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The three-dimensional incompressible Navier–Stokes equations, which describe the motion of

many fluids, are the cornerstones of many physical and engineering sciences. However, it is

still unclear whether they are mathematically well posed, that is, whether their solutions

remain regular over time or develop singularities. Even though it was shown that singularities,

if exist, could only be rare events, they may induce additional energy dissipation by inertial

means. Here, using measurements at the dissipative scale of an axisymmetric turbulent flow,

we report estimates of such inertial energy dissipation and identify local events of extreme

values. We characterize the topology of these extreme events and identify several main types.

Most of them appear as fronts separating regions of distinct velocities, whereas events

corresponding to focusing spirals, jets and cusps are also found. Our results highlight the

non-triviality of turbulent flows at sub-Kolmogorov scales as possible footprints of singula-

rities of the Navier–Stokes equation.
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A
bout 500 years ago, Leonardo Da Vinci published what
appears to be one of the first detailed experimental
account of vortices in water. It then took three centuries

to establish the fundamental equations describing the dynamics
of water, now known as the incompressible Navier–Stokes
equations (INSE):

@tuþ u � rð Þu ¼ �rPþ nDuþ f; ð1Þ

r � u ¼ 0; ð2Þ
where u is the d-dimensional velocity field, P the kinematic
pressure, f a forcing and v the kinematic viscosity. A natural
control parameter of the INSE is the Reynolds number Re¼UL/v,
built using a characteristic length L and velocity U. The INSE are
the cornerstones of many physical and engineering sciences,
and are routinely used in numerical simulations1–4. From a
mathematical point of view, however, it is still unclear whether
the INSE are a well-posed problem in three dimensions, that is,
whether their solutions remain regular over sufficient large time
or develop singularities. This motivated their inclusion in the
AMS Clay Millennium Prize list5.

Historically, the search for singularities in INSE was initiated
by Leray6 who introduced the notion of weak solutions (that is, in
the sense of distribution). This notion was used to prove that the
mathematical singular set has a one-dimensional Haussdorff
measure equals to zero in spacetime7,8. Therefore, if these
singularities exist, they must be extremely localized events in
space and time. This makes their direct detection an outstanding
problem. For some times, the best evidence of their existence was
provided by the observation that the energy dissipation rate in
turbulent flows tends to a constant at large Reynolds numbers9.
This observation is at the core of the 1941 Kolmogorov theory of
turbulence10 and was interpreted by Onsager11 as the signature of
singularities with local scaling exponent h¼ 1/3. Later, it was
conjectured12 that the singularities are organized into a
multifractal set. Analysis of measurements of three-dimensional
numerical or one-dimensional experimental velocity fields
showed that the data are compatible with the multifractal
picture, with a most probable h close to 1/3 (refs 13,14).
However, this analysis could not reveal any information on the
space-time statistics of possible singularities.

A major breakthrough was achieved when Duchon and
Robert15 derived a detailed energy balance for weak solutions of
INSE and computed the contribution stemming from an eventual
lack of smoothness. They show that it can be lumped into a single
term D(u), which quantifies the ‘inertial’ energy dissipation, that
is, the energy dissipated by non-viscous means. They define
dissipative weak solutions of Navier–Stokes equations as those
with D(u)Z0, the equality being only achieved for smooth-
enough solutions (corresponding to a local scaling exponent
h41/3). Later, Eyink16 proved the existence of a like-wise
non-zero rate of velocity circulation decay d

dt GðuÞ, produced by
singularities. These mathematical results are obtained in the limit
of vanishing spatial scales, so that their direct application to
experimental or numerical flows is problematic. In such cases,

one can only expect to be able to measure coarse-grained
quantities, Dc(u) and d

dt GcðuÞ, at a scale c dictated by
experimental or numerical constraints17. In that respect, a
special role is played by the so-called dissipative scale c¼ Z, as
it is traditionally expected to be the scale at which all injected
energy is converted into viscous dissipation, and the flow is
regularized by viscosity. For example, it is at this scale that
numerical simulations are usually truncated, or experimental
velocity gradients estimated. On the road to the mathematical
limit c-0, it seems interesting to study the properties of Dc(u)
and d

