
HAL Id: cea-01490539
https://cea.hal.science/cea-01490539

Submitted on 5 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Effective SU(2) theory for the pseudogap state
X. Montiel, T. Kloss, C. Pépin

To cite this version:
X. Montiel, T. Kloss, C. Pépin. Effective SU(2) theory for the pseudogap state. Physical Re-
view B: Condensed Matter and Materials Physics (1998-2015), 2017, 95, pp.104510. �10.1103/Phys-
RevB.95.104510�. �cea-01490539�

https://cea.hal.science/cea-01490539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW B 95, 104510 (2017)

Effective SU(2) theory for the pseudogap state

X. Montiel,1,2 T. Kloss,1,3 and C. Pépin1
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This paper exposes in a detailed manner the recent findings about the SU(2) scenario for the underdoped
phase of the cuprate superconductors. The SU(2) symmetry is formulated as a rotation between the d-wave
superconducting (SC) phase and a d-wave charge order. We define the operators responsible for the SU(2)
rotations and we derive the nonlinear σ model associated with it. In this framework, we demonstrate that SU(2)
fluctuations are massless in finite portions of the Brillouin zone corresponding to the antinodal regions (0,π ) and
(π,0). We argue that the presence of SU(2) fluctuations in the antinodal region leads to the opening of Fermi arcs
around the Fermi surface and to the formation of the pseudogap. Moreover, we show that SU(2) fluctuations lead,
in turn, to the emergence of a finite momentum SC order—or pair density wave (PDW)—and more importantly
to a new kind of excitonic particle-hole pairs liquid, the resonant excitonic state (RES), which is made of patches
of preformed particle-hole pairs with multiple momenta. When the RES liquid becomes critical, we demonstrate
that electronic scattering through the critical modes leads to anomalous transport properties. This new finding can
account for the strange metal (SM) phase at finite temperature, on the right-hand side of the SC dome, shedding
light on another notoriously mysterious part of the phase diagram of the cuprates.

DOI: 10.1103/PhysRevB.95.104510

I. INTRODUCTION

When doping a Mott insulator, the system becomes a su-
perconductor at high temperature. This phenomenon remains
one of the most enduring mysteries of materials science. The
origin of the pseudogap (PG) phase [1,2], which shows a loss
of electronic density of states at finite temperatures above
the superconducting (SC) state, in the underdoped regime,
has generated some intense debate in the past thirty years,
and still remains an open issue [3–12]. The mystery of the
PG phase is maybe better seen within the angle-resolved
photoemission (ARPES) measurements, in which we observe
a continuous evolution from small hole pockets at low oxygen
doping x < 0.05, to Fermi arcs at intermediate doping (or
underdoped region) 0.08 < x < 0.19, to finally the opening
of a larger Fermi surface in the overdoped region 0.20 < x.
The notion of Fermi “arcs” instead of closed Fermi surface
of electrons has a groundbreaking character because it breaks
the Luttinger theorem relating the counting of the conduction
electrons with the “volume” of the Fermi surface [13–18].
The theories of the PG can be divided into two major lines of
thought. In the first line of thought, the emphasis is given to
the proximity to the Mott insulator at zero doping (x = 0),
and argue that the considerable strength of the Coulomb
interactions for these systems produce strong correlations
between the electrons, from the scale of 1 eV down to the
lowest energy scales [5]. Exotic states are created, the most
notoriously famous of them being the resonating valence
bond (RVB) state proposed in the early days, just after the
discovery of the YBCO [19–22]. This approach has also
lead to many numerical advances including the celebrated
dynamical mean-field theory (DMFT) [23–27], designed to
capture the proximity to the Mott transition, as well as field
theory treatment including gauge field [28–36], with U(1),
or SU(2) symmetries [5,20,21]. The second type of theories
assumes the existence of a singularity in the phase diagram,

for example, with the presence of a quantum critical point
(QCP)—also called a zero temperature phase transition, where
the quantum fluctuations dominate the thermal ones [37–49].
While the correlations between electrons are not very strong
at the UV scale, they drastically grow when the temperature
is reduced, leading to a strong coupling in the vicinity of the
QCP.

The importance of phase fluctuations for small hole
concentration when approaching the Mott transition was
outlined in a seminal study of the underdoped regime of
cuprates [50]. The main argument is simply that when the
electron density gets locked at the brink of localization, the
phase fluctuates within the phase-density duality relation.
Three types of fluctuations were identified: the quantum
phase fluctuations arising from the Heisenberg uncertainty
principle, the classical—thermal—phase fluctuations, and the
fluctuations of the amplitude of the order parameter promoted
by some extra degree of freedom. This line of approach was
explored in details in the “preformed pairs” scenario, where
Cooper pairs are forming at a temperature T > Tc, with the
phase coherence setting precisely at Tc [51–56], as well as in
scenarios involving phase separation in real space with, for
example, the formation of stripes [57–65]. It has to be noticed
that a scenario has already attributed the opening of the PG
to fluctuating charge order [49]. In this scenario, the Cooper
pairing enables the opening of the PG in the antinodal region,
allowing the formation of the Fermi arcs in the nodal part of
the Fermi surface.

Despite very intense and focused experimental search,
preformed pairs were not observed at the PG energy scale T ∗,
and phase fluctuations were found only in a window of 15 K
above Tc [66–69]. A question then naturally arises: where is the
enormous amount of classical phase fluctuations that should
be present in the underdoped regime?

