SS|2 = κ2γ2

g4
. (22)

The Gaussian fits to the histograms in Fig. 5(b) are in
perfect agreement with our theoretical analysis. The variances

of the curves are equal to η = 0.5 as predicted by Eq. (20).
For t = 20τ1 = 10τη, we expect a factor of

√
10 between the

separation and the rms width of the Gaussian distributions,
i.e., a separation of

√
10η = √

5 � 2.24, which is also the
result of Eq. (21) and perfectly fits the simulations. Given the
integrated signal from an experiment, we conclude that we are
(not) coupled to a spin if the signal is larger (smaller) than a
threshold value ζc, the midpoint of the two peaks in Fig. 5(b).
The probability that this assignment is in error is given by
the area under the Gaussian tails beyond ζc, which we can
evaluate as a function of the probing duration for any value of
the detector efficiency,

εη(t) = 1

2

[
1 − erf

( √
η

2
√

2

√
t

τ1

)]
, (23)

where erf is the Gaussian error function. This error vanishes
exponentially in the limit of long measurement times and it
is shown by the smooth curves in Fig. 7 for different values
of the measurement efficiency. The noisy curves in the same
figure depict the error probability associated with a Bayesian
trajectory analysis of the full measurement record, which will
be discussed in the following section.

At this point, it is interesting to evaluate the parameters for
the cases of NV centers in diamond and bismuth donors in
silicon. With the figures provided in Sec. II, NV centers have a
Purcell relaxation time γ −1

p = 27 μs, yielding a measurement
time τ1 = 0.35 ms (assuming unit detector efficiency η = 1).
Similarly, bismuth donors in silicon can reach γ −1

p = 45 μs,
resulting in τ1 = 0.17 ms. We thus conclude that a high-fidelity
single-spin microwave detection should be possible in just
milliseconds for the model systems considered in this work.

IV. QUANTUM TRAJECTORIES AND BAYESIAN
ANALYSIS

In the preceding section we showed that the value of the
voltage signal integrated over a few 1

η
τ1 allows discrimination

of the spin in the resonator. By representing the signal by only
its integral over time, however, we omit important information
contained in the temporal signal correlations. We can assess
this information by application of quantum trajectory theory,
which evolves the quantum state in time, conditioned on the
stochastic measurement record. This state in turn provides
the probabilities for subsequent values of the detected signal.
The outcome probabilities depend on whether the spin is
included in the simulation or not, and given the actual outcome,
we can apply Bayes’ rule and infer the (classical) probability
that the spin is actually present.

The state of a quantum system subject to continuous
probing obeys a stochastic master equation (SME)

dρ = − i

h̄
[H,ρ]dt +

∑
j

D[cj ]ρdt + √
ηH[cm]ρ dW, (24)

where the stochastic term, which has been added to the
conventional master equation (6), accounts for the backaction
of the noisy measurement with the outcome dY given in (18).
Note that dW is determined as the difference between the
actually measured signal dY and the expected mean value
from the current value of the density matric ρ. The backaction
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involves application of the superoperator

H[cm]ρ = cmρ + ρc†m − 〈cm + c†m〉ρ, (25)

with 〈cm + c
†
m〉 = tr{(cm + c

†
m)ρ} and the operator cm given in

Eq. (19).
The SME thus yields the time-dependent state ρ(t) of the

system conditioned on the measurements until time t and
provides the expected mean value and the probability for
the next detector outcome. Propagating the SME for different
candidate hypotheses or parameter values thus provides the
necessary input to apply Bayes’ rule and determine the
most likely circumstance of the experiment: The actual
measurement outcome dY during a time interval [t,t + dt]
updates the probability p(θi) that an unknown parameter has
a certain value θi via Bayes’ rule:

p(θi,t + dt) ≡ p(θi |dY ) = p(dY |θi)

p(dY )
p(θi,t), (26)

where p(θi,t) is the prior probability of the parameter
having value θi at time t . The denominator p(dY ) =∑

i p(dY |θi)p(θi,t) merely serves to normalize the updated
probabilities so that

∑
i p(θi |dY ) = 1. After each infinitesimal

time step dt we thus update the probability distribution
{p(θi,t)} → {p(θi,t + dt)}, which evolves during the full
measurement process. If we start, for example, with a
uniform distribution p(θi,0) = 1/N , where N is the number
of candidate hypotheses, we must, in parallel, solve N

stochastic master equations, which are all subject to the
same measurement record dY . Each solution thus provides
p(dY |θi), needed in (26) to update the probability weights on
the different hypotheses.