dt GcðuÞ down to the dissipative scale.
The purpose of the present study is to use high spatial

resolution measurements of the velocity field in experiments of
turbulent swirling flow (see ‘Methods’ for more on this choice) to
compute Dc(u) and d

dt GcðuÞ down to dissipative scales. We show
that they are very intermittent in space and time, and provide the
first experimental attempt at characterization of isolated extreme
events of inertial dissipation. By characterizing the local topology
of these events, we find that most of them appear as fronts
separating regions of distinct velocities, whereas some correspond
to focusing spirals, jets and cusps. Our results highlight the
non-triviality of turbulent flows at sub-Kolmogorov scales as
possible footprints of singularities of the Navier–Stokes equation.

Results
Relevant hydrodynamic parameters in von Kármán swirling flows.
Details on the setup can be found in the Methods section. We
vary the rotating frequency (F) of the impellers that drive the flow
and use different mixture of glycerol/water, to vary the viscosity
of the working fluid, and thus the Reynolds number Re¼ 2pFR2/
v, (where R is the radius of the impellers). Monitoring the torques
C1 and C2 applied to each impeller, we obtain the energy injection
rate (per unit mass of fluid) as:

E ¼ 2pFðC1þC2Þ
rpHR2

: ð3Þ

where r is the fluid’s mass density and H the distance between the
impellers. From this, we can compute the Kolmogorov dissipative
scale as Z ¼ ðn3=EÞ1=4.

In a statistically stationary regime, the energy input must
balance the rate of energy dissipated within the flow. This has
been checked in a scale 4:1 version of our experiment in Helium,
using precise calorimetric measurements18. Previous global
dissipation measurements have shown that the dimensionless
energy dissipation rate saturates at large Re towards a value
that depends on the impellers and the mean flow geometry19

(more details in Supplementary Note 1). This property allows us
to determine the threshold for the onset of fully developed
turbulence as ReE3,500. This also corresponds to the threshold
where non-dimensional velocity fluctuations become inde-
pendent of the Reynolds number20.

Here we present three cases of the experiments. Case A: 100%
glycerol, where the flow is laminar; Case B: 59% glycerol by
volume in water, where the flow is fully turbulent; and Case C:

Table 1 | Parameter space describing the 3 cases considered in this paper.

Case F (Hz) Re g (mm) dx (mm) E1 Dn
dx

� �
Ddxh i

A 2 149 4.3 3.4 0.088 0.007 o0.0001
B 1.2 6� 103 0.32 0.24 0.049 0.07 0.007
C 5 3� 105 0.02 0.24 0.046 0.008 0.03

dx is the grid spacing of our measurements and E1 is the dimensionless injected power (in units of R2(2pF)3), averaged over the whole volume of the experiment, measured using torque meter. Dn
dx

� �
is

the space-time average of the viscous dissipation measured from stereoscopic particle image velocimetry system data in a region of 4�4 cm2 localized at the centre of our experiment and Ddxh i is the
dimensionless space-time average of the inertial dissipation in the same region (all in units of R2(2pF)3).
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pure water (0% glycerol), where the flow is also fully turbulent.
Table 1 lists the various parameters of the cases.