In this paper, we argue that a new type of pairing fluctuations
has to be considered in the underdoped region, governed by
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an emergent SU(2) symmetry which rotates the supercon-
ducting state towards the charge sector [70–76]. Within the
SU(2) paradigm, pairing fluctuations do not only involve
the phase of the U(1) superconducting order parameter, but
also “pairing” fluctuations towards the charge sector as well
as charge phase fluctuations. For example, these operators
can rotate a pair density wave (PDW)—or finite momentum
superconducting order, into a charge density wave (CDW)
state with the same wave vector, as was recently reported [77],
but it can also rotate a standard d-wave superconducting
state into a new kind of excitonic state. Support for the
concept of an underlying SU(2) symmetry in the background
of the underdoped region comes from the recent findings of
CDW in the phase diagram of the cuprates, and subsequent
theoretical investigations over this findings [78–92]. This
started around a decade ago with a first observation of
modulations inside vortices in Bi2212 [93,94]. Subsequent
studies with Fermi surface reconstruction showed that this
feature was generic [95,96], also verified in Bi-2201 [97,98],
and that the charge patterns corresponded to two axial wave
vectors (0,Qy) and (Qx,0), incommensurate with the lattice
periodicity, and which magnitude of the wave vectors growing
with oxygen doping. Quantum oscillations in YBCO [99,100],
NMR [101–103], and [104] x-ray studies, hard [105,106] and
soft [107–110], provided a new understanding in the nature
of the charge ordering, as a reasonably long-ranged excitation
(∼20 a0, where a0 is the elementary cell parameter of the
square lattice) stabilized to a true long-range order upon a
magnetic field larger than 17 T [104,111].

May be the strongest suggestion that d-wave charge order
and SC are mysteriously related by a symmetry, comes
from the phase diagram showing the response of charge
ordering as a function of temperature and magnetic field, in
the underdoped region [99,101,104,111–113]. Similar energy
scales are observed for both orders, with a sharp (and flat)
transition at H0 = 17 T, very suggestive of a “spin-flop”-type
transition between the two states.

Bulk probe spectroscopies also hint towards the pres-
ence of a collective mode in the underdoped phase of the
cuprates. It has been argued that the A1g mode in Raman
scattering [114–119] can be associated with the presence of
SU(2) symmetry [120,121]. Likewise a theory [11,122–125]
for the PG state shall address the long standing observation by
inelastic neutron scattering (INS) of a finite energy resonance
around the AF wave vector (π,π ) in both the SC and PG states
of those compounds [126–132].

The formation of the PG state is accompanied by Q = 0
orders as observed by INS techniques [133,134] and transport
measurements [135]. These orders have been interpreted as
loop currents [133,134] or nematicity [135], which have led to
recent theoretical developments [136–143].

Typically, the constraint in the nonlinear σ model as-
sociated with SU(2) fluctuations, creates a strong coupling
between the two channels, which in turn generates phase
separation [144,145]. We succinctly describe this situation in
the second part of this paper, with the creation of patches or
droplets, of excitonic particle-hole pairs. The statistics of such
objects is analogous to the phase separation of polarons in an
electronic medium [146], and is also related to the emergence
of skyrmions in the pseudospin space, which come out of the

nonlinear σ model. The detailed link between these approaches
is deferred to a future work.

In this paper, the SU(2) symmetry emerges from short-range
AF correlations, which is a more realistic starting point for the
phase diagram of the cuprates than our previous study [72]
where the proximity to an AF QCP was assumed. Although a
few of the essential ideas developed in this paper have already
been introduced elsewhere [147] like the idea of particle-hole
“droplet,” or excitonic patches, the detailed calculations behind
these ideas have never been presented so far. The description
of the nonlinear σ model is given for the first time, directly
starting from a realistic short-range AF correlation and a
realistic electronic dispersion rather than from a more idealistic
eight-hot-spot model close to an AF QCP. It is shown that the
coupling between the nonlinear σ model and the underlying
fermions restricts the SU(2) fluctuations to the antinodal region
of the BZ, which is a crucial new feature of the theory. The
rotation of the charge ordering wave vectors from the diagonal
to the axes is explained for the first time. The symmetries of
the emerging orders, CDW and PDW, are clarified. Moreover,
the study of the strange metal, and the implications of our
proposal for the PG to anomalous transport properties in this
region of the phase diagram are given here for the first time.

The paper is organized as follows. In Sec. II, we introduce
the pseudospin operators relevant to our study, and the triplet
representation on which they apply, which rotates the d-wave
SC state to a d-wave CDW. In Sec. III, we give a mean-field
decoupling of a Hamiltonian pertaining to the solution of
cuprate superconductors, which retains mainly short-range AF
interactions. The decoupling in the charge and SC channels
gives a degeneracy (at the hot spots) between the two channels,
for a wide range of doping. It defines the temperature scale
below which on can get SU(2) fluctuations. In Sec. IV, we
start our study of the fluctuations between the two states,
introduce the effective Lagrangian with its symmetric part
and symmetry breaking part. In Sec. V, we use the SU(2)
symmetric part of the Lagrangian to perform the integration
over the fermionic degrees of freedom, leading to the standard
expression for the nonlinear σ model. In Sec. VI, we focus on
the symmetry breaking term, and show that massless SU(2)
fluctuations occur only on specific loci of the Brillouin zone,
that we call SU(2) lines. Everywhere else in the Brillouin
zone the fluctuations are heavily massive. In Sec. VII, we start
to study the effect of the SU(2) fluctuations on the charge
and SC channels. We show that SU(2) pairing fluctuations
induce a nematic response and, importantly, tilt the charge
ordering modulation wave vector from the diagonal (Q0,Q0)
to the axes (Q0,0) and (0,Q0). In Sec. VIII, we discuss the
possibility that SU(2) fluctuations lead to the emergence of
preformed excitonic (particle-hole) pairs owing many 2pF

wave vectors, whereas similar study in the SC channels leads
to the emergence of a small pair density wave contribution
with the same wave vectors (Q0,0) and (0,Q0) as in the CDW
channel. Finally, in Sec. X, we depict a global phase diagram
for the physics of the underdoped region of the cuprates using
heuristic arguments from the SU(2) theory. We also study the
strange metal regime at optimal doping and show that our
pictures provides very anomalous transport exponents, with in
particular a resistivity going like ρ ∼ T/ ln T in three spatial
dimensions.
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II. THE SU(2) SYMMETRY