To assess the efficacy of the Bayesian analysis for our
purpose, we have assigned equal prior probabilities for
having a spin and having no spin in the resonator, p(spin) =
p(no spin) = 1/2, and simulated measurement currents corre-
sponding to the two cases. The simulated voltage signals were
obtained with the parameters g = 2π × 10 × 103 rad/s, κ =
4.6 × 105 s−1, γφ = 104 s−1, and η = 0.5. We used Bayes’
formula (26) to update the probabilities that a person having
access only to the measurement data would assign to the two
possibilities of having a spin or no spin in the resonator. The
probabilities evolve with time as shown with the blue and
black curves in Fig. 6(a) for two distinct simulations with
signals generated as if a spin is present or not. The black
curve rapidly converges to value zero, deducing correctly
that the resonator is not interacting with a spin. The blue
curve fluctuates for slightly longer, but eventually reaches unit
probability around a measurement time t = 18τ1–20τ1 � 5 ms
with our parameters.

We have repeated the simulations 3000 times to obtain the
distribution of probabilities, shown for measurement times
t = 0.4τ1, 4τ1, and 12τ1 in Figs. 6(b)–6(d), respectively.
The blue histograms correspond to simulated measurement
records with a spin interacting with the resonator and the black
ones to the case of no spin. As in our analysis based on the
integrated signals, we can assess the probability of making a
wrong assignment by the tail of the blue (black) distributions
extending above (below) the conditional probability p =
0.5. Unlike in the previous section, this assignment error
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FIG. 6. The probability of inferring that a spin is interacting
with the superconducting resonator P [spin|Y (t)]. (a) Probabilities
as a function of time when dY (t) is a measurement current from
a simulation with a spin (blue curve) and when there is no spin
(black curve). Also shown is the normalized distribution of the
values of P [spin|Y (t)] for 3000 simulations at measurement times
(b) t = 0.4τ1, (c) t = 4τ1, and (d) t = 12τ1. Blue histograms corre-
spond to simulations with a spin and black histograms to simulations
with no spin interacting with the resonator. The parameters of the
simulation are specified in the figure.

probability does not have an analytical expression, but it can
be determined from our numerical simulations. For different
detector efficiencies we thus obtain the assignment errors
shown as the noisy curves in Fig. 7.
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FIG. 7. Time-dependent probability of wrongly assigning the
presence or absence of a spin based on the continuous measurement.
The probabilities are shown on a logarithmic scale for different
values of the detector efficiency η indicated next to the arrows
that connect the smooth curves depicting Eq. (23), based on the
integrated measurement current, and the more noisy curves, based on
the Bayesian analysis. The red smooth and noisy curves correspond
to the experimentally realistic detector efficiency value η = 0.5. The
interaction and damping parameters are the same as in Fig. 6.
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As shown in Fig. 7, the Bayesian analysis extracts more
information from the measurement signal than we can obtain
based on the integrated signal. The difference in the error
probability is quite appreciable and, for example, allows a
Bayesian analysis of data obtained by a detector with efficiency
η = 0.5 to yield the same information as the integrated signal
obtained with a detector efficiency of 0.65. Alternatively, we
observe that with the same detector efficiency we obtain a
confident discrimination of the presence of a spin 30% faster
by use of the Bayes analysis than by use of only the integrated
signal.

The improvement due to the Bayesian analysis is due to
the information retrievable from temporal correlations in the
emitted signal. The random measurements cause backaction on
the system and thus cause its subsequent transient evolution to
deviate at all times from the constant steady state of the master
equation. Such transient evolution yields more information
than mean values about the system as seen most dramatically,
e.g., in photon counting signals, where a two-level emitter
makes a quantum jump into the ground state after each
detection event and hence has to be reexcited before a second
detection can occur. While the mean, and hence integrated,
counting signal saturates and thus hampers distinction between
different strong driving fields, the transient excited-state
population after each detector click causes antibunching and a
modulation in the intensity correlation function, which in fact
allows the same resolution at all driving strengths [57]. For

continuous homodyne detection, the stochastic backaction on
the emitter is a weaker effect than in the case of counting, but
it still accounts for temporal correlations in the noisy signal
that are not being used in the mean-field analysis, e.g., the
frequency spectrum of the emitted field [58].

V. CONCLUSION

In summary, we have proposed and analyzed an experi-
mental scheme where a superconducting microwave resonator
is employed for detection of a single electron spin. From
the steady state of the system we identified the dependence
of the mean signal and the signal fluctuations on the spin
coupling parameters and we have shown that with realistic
parameters, we can detect the presence of a single spin within
an integration time of a few milliseconds. We also showed that
a Bayesian analysis of the detected signal permits faster and
more reliable discrimination of the spin than the mean-field
analysis due to the temporal signal correlations associated with
the measurement backaction on the spin dynamics.
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