Velocity measurements and average quantities. Local velocity
measurements are performed with a stereoscopic particle image
velocimetry system (SPIV), providing the radial, axial and
azimuthal velocity components on a meridional plane of the flow
through a time series of 30,000 independent time samples. In the
sequel, we work with dimensionless quantities, using R as the unit
of length, and (2pF)� 1 as the unit of time. As shown in Kuzzay
et al.17, SPIV data are sufficient to detect events where Dc(u)
takes extreme values. Essentially, it was shown, through
mathematical considerations and application on experimental
data that SPIV is able to detect extreme events that have
components intercepting the measurement plane, and that any
such events detected via SPIV is also present when volumetric
three-dimensional data are considered17. The detection method is

based on evaluating two functions of du(c), the velocity incre-
ment over a distance c: (i) the inertial (non-viscous) energy
dissipation rate Dc(u) and (ii) the local circulation production
rate d

dt GcðuÞ (see ‘Methods’ for detailed expression). If these
events are connected to singularities in the flow, they can be
characterized by a local exponent ho1 via duBch; these two
functions should behave in the limit c-0 like DcðuÞ ¼
Oð c3h� 1Þ and d

dt GcðuÞ ¼ Oð c2h� 1Þ (see refs 11,16). Previous
studies based on multifractal analysis indicate that the most
probable exponent is close to h¼ 1/3 (ref. 13). This corresponds
to a constant bound for Dc(u) as Re-N. On the other hand, for
stronger events with ho1/3, both Dc(u) and d

dt GcðuÞ may diverge
at small scales. Formally, the spatial resolution of PIV
measurement is twice the grid spacing dx, which depends on
the cameras resolution, the field of view and the size of the
windows used for velocity reconstruction. In the sequel, we use
2 M-pixel cameras and two different zooms, to get measurements
at dx¼ 3.4 mm, for a field of view covering the whole
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Figure 1 | Coarse-grained energy dissipation and velocity circulation decay. Maps of the coarse-grained viscous energy dissipation Dn
dxðuÞ (a to c), the

coarse-grained inertial energy dissipation Ddx(u) (d–f) and the coarse-grained rate of velocity circulation decay d
dt GdxðuÞ (g–i) for the three cases described

in Table 1. Figures for case A are on the left panels (a,d,g), B on the middle panels (b,e,h) and C on the right panels (c,f,i). All the quantities have been made

dimensionless using the radius R of the cylinder and the angular velocity (2pF)� 1 of the impellers as units of length and time. We observe that the inertial

dissipation remains strong in case B and C. (g–i) A non-zero circulation rate persists down to the dissipative scale. Finally, areas of high viscous dissipation

seem correlated with the location of extreme events of inertial dissipation.
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experimental setup obtained through 32� 32 pixel windows and
dx¼ 0.24 mm for a field of view zoomed on a 4� 4 cm2 zone at
the centre of the experiment, and reconstructed with 16� 16
pixel windows. Table 1 summarizes the parameters
corresponding to the three different cases. We see that the
dissipative scale Z is resolved for case A and B, but not for case C.

Energy dissipation and circulation production rates. To study
the influence of the Reynolds number and to understand how the
dissipated power is split between normal (viscous) and the esti-
mates of inertial dissipation at various scales, we have computed
the local viscous dissipation Dn

dxðuÞ, estimates of the inertial
dissipation Ddx(u) and the circulation production rate d

dt GdxðuÞ
predicted by Eyink and Sreenivasan21, at the resolution scale of
our PIV system. Maps of these three quantities for instantaneous
sets of data are displayed in Fig. 1 for a region of size 4� 3 cm2

located at the centre of our flow. All three cases described in
Table 1 have been studied. For the three of them, we observe a
smaller noise in the estimate of Ddx(u) compared with Dn

dxðuÞ. As
argued in Kuzzay et al.17, this is due to the inherent smoothing
procedure in the expression of Dc(u).

As can be seen from Fig. 1, Ddx(u) detects clear dissipation
structures when the flow is fully turbulent and all scales down to
the Kolmogorov scale are resolved (case B). One observes that the
local inertial dissipation can be positive or negative, but on time
average remains positive as reported in Table 1. This peculiar
feature is parallel to the behaviour of entropy in non-equilibrium
systems, where the entropy production can be positive or
negative, but remains positive on time average, in accordance
with generalized fluctuation–dissipation theorems22–24. The
dissipation can also be locally very strong, sometimes over
three orders of magnitude larger than the average injected power.
The resulting distribution of dissipation intensity is strongly
non-Gaussian, with very large tails (see Fig. 2).