The paradigm of emerging symmetry is not new [148] and
possibly one of its most famous proponents is the SO(5) theory
for cuprate superconductors [149–154] where it was proposed
that the d-wave SC state can be rotated into the AF sector.
Thermal fluctuations between the two states, described by the
nonlinear σ model were shown to become massively dominant
in the underdoped region of the phase diagram and it was
suggested that they were responsible for the formation of the
pseudogap.

The present study is based on the assumption that an
underlying SU(2) symmetry governs the phase diagram in
the underdoped region of the cuprates. In contrast to SO(5)
symmetry described above, the SU(2) symmetry we talk about
here connects the SC and CDW sectors. This concept of
pseudospin symmetry is not new and can be traced back to the
Yang and Zhang for Hubbard model at half-filling [155,156].
A set of pseudospin operators were introduced, which rotate
the d-wave SC state into a d-wave modulated charge order. The
pseudospin idea was later used in the context of the d-density
wave (DDW) [157] and nematic states [158], using as well
the SU(2) pseudospin operators in order to rotate the d-wave
SC state towards one of those two. Recently, the ubiquitous
presence of charge excitations in the underdoped region, and
the stabilization of long-range CDW in high magnetic fields
(B > 17 T) lead to the revival of the idea of emerging SU(2)
symmetry, and the pseudospin operators in this case rotate the
d-SC state towards the charge sector.

In this section, we give the mathematical definitions of
the pseudospin operators of the SU(2) symmetry and describe
explicitly the l = 1 minimal representation. We rapidly review
previous work on the eight-hot-spot model, generalization to
the more realistic model including short-range AF correlations
are given in Sec. III.

A. The “eight-hot-spot” model

The SU(2) symmetry rotating the d-wave superconductor to
the charge channel was first derived in the context of the eight
hot-spots model [70,72], where the Fermi surface is reduced
to eight points related two by two by the wave vector Q =
(π,π ) as depicted in Fig. 1. In this model, electrons interact
through critical bosonic modes following the Lagrangian
L = Lψ + Lφ :

Lψ = ψ†(∂τ + εk + λφ · σ )ψ, (1)

Lφ = φ
D−1

2
φ + g

2
φ4, (2)

where ψ is the electron field with dispersion εk around each hot
spot, coupled to the spin fluctuation field φ evolving through
the spin-wave propagator of a typical Ornstein-Zernike form:

D−1 = ω2

v2
s

+ (q − Q)2 + ma. (3)

ma is the mass which characterizes the distance to the
quantum critical point (QCP). σ is the Pauli spin in Eq. (1).
When the Fermi dispersion ξk is linearized around each
hot spot, one obtains a composite order as a precursor of

FIG. 1. Schematic representation of a hole-doped cuprate Fermi
surface in the first BZ. The “hot spots” (red points) are the point of
the FS close to the critical AFM modes and connected by the vector
Q = (π,π ). Two different ordering vectors Qa

0 and Qb
0 (green and

blue), coupling hot spots between two opposed FS in the antinodal
region are shown. The angle θk localizes the points in the first BZ.

antiferromagnetism. The composite order parameter can be
viewed as a non-Abelian superconductor

b̂ = bû, with u =
(

χ �

−�∗ χ∗

)
,

and |χ |2 + |�|2 = 1. (4)

Instead of having a U(1) phase as it is the case super-
conductors, the operator b̂ has now an SU(2) phase rotating
between the d-wave SC channel � = 1√

2

∑
k dkψk↓ψ−k↑,

with dk = 2 cos (2θk) and the d-wave Peierls channel χ =
1
2

∑
k,σ dkψ

†
k+Q0σ

ψk,σ also called quadrupolar order [72].
Within this simplified model, k is defined in a small region
around each hot spot and the definition of the charge wave
vector Q0 = (±Qa,±Qb) depends on the of the hot spot in
k space (see Fig. 1). Q0 is the a k-dependent, diagonal wave
vector, which relates, using an umklapp wave vector, the two
hot spots opposite to each other across the Fermi surface. Note
that the choice of Qa or Qb is tight to the precise each hot
spot. The precursing order b̂ thus possesses an exact SU(2)
symmetry, which relates the SC channel to the charge channel,
and importantly, it is driven by AF fluctuations which dominate
in the vicinity of the QCP.

B. Operators

In this paper, we study a generalization of the SU(2)
symmetry of the eight-hot-spot model in the case of a real
compound, with a generic dispersion not reduced to the eight
hot spots, including the curvature. The first step in this direction
is to introduce the notion of involution, implicitly present in
the k dependence of the Q0 modulation vector in Sec. II A.
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An involution is a mapping which sends k → k, such that for
each k vector, we have

k = k and (−k) = −(k). (5)

Such a mapping was already present in the definition of
the k-dependent wave vector in Sec. II A. It is important
for the generalization to the entire BZ, because it ensures
that the SU(2) algebra defined below is self-constrained,
and does not produce harmonics with each product of two
operators. Concrete examples of the involution that we use in
this study, are given in the next paragraph and are depicted in
Figs. 2(a)–2(c).

We now move to the definition of the pseudospin operators
associated with the SU(2) symmetry. The pseudospin operators
η+, η− = (η+)† and ηz are defined as

η+ =
∑

k

ψ
†
k↑ψ

†
k↓, (6a)

ηz = 1

2

∑
k

(ψ†
k↑ψk↑ + ψ

†
k↓ψk↓ − 1). (6b)

The operators in Eq. (6) form and SU(2) algebra and are
thus called pseudospin operators. They can act on various
representations, but in the present scenario for the underdoped
region, the representation chosen is a l = 1 triplet involving
two conjugated SC operators (�−1 and �1) and a d-wave
charge sector operator �0, which are defined as

�−1 = 1√
2

∑
k

dkψk↓ψ−k↑, (7a)

�0 = 1

2

∑
k,σ

dkψ
†
kσ

ψ−k,σ , (7b)

�1 = − 1√
2

∑
k

dkψ
†
k↑ψ

†
−k↓. (7c)

The form factor is given by dk = (dk + dk)/2, with dk =
2 cos (2θk), and θk the angle spanning the BZ. The standard
SU(2) relations

[η±,�m] =
√

l(l + 1) − m(m ± 1)�m±1 (8)

and [ηz,�m] = m�m (9)

are valid here.

C. The involutions

1. Definitions

For the physics of underdoped cuprates, we consider and
compare three types of involutions depicted below:

(A) k = −k + 2kF , (10)

where kF is the Fermi wave vector parallel to k. This form
connects each wave vector in the BZ with a “2kF ” partner
close to the opposite side of the Fermi surface ψk → ψ

†
k−2kF

[see Fig. 2(a)]. The pseudospin SU(2) symmetry is exactly
realized in the eight-hot-spot spin-fermion model, where the

electronic density is linearized around the hot spots [70,72]. In
this case, there are only four “2kF ” wave vectors denoted by

(B) k = −k + Q0, with Q0 = (±Qa,±Qb), (11)

which are aligned with the diagonal of the BZ. For a generic
Fermi surface, multiple 2kF wave vectors can be chosen, as
depicted in Fig. 2(a), or alternatively we can keep the four
wave vectors defined for eight-hot-spot model and generalize
their action on the whole BZ as shown in Fig. 2(b).

An important point to stress out is that the two forms of
possible involutions Eq. (10) and Eq. (11) are degenerate in
the eight-hot-spot model, since at the hot spots, the “2kF ”
wave vectors reduce to the four wave vectors of Eq. (11). In
the case of a full Fermi surface, the two generalizations give
very different physics that we will describe in the following
paragraph. Before, let us introduce a third kind of involu-
tion which corresponds to a the particle-hole transformation
ψk → ψ

†
k and for which we have

(C) k = k. (12)

Case C is presented in Fig. 2(c). This case corresponds to an
ordering vector of −2k.

2. Physical interpretation

The three kinds of involutions rotate a superconducting
doublet �−1,�1, Eqs. (7), into an alternative channel in the
charge sector �0, Eq. (7b). The forms of �0 vary explicitly,
however, in three cases:

(A) �0 = 1

2

∑
k,σ

dkψ
†
k−2kF σψk,σ , (13a)

(B) �0 = 1

2

∑
k,σ

dkψ
†
k−Q0σ

ψk,σ , (13b)

(C) �0 = 1

2

∑
k,σ

dkψ
†
−kσψk,σ . (13c)

The charge order parameters A, B, and C couple very
differently with the conduction electrons, represented in
Fig. 2 and differently than SC order parameter represented in
Fig. 3.

In the case of the “Peierls” or “2kF ” coupling, the electronic
dispersion is translated by “2kF ” around each point of the
Fermi surface, which leads to an obvious band crossing and
opening of a gap. The same is valid for (B), where the electronic
dispersion is translated by the wave vector ±Qa,b around the
zone edge, leading to band crossing and the opening of a
gap. The situation C, however, is drastically different since
without an inversion symmetry point we have ξk = ξ−k and
the transformation does not lead to the opening of a gap.

For comparison, let us mention the SC parts �−1,�1,
for which the opening of the gap is ensured by the charge
conjugation leading to a reversing of the electron energy
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′ ′ ′

FIG. 2. We represent in the first BZ of the different involution scenario: (a) k = −k + 2kF , (b) k = −k + Q0 with Q0 = (±Qa,±Qb), and
(c) k = k. We represent the bare (solid line), shifted (dashed line) and hybridized (dotted line) electronic band dispersion along the (π,0) to
(π,π ) direction in (a′) k = −k + 2kF , (b′) Q0 = (±Qa,±Qb), and (c′) k = k scenarios. As drawn in the figures (a′) and (b′), the opening of
the gap opens at the crossing of the original and shifted spectra. In (a′), the opening of the gap occurs at the Fermi surface while it is the case
at only one point for an incommensurate ordering vector. For example, in the scenario (b′), this opening occurs below the Fermi surface. In
absence of symmetry breaking, it is not able to open a gap between two identical electronic band as presented in (c′).