Comparing with instantaneous maps of d
dt GcðuÞ at the same

scale, we see that besides areas of large dissipation, there are also
areas of non-zero local rate of velocity circulation decay, which
could be the footprints of singularities providing local source of
circulation/vorticity, as conjectured by Eyink16. If we turn to the
laminar case (case A, Fig. 1a,d,g), the resolution of our
measurements over the whole flow is smaller than the relevant
scale; thus, all scales are resolved. There are no clear dissipation
structures in the map of Ddx(u), which appears to be negative
over the whole observation window and, on average, 3.5 times
smaller than the viscous dissipation. The latter is also very small
in that area, over one order of magnitude smaller than the total
energy injection. In a similar way, we observe on Fig. 1d,g that
both Ddx(u) and d

dt GdxðuÞ are very small at the centre compared
with viscous dissipation and compared with their values for the
two other (turbulent) flows. This is suggestive of the idea that the
contribution of possible inertial dissipation plays a more
important role at high Reynolds numbers, while viscous effects
decrease. For case A, if the energy balance is performed over the
whole experiment, the viscous dissipation accounts for all of the
injected power and supersedes, by two order of magnitudes, the
estimates of inertial dissipation. We also see by comparing Fig. 1b
with Fig. 1e and Fig. 1c with Fig. 1f that areas of high viscous
dissipation tend to be correlated with areas where strong inertial
dissipation are localized.

To see whether the structures on Fig. 1d–f are located in areas
of high vorticity, we may compare them with maps of vorticity
magnitude17. In our case, we have only access to the y component
of vorticity, oy ¼ @zux � @xuz at the resolution scale, whose
magnitude is displayed in Fig. 3 for the three cases described in
Table 1.

Comparing Fig. 3b with Fig. 1e we find an overall agreement
between the vorticity and dissipation map. However, we see that
some structures in the Ddx(u) field are not mirrored in the
vorticity field, and that the agreement is worse for case A and C,
showing that the link between vorticity and inertial dissipation
might be restricted only to turbulent flows, when dissipative scale
is resolved.

Extreme events in the inertial dissipation estimates. To focus
on the extreme events and to characterize them, we restrict our
analysis to very intense events that are locally responsible for very
large Ddx(u). We harvest from case B (the turbulent resolved case)
only those structures having Ddx(u) of 1,000 times higher than its
space-time average, corresponding to very rare extreme events.
Out of 30,000 images, we found only 28 events, corresponding to
probability of o1 in 50,000 (based on ratio of areas). Examples of
these events are shown in Fig. 4. By observing the local velocity
around these 28 events, we are able to classify them into
4 main types:

Fronts (Fig. 4a), where the velocity field shows two regions of
very different velocities separated by a clear boundary along
which the extreme event lies. In the frame of reference moving
with the peak of the event, the in-plane velocities typically display
a shock-like pattern. This type of structures is the result of two
blobs of fluids, initially well-separated in space and velocity, being
brought to close distance. In this sense, it is reminiscent of the
fronts found in studies of turbulent mixing of passive scalar25.
Similar patterns could also be found in weather patterns
(for example, cold fronts). Many of these events also show
velocity patterns such as in a saddle point (where fluid flows
inwards on one axis while escaping on another) as can be seen in
the periphery of Fig. 4a. In general, fronts and saddles belong to
the same causal family in the sense that two blobs of fluid are
mutually colliding and thus escape in other directions. These
events are the most frequent, representing 21 events, that is,
75% of the cases. The inertial dissipation of most of these
events (except two) increases without sign of saturation with
decreasing scale, corresponding to a local exponent ho1/3
(otherwise h¼ 1/3).