ξk → −ξ−k with a band crossing locked at the Fermi level.
The picture is also drastically different in real space, and the

FIG. 3. Representation of the electronic spectrum for a supercon-
ducting scenario. The superconducting state provides a hybridization
between an electronic and a hole spectrum. The gap opens at the
Fermi surface and does not depend on the curvature.

easiest way to see it is to Fourier transform the ladder operator
η+ Eq. (11) in the three cases:

(A) η+ =
∑

k

ψ
†
k↑ψ

†
−k+2kF ↓, (14a)

(B) η+ =
∑

k

ψ
†
k↑ψ

†
−k+Q0↓, (14b)

(C) η+ =
∑

k

ψ
†
k↑ψ

†
k↓. (14c)

In the three cases, (14) correspond to a finite wave
vector pairing—also called Fulde-Ferrell-Larkin-Ovshinnikov
(FFLO) pairing, at wave vectors 2kF in case A, Q0 in case
B, and 2k in case C. This leads to a rewriting of the ladder
operators as

(A) η+ =
∑

k

∑
i,j

ei2kF ·(ri+rj )/2eik̃a ·(ri−rj )ψ
†
i↑ψ

†
j↓, (15a)

(B) η+ =
∑

k

∑
i,j

eiQ0·(ri+rj )/2eik̃b ·(ri−rj )ψ
†
i↑ψ

†
j↓, (15b)

(C) η+ =
∑

k

∑
i,j

ei2k·(ri+rj )/2ψ
†
i↑ψ

†
j↓. (15c)
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FIG. 4. Charge density in the real space in the different involution
scenarios: (a) k = −k + 2kF , (b) Q0 = (±Qa,±Qb), and (c) k = k.

In case A, 2kF depends on k while k̃a = k − kF is small
close to the Fermi energy. In this case, the summation over
k leads to a localization of the center of mass of the pair
ri + rj = 0. The same holds in case C where the summation
over k does not affect the variable ri − rj . Case B, however,
is the opposite, since Q0 is a finite wave vector independent
of k, while k̃b = k − Q0/2 is k-dependent and locates the
relative position of the pair to the be small ri − rj = 0. Case B
is similar to a standard, zero momentum superconductor, for
which we would have η+ = ∑

k ψ
†
k↑ψ

†
−k↓, leading to η+ =∑

k

∑
i,j eik·(ri−rj )ψ

†
i↑ψ

†
j↓, for which the k summation located

ri − rj = 0.
Real-space pictures illustrating the three situations are given

in Fig. 4. We note the cross-structure in (a) showing the singu-
larity of the origin, which comes from the multiple wave vec-
tors, leading to a typical checkerboard structure in (b), which
corresponds to and order with the superposition of the two axial
wave vectors (0,Q0) and (Q0,0). Case (c), which never leads to
the opening of a gap, shows a very small typical length scale.

The real-space picture associated with the physics of the
objects depicted in Fig. 4(a) has been described in Ref. [147],
and will be addressed again in Secs. VIII and X. Noticeably,
the structure depicted in Fig. 4(a) has two energy scales,
one associated with the relative distance between electrons
and holes in the pair, and the other one associated to the
position and extension around the center of mass (ri + rj )/2.
The summation over the multiple 2pF wave vectors produces
a localization of the center of mass at the origin, which is
typically associated with the formation of a local object, with
a specific modulation pattern. The study of the physics of such
objects, or patches, goes beyond the scope of this paper, but it
is interesting to see that already at the level of the symmetries,
one sees a profound difference in real space between patches
of particle-hole pairs [Fig. 4(a)] and uniform checkerboard
phase [Fig. 4(b)].

The same game can be played with the charge states given
in Eqs. (13):

(A) �0 = 1

2

∑
k,σ

∑
i,j

ei2kF ·(ri+rj )/2eik̃a ·(ri−rj )dkψ
†
iσψjσ ,

(16a)

(B) �0 = 1

2

∑
k,σ

∑
i,j

eiQ0·(ri+rj )/2eik̃b ·(ri−rj )dkψ
†
iσψjσ ,

(16b)

(C) �0 = 1

2

∑
k,σ

∑
i,j

ei2k·(ri+rj )/2dkψ
†
iσ ψjσ . (16c)

Note the similarity of Eqs. (15) and (16), which lead to the
same real-space interpretations.

III. THE SU(2) ENVELOP

A. The starting model with short-range AF interactions

There are a few models which are well-known to give rise
to d-wave superconductivity. The repulsive Hubbard-model
can be mapped out onto an effective model where the super-
exchange between adjacent sites is described via the t-J
Hamiltonian where the strong Coulomb interactions are
described through a constraint of no double occupancy (see,
e.g., Ref. [5] for a review):

HtJ =
∑
i,j,σ

ψ
†
i,σ tijψj,σ + J

∑
〈i,j〉αβ

ψ
†
i �σαβψiβ · ψ

†
jα′ �σα′β ′ψjβ ′ ,

(17)

where ψ is the conduction electron field, tij is the hopping
matrix describing the band structure of the materials, which
is typically of the order of 1 eV, 〈i,j 〉 denotes the summation
over nearest neighbors typical of the AF superexchange term of
order 0.7 eV, and �σ is the Pauli matrix describing the spin. The
constraint of no double occupancy has to be imposed, in order
to give a good treatment to the vicinity to a Mott insulator,
but we neglect it for simplicity and consider that the main
effects treated here come from the AF short-range interactions
in Eq. (17). In momentum space, the Hamiltonian reads

H =
∑
kα

ξkψ
†
k,αψk,α −

∑
kk′q
σσ ′

Jqψ
†
σ,k+qψk,σ ′ψ

†
k′−qψk′,σ , (18)

where Jq = 2J cos q, with q = Q + q, and Q = (π,π ) the AF
wave vector. In contrast with Sec. II A, where the AF coupling
had been taken close to a QCP where it becomes singular,
we assume no such singularity here. The AF correlations are
typically found to be strong and short-ranged in the cuprates,
and the Hamiltonian (17) is generic enough to account for this
feature. In our previous work on the eight-hot-spot model [72],
the proximity to AF quantum criticality was assumed and
crucial for the control of the solution. Here, although we use
mean-field-like methods, the starting point is more realistic
for a general theory of the PG in cuprates.
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FIG. 5. Infinite ladder series corresponding to the gap equations
(19) for diagram (a) and (21) for diagram (b), respectively.

B. Charge and SC decoupling

We can now decouple the second term in Eq. (18) in the
charge and SC channels, which leads to two types of gap
equations. (1) In the charge channel, the Hubbard-Stratonovich
decoupling of Eq. (18) leads to the effective action

Seff
χ =

∫
k,k′,q

(
J−1

q χk,k′χk+q,k′+q + χk,k′
∑

σ

ψ
†
k+q,σ ψk′+q,σ

+χk+q,k′+q

∑
σ

ψ
†
k,σψk′,σ

)
,

where χk,k′ = 〈∑σ ψ
†
k,σ ψk′,σ 〉. Integrating the fermions out of

the partition function and then differentiating with respect to
χ leads to the gap equation, in the charge sector. Here k′−k =
Q0, where Q0 is the incommensurate charge modulation vector
[see Fig. 5(a)]:

χk,k′ = − δk′,k+Q0 �T
∑
ω,q

Jq

× χk+q,k′+q

(iε + iω − ξk+q)(iε′ + iω − ξk′+q) − χ2
k+q,k′+q

.

(19)

(2) Similar action is derived in the SC channel, with

Seff
� =

∫
k,k′,q

(
J−1

q �
†
k,k′�k + q,k′−q + �

†
k,k′

∑
σ

σψk+q,σψk′−q,−σ

+χk+q,k′−q

∑
σ

σψ
†
k,σψ

†
k′,−σ

)
, (20)

where �k,k′ = 〈∑σ σψk,σψk′,−σ 〉, and k′ = −k. We get the
standard SC gap equation (�k = �k,−k) [see Fig. 5(b)]:

�k = −T
∑
ω,q

Jq
�k+q

�2
k+q + ξ 2

k+q + (ε + ω)2
. (21)

Throughout the paper, if not stated otherwise, the calcula-
tions are made for Bi2212, with a band structure taken from
Ref. [124]. Specifically, we take

ξk = 2t1 + t2(cos kx + cos ky) + 2t3 cos kx cos ky + t4 cos 2kx

+ cos 2ky + t5(cos 2kx cos ky + cos 2ky cos kx)

+ 2t6 cos 2kx cos 2ky − μ, (22)

with (in eV) t1 = 0.196, t2 = −0.6798, t3 = 0.2368, t4 =
−0.0794, t5 = 0.0343, and t6 = 0.0011. The solution of
Eqs. (19) and (21) is given in Fig. 6 for various charge

FIG. 6. (a)–(f) Solution of the gap equations χk,k+Q0 from Eq. (19)
and (f) the superconducting order parameter �k from (21). Vanishing
solutions are color-coded in blue while nonvanishing points are
depicted in yellow. We took various modulation wave vectors Q0

with (a) the diagonal wave vector Q0 = (Q0,Q0) linking two hot
spots, (b) the axial wave vector Q0 = (Q0,0), (c) Q0 = (0,Q0), which
are observed experimentally, (d) the AF wave vector Q0 = (π,π ),
(e) the null wave vector Q0 = (0,0), and (f) the 2pF-wave vector
corresponding to the involution described in Eq. (10). The solution
of the SC gap equation is given in (g). The calculations are made
on the band structure of Bi2212 form Ref. [124] (see details in
the text for the band parameters). The calculations are made within
the approximation Jq = Jδ(q), with J = 0.35, which restricts the
q integration at the vector (π,π ). The energy units, if not stated
otherwise, are in eV.
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modulation vectors. The main point of this preliminary study,
is that all the wave vectors have an equivalent response at the
hot spot, which is also the same as the SC response. In other
words, all the orders considered above are quasidegenerate
at the hot spots. The difference between the gap solution of
various wave vectors lies in its extension in k space, which
is more pronounced for the SC, the 2pF and the diagonal
Q0 = (Q0,Q0) cases. The only modulation wave vectors
which give a nonzero answer are the ones relating two hot
spots, or surrounding the hot spots in the case of the SC and 2pF

orders. An important point is that d-wave symmetry is required
to satisfied Eqs. (19) and (21). A simple way to see this is to
notice that the gap equations relate the two antinodal zones
k → k + Q, with Q = (π,π ) the AF wave vector. Solutions
with �k = −�k+Q are thus stabilized.

The case of strong coupling is treated in Appendix A,
where we see that, as the coupling increased, the shape of
the SC and CDW changes. The SC solution is now gapping
out the entire Fermi surface whereas the CDW solutions are
confined within the antinodal regions. The development of the
SU(2) fluctuations requires the mean-field decoupling to give
sensibly equal values of the order parameters in the two sectors.
This is true at the hot spots, as seen in the next Sec. III C, but
it is not valid anymore far away from the hot spot. A simple
way to quantize this effect is to define the cutoff energy scale
below which SU(2) fluctuations are present, as the mean of the
gaps in the two sectors,

�2
SU(2) =

√
χ2�2, (23)

so that �SU(2) naturally vanishes away from the hot spots.

C. Cutoff energy scale

The starting point of our reflexion is to notice that a simple
model with short-range AF correlations, which is minimal to
describe the underdoped regime of cuprate superconductors,
has a few quasidegenerate solutions at the hot spot, including
the d-wave SC and d-wave charge orders. Our assumption,
starting from now, is that this simple model gives a good
insight, and hints that an SU(2) symmetry is present in the
phase diagram of those compounds, which relates the d-wave
SC state to the d-wave charge sector. The SU(2) symmetry is
broken at low temperature, but then fluctuations will exist
up to a temperature scale which defines the SU(2) dome.
In Fig. 7, the solutions at the hot spots of the d-wave SC
and d-wave CDW are given for various wave vectors, as a
functions of the decreasing AF coupling constant J present
in Eqs. (19) and (21). J slowly decreases from J = J0 = 1
at half-filling (p = 0, where p is the hole doping), to J  0
at larger hole doping. Assuming a scaling relation of the type
p ∼ (J0 − J )α , we get a form of the PG dome very close to the
one experimentally observed in cuprates. For a wide region of
hole doping, the SC solution at the hot spot is degenerate with
the CDW one. When J ∼ 0, the CDW solution is lost whereas
the SC solution survives. The phase diagrams of Fig. 7 mimic
the situation in the underdoped regime of the cuprates as a
function of hole doping. The region where the two solutions
are degenerate is interpreted in our framework as the SU(2)
envelope, below which SU(2) fluctuations are present. They
will be described in the next section.