−15 −10 −5 0 5 10 15
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Figure 2 | Probability density function of the estimated inertial

dissipation. Probability density function (PDF) of the coarse-grained

inertial dissipation Ddx(u) estimated at the dissipative scale (in units of

R2(2pF)3, where R is the radius of the cylinder and F the rotation frequency

of the impellers), evaluated from measurements in case B. The distribution

is highly non-gaussian with many events at values larger than 1,000 times

the mean value.
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Spirals (Fig. 4b), where the in-plane velocity has a spiral
structure. The inertial dissipation increases without saturation,
corresponding to a local exponent ho1/3. This type of events was
found three times. All these events are converging spirals
consistent with the scenario of vortex stretching in the out-of-
plane direction.

Jets (Fig. 4c), where the in-plane velocity has a strong narrow
jet and the peak is found near the edge where there is strong
shear. Another common feature is the complex profile of the out-
of-plane velocity. These are suggestive of further breakdown
energy by instability at certain location of fronts in the flow. The
inertial dissipation increases without saturation, while showing
possible saturation in another case. This type of events was only
found two times.

Cusps with helicity (Fig. 4d), where the velocity field in the
in-plane displays a horse-shoe-like structure, whereas the out-of-
plane velocity profile is clearly distinct across the hypothesized
cusps. These are events that seem incompatible with the above
categories. They have features suggestive of the velocity field
generated by a vorticity line motion with a local cusp and axial
motion (see Supplementary Note 3). Such vorticity pattern has
been frequently observed in numerical simulation of vortex lines
reconnection26 and has even been suggested to be at the origin of
the k� 5/3 turbulent spectrum27. On the other hand, as shown by
Danchin28, the velocity field generated by a cusp-like local
vorticity patch is still regular, so that such a simple model might
not be sufficient to explain our observations. The inertial
dissipation around cusp events increases without saturation,
corresponding to a local exponent ho1/3. They represent only
two events.

Discussion
We characterize, in our experiments, the topology of extreme
events of inertial dissipation estimated at the dissipative scales of
turbulence. Our results provide a further indication of the non-
trivial structures of sub-Kolmogorov flows, complementary to
previous studies based on scaling studies of dissipative inter-
mittency, for example, see Sreenivasan29. We show that extreme
inertial dissipation events are associated with the existence of
velocity fronts, saddle points, spirals, jets and, in some cases,
suggestive of cusps. These kinds of topologies are typically
associated with special configurations of eigenvalues of the
velocity strain tensors around critical points of flow patterns. At
such points, it is often the case that lagrangian trajectories cross30,
which would make these extreme events possible locations of
shock-like singularities. In any case, the flow topology around the
extreme inertial dissipation events is different from the usual flow

topology associated with viscous dissipation. For instance, Moisy
and Jimenez31 used box counting to study the fractal structure of
regions of intense vorticity and energy dissipation in a direct
numerical simulation of isotropic turbulence. Their work suggests
that the geometry of the regions of intense dissipation resemble
sheets or ribbons. This suggests that inertial dissipation and
viscous dissipation are two different processes, at least down to
the dissipative scale.

Another interesting observation is that extreme events of
inertial dissipation provide significant local contributions to
energy balance at the Kolmogorov scale, regardless of whether the
energy lost pertaining to these events is eventually dissipated by
singularities or by viscosity at yet smaller scales. This suggests that
Kolmogorov scale is not the only characteristic scale for
dissipation. This seemingly surprising conjecture is in fact
compatible with the multi-fractal picture of turbulence,
which predicts that for a given flow singularity of exponent h,
there is a specific dissipation scale32 Zh scaling like Re� 1/(1þ h).
For h¼ 1/3, we recover the classical Kolmogorov scale Z. For the
case with ho1/3, we have ZhoZ, so that the dissipation occurs at
much smaller scale than the Kolmogorov one. Our findings are
therefore compatible with the multi-fractal picture of turbulence,
if the extreme events of inertial dissipation are the footprints of
singularities of exponent ho1/3, as suggested in Kuzzay et al.17.