FIG. 7. Comparison of the d-wave charge χk,k+Q0 solution of
Eq. (19) (dashed red) and d-wave SC �k solution of Eq. (21) (black
line) taken at the hot spot. We compare various modulation wave
vectors for χk,k+Q0 with (a) the diagonal wave vector Q0 = (Q0,Q0)
linking two hot spots, (b) the axial wave vector Q0 = (0,Q0), and
(c)Q0 = (Q0,0). The evolution of the SC and CDW gaps as a function
of J − J0 has the typical form of a dome. SC and CDW solutions
at the hot spots are completely degenerate within the range of J ,
whereas the CDW solution is lost before the SC one when J ∼ J0

(J0 = 1).

IV. SU(2) FLUCTUATIONS COUPLED TO FERMIONS

In the previous section, we have shown that short-range
AF correlations give rise to a finite number of possible d-
wave order parameters which are quasidegenerate at the hot
spots. The main ideas of this paper are the following: first, this
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quasidegeneracy is described by an emerging SU(2) symmetry,
and second, the fluctuations associated with this symmetry are
in turn lifting the degeneracy between the various modulation
vectors. This section is devoted to the study of the SU(2)
fluctuations.

In order to proceed with the study of the SU(2) fluctuations,
we must choose one of the wave vectors associated with the
charge sector. For definiteness, we start with the diagonal
wave vector Q0 = (Q0,Q0), bearing in mind that it is not
the one experimentally observed in the underdoped region.
Our starting point is to derive the SU(2) effective model which
couples to fermions. The action is comprised of three terms:

Sst = S0
ψ + Sint + S0

Q. (24)

A. Bare action S0
ψ

S0
ψ is the bare action for electrons, which is defined in SU(2)

context as

S0
ψ = −

∫
x,x ′

�xG0
−1
x,x ′�x ′ , (25)

where x = (r,τ,σ ) with σ ∈ {↑,↓} the spin and
∫
x

≡∫
dr

∫ β

0 dτ
∑

σ and the free inverse propagator is

G0
−1
x,x ′ = (

∂τ − ξ̂i∇r

)
δ(d)(r − r′)δ(τ − τ ′)δσ,σ ′ . (26)

In momentum and imaginary frequency space, the Green
functions are defined as

Gk,k′δσ,σ ′ = −〈T �σ (k)�̄σ ′(k′)〉. (27)

The field � is written in a 4 × 4 basis in momentum space
with

�k = 1√
2

(ψk,σ , ψ
†
−k−Q0,−σ , ψk+Q0,σ , ψ

†
−k,−σ ),T (28)

where ()T denotes the standard transposition, and

�k = 1√
2

(ψ†
k,σ , −ψ−k−Q0,−σ , ψ

†
k+Q0,σ

, −ψ−k,−σ ), (29)

where k ≡ (iωn,k) and the factor 1/
√

2 normalizes the spin
summation. Note that the conjugation in the particle-hole
sector (τ ) is not standard, with the “charge conjugate” defined
as � = �†τ3. Throughout the paper τα , �α with α = 1,3 stand
for the Pauli matrices in each sector. In this basis, and in
momentum space, the bare electron action becomes

S0
ψ = − 1

βN

∑
k,ω

�kG0
−1
k �k, (30)

and G−1
0 is defined as

Ĝ−1
0,k =

⎛
⎜⎝

iω − ξk
iω + ξ−k−Q0

iω − ξk+Q0

iω + ξ−k

⎞
⎟⎠
�

,

(31)

where Q0 is the diagonal wave vector connecting two hot
spots, as defined in Eq. (6a), and ξk is the electronic dispersion.
The 4 × 4 basis can be conveniently factorized as the direct
product of two subspaces τ ⊗ �, where τ is the charge

conjugation space describing the SC channel and � is the
subspace corresponding to the translation by the vector Q0. In
the case where the model is reduced to eight-hot-spot (see, e.g.,
Ref. [72]), the vector Q0 corresponds to the vector 2kF relating
the diagonal hot spots in the same AN region, and we have
the symmetry relations ξ−k = ξk and ξk+Q0 = −ξk, the latter
being valid when the dispersion is linearized around the Fermi
surface and close to the hot spots. Within this approximation,
we get

Ĝ−1
0,hs,k =

⎛
⎜⎝

iω − ξk
iω − ξk

iω + ξk
iω + ξk

⎞
⎟⎠

�

,

= iω − ξk�3. (32)

In the form of Eq. (32), the SU(2) symmetry in G−1
0,hs,k is

explicit. In all generality, it is possible to model the term
breaking the SU(2) symmetry by noticing that the condition
ξk+Q0 = −ξk is valid only close to the hot spot and when the
dispersion is linearized around the Fermi level. If this condition
is not verified, we define

ξk = (ξk − ξk+Q0 )/2, (33)

�ξk = (ξk + ξk+Q0 )/2, (34)

where ξk is the symmetric dispersion and �ξk can be
understood as a curvature term. The matrix Ĝ−1

0 in Eq. (31)
then takes the form

Ĝ−1
0,k =

(
iω − ξk − �ξkτ3 0

0 iω + ξk − �ξkτ3

)
�

, (35)

which we can rewrite Eq. (35) as

Ĝ−1
0,k = iω − ξk�3 + �ξkτ3, (36)

where G−1
0,s,k = iω − ξk�3 is SU(2)-symmetric (proportional

to τ0) and the term �ξkτ3 is the SU(2) symmetry-breaking
term (proportional to τ3). The separation between symmetric
and symmetry breaking terms in Eqs. (35) and (36) is the
crucial step, which will be useful in describing the fluctuations
in Sec. V.

B. Interacting term Sint

The interacting term can simply be taken as a two-body
interaction

S0
i = 1

4

∫
x,x ′

γx−x ′Tr[�x�x�x ′�x ′ ], (37)

where � is the two by four fields spinor defined in Eq. (27).
The form of the propagator γx−x ′ is not detailed at the moment.
Using a Hubbard-Stratonovich decoupling with respect to the
field Q̂x,x ′ , we get S0

i → Sint + S0
Q from Eq. (24) with

Sint = 1

2

∫
x,x ′

Tr[�xQ̂x,x ′�x ′ ], (38)

S0
Q = 1

4

∫
x,x ′

Tr
[
Q̂x,x ′ γ̂ −1

x−x ′Q̂x ′,x
]
, (39)
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where the Tr runs over the matrix structure and Q̂x,x ′ ∼
〈�x�x ′ 〉 is a 4 × 4 matrix, which can be decomposed (within
the direct product of spaces τ × �) as

Q̂x,x ′ =
(

q̂x,x ′

q̂
†
x,x ′

)
�

, (40)

with q̂x,x ′ = Q0
x−x ′ ûx,x ′ , ûx,x ′ =

1
N2

∑
k,k′,ω′ e−ik·reiωnτ eik′ ·r ′

e−iω′
nτ

′
ûk,k′ , and

ûk,k′ =
(

χk,k′+Q0 −σ�k,−k′

σ�
†
k+Q0,−k′−Q0

χ
†
−k−Q0,−k′

)
τ

. (41)

Mean-field effects are obtained by taking k′ = k. Indeed,
the field χ represents a particle-hole pair, suitable to describe
the charge modulations (χk,k′+Q0 ∼ 〈ψ†

k,σ ψk+Q0,σ 〉), while the
field � is the SC particle-particle pairing field describing the
formation of coherent pairs (�k,−k′ ∼ σ 〈ψk,−σ ψ−k,σ 〉). In this
limit, the matrix ûk,k′ in Eq. (41) writes

ûk =
(

χk,k+Q0 −σ�k,−k

σ�
†
k+Q0,−k−Q0

χ
†
−k−Q0,−k

)
τ

, (42)

where

�k ∼ σ 〈ψk,−σ ψ−k,σ 〉,
χk ∼ 〈ψ†

k,σ ψk+Q0,σ 〉,
�

†
k+Q0

∼ σ 〈ψk+Q0,−σ ψ−k−Q0,σ 〉,
χ
†
−k−Q0

∼ 〈ψ†
−k−Q0,−σ ψ−k,−σ 〉.

The SU(2) symmetry requires that �
†
k+Q0,−k−Q0

= �
†
k,−k and

χ
†
−k−Q0,−k = χ

†
k,k+Q0

, which is approximately verified in the
linearized regime. The SU(2) condition then implies that
û†û = 1, which in turn requires that |χ |2 + |�|2 = 1.

We now expand around the mean-field values of the
parameters in order to get the small fluctuations regime. We
first Fourier transform to get Q̂x,x ′ → Q̂k,k′ and then Wigner
transform it, which leads to

Q̂x,x ′ → M̂x−x ′,(x+x ′)/2. (43)

In the Fourier space, this writes M̂x−x ′,(x+x ′)/2 →
M̂(k+k′)/2,k−k′ . We then decompose into fast and slow variables
as M̂ ∼ 〈�k+q/2�k−q/2〉 with the fast momenta k  kF and
the slow momenta q � kF. With the change of variables as
k → k + q/2 and k′ → k − q/2, we get M̂k,q , such as

Sint = 1

2

∑
k,q,σ

Tr[�k+q/2M̂k,q�k−q/2], (44)

where ψk and ψk are given by Eqs. (28) and (29). We have
then

M̂k,q = Mk Ûk,q, with Ûk,q =
(

ûk,q

û
†
k,q

)
�

,

(45)

and ûk,q =
(

χk,q −σ�k,q

σ�
†
k+Q0,q

χ
†
−k−Q0,q

)
τ

,

where Mk is the magnitude of the order parameter while ûk,q

is the SU(2) non-Abelian phase associated to it. We have

�k,q ∼ σ 〈ψk+q/2,−σ ψ−k+q/2,σ 〉,
χk,q ∼ 〈ψ†

k+q/2,σ ψk+Q0−q/2,σ 〉,
�

†
k+Q0,q

∼ σ 〈ψk+Q0+q/2,−σ ψ−k−Q0+q/2,σ 〉,
χ
†
−k−Q0,q

∼ 〈ψ†
−k−Q0−q/2,−σ ψ−k+q/2,−σ 〉.

As mentioned above, in the linearized regime, we have
χ
†
−k−Q0

= χk and �
†
k+Q0

= −�
†
k , which ensures the SU(2)

condition that the determinant is equal to one, such that
|χ |2 + |�|2 = 1 and also implies that û

†
k,q ûk,q = 1̂. In this

regime, we have

ûk,q =
(

χk,q −σ�k,q

σ�
†
k,q χ