Whether this interpretation is valid or not is still debatable, as
we have no means to follow the inertial dissipation down to c¼ 0,
as required by the mathematical theorem15. To unambiguously
distinguish between the possibilities of whether the energy
contained in these extreme events is eventually dissipated by
non-viscous mean or otherwise, one may need to resolve the flow
down to the kinetic limit and track their evolution in time until
they fully dissolve, which represents a experimental challenge for
future works.

Perhaps a more immediate practical question one could ask is:
knowing the significance of such extreme events even at the
dissipative scales, how could one truncate models and simulations
at tractable hydrodynamic scales with the correct physics
reflecting their properties? In compressible fluid dynamics, these
kinds of questions are usually addressed in relation with the
building of a singularity through shock formation. In these cases,
it has been common practice starting with von Neumann and
Richtmyer33, to select physically admissible solutions and ensure
the stability of numerical schemes via the introduction of an
appropriate numerical viscosity34. Our results suggest that the
same kind of procedure should also be introduced in
incompressible numerical simulations, to account for extreme
events of inertial dissipation that are not captured at the model
resolution scale.
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Methods
The choice of von Kármán swirling flow. As inertial dissipation is expected to
originate from flow singularities, we focus on a geometry where lack of smoothness
is not forbidden by mathematical theorems. This motivates our choice of an
experimental set-up providing a turbulent flow with statistical axisymmetry. This
kind of geometry has attracted interest from many works on the regularity of
INSE35–41, where it was shown that the regularity properties of the axisymmetric
Navier–Stokes equations heavily depend on the intensity of the swirl component of
the flow uf and its variation with respect to the distance from the rotation axis.
When the swirl is zero, Ladyzhenskaya35 proved that the flow is smooth at all
times. When the swirl is non-zero, the regularity can also be proven for finite time,
in a domain excluding the symmetry axis38. In our experiment, we therefore
currently concentrate our measurements on a domain including the symmetry axis
and generate turbulence in a vertical cylinder of height H and radius R filled with
water, and stirred by two coaxial, counter-rotating impellers (von Kármán flow)
providing energy and momentum flux at the upper and lower end of the cylinder.
The resulting flow is statistically axisymmetric, with a time-averaged velocity
consisting of a swirl (toroidal flow) uSðr; zÞ ¼ ufðr; zÞef and a poloidal flow
uPðr; zÞ ¼ urðr; zÞer þ uzðr; zÞez , where (r, f, z) are the cylindrical coordinates and
(er, ef, ez) the corresponding unit vectors42. The ratio us/up is controlled by the
impellers geometry. In the sequel, we focus on impellers such that us/up¼ 2.5. The
impellers are driven by two independent motors rotating at a frequency F and the
experiment is thermalized at a temperature TE20 �C.

Torque and rotational frequency measurements. Torque (global) measurements
at each impeller are performed with SCAIME technology and provide values over
the kHz range of C1 and C2, being respectively the torque applied to the bottom
and top shafts. They are calibrated using measurements at different mean
frequencies, so as to remove spurious contributions from genuine offsets or
mechanical frictions. From this, we compute the injected power necessary to
maintain our turbulent flow in a statistical stationary state as P¼ 2p(C1F1þC2F2),
where C1 and F1 are the torques and the frequencies at the two impellers,
respectively. To get a meaningful comparison between different impellers, we
further renormalize the injected power by rR5(2pF)3, where r is the fluid density,
F¼ F1¼ F2 (exact counter-rotating regime) and R is the radius of the cylinder.

Particle image velocimetry. The typical size of the particles used in the PIV
measurements is a few tens of micrometres and their density is 1.4. Two cameras
take 30,000 successive pictures of the flow at a 15-Hz framerate. The resolution of
our camera frame is 1,600� 1200 pixels and the reconstruction is done using peak
correlation performed over 50% overlapping windows of size 16 to 32. As a result,
we get measurements of velocity field on a grid of approximate size 170� 160 to
90� 68 in a vertical plane containing the axis of symmetry (Oz), in a cylindrical
system of coordinates. We performed two types of experiments: one with the
cameras set at a distance such that their field of view covers the whole meridional
plane. This set-up enables a global view of the flow and reaches a minimum grid
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Figure 4 | Types of extreme events. Four types of structures found from the extreme events (1,000 times the mean) of inertial dissipation estimates

Ddx(u) in case B, where Kolmogorov scale is resolved. (a) Front, (b) spiral, (c) jet and (d) cusp. Main figures: spatial maps of dimensionless magnitude of

Ddx(u), with arrows showing in-plane velocities around each extreme event. Common colormap shown in a. Ddx(u) is normalized by R2(2pF)3 and positions

are normalized by R. Right insets: the three-component velocity fields (uy in colours) around each event (in units of 2pRF). All right insets share the

colourmap in b. Coordinate axes are right handed. Left insets: Ddx(u), averaged over a circle (of 21 points) around the peak (non-dimensionalized by
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step of the order of 200/68E3 mm. In the second, we adapt lenses on the camera,
to focus on a five times smaller field of view, of the order of 40� 30 mm. Increasing
the number of particles in the flow and using overlapping windows of size 16� 16,
we are then able to reach a minimum grid step of the order of 40/160E0.25 mm.
The continuity between the two types of measurements can be checked by
degrading the resolution of the zoomed picture using overlapping windows of
32� 32 or 128� 128 for the velocity reconstruction. This last case corresponds
to the velocity field obtained without lenses, with a velocity field reconstructed
using windows of size 16� 16.

The total acquisition time is B10 min to 2 h, that is, one or two orders of
magnitude longer than the characteristic time of the slowest patterns of the
turbulent flow. Fast scales are statistically sampled.

The velocity fields are non-dimensionalized using a typical velocity
V0¼ 2pR(F1þ F2)/2 based on the radius of the cylinder and the rotation
frequencies of the impellers. The resulting velocity fields are windowed so as to fit
to the boundaries of the flow and remove spurious velocities measured in the
impellers and at the boundaries. We apply a local filter (based on velocities of
nearest neighbours) to remove isolated spurious vectors. Typically, B1% of the
data are changed by this processing.

Estimation of dissipation and circulation production rates. With our velocity
fields, we can compute the velocity increments duðrÞ ¼ uðx2D þ r2DÞ� uðx2DÞ,
From this, we define two scale dependent scalar functions: the local energy
dissipation rate Dc(u)15:

DcðuÞ ¼
1
4

Z
n

d3r ðrGcÞðrÞ � duðrÞ duðrÞj j2; ð4Þ

where n is a full disk and the local rate of velocity circulation decay16:

d
dt

Gc uð Þ ¼
I

C

ds �Fc uð Þ; ð5Þ

where

FcðuÞ ¼
Z

v

d3r du rð Þ�
Z

v

d3r0Gc r0ð Þdu r0ð Þ

0
@

1
A � rGc rð Þ

2
4

3
5 du rð Þ; ð6Þ

C being any contour advected by the fluid and Gc is a spherically symmetric
function of r given by17:

GcðrÞ ¼
1
N

exp ð� 1=ð1�ðr=2cÞ2ÞÞ; ð7Þ

where N is a normalization constant such that
R

d3rGcðrÞ ¼ 1.
In addition, we may also compute the local rate of viscous dissipation at the

resolution scale, given by:

Dn
dxðuÞ ¼ nSijSij; ð8Þ

where Sij ¼ @jui . In the present case, we are missing some components of the
viscous dissipation. Incompressibility condition provides S22¼ � S11� S33. We
have also used statistical axisymmetry to replace S21 by S12 and S23 by S13. We have
checked that this last hypothesis does not change the topology of the local maps of
dissipation, but changes the time-average, hopefully accounting for the missing
dissipation due to plane projection.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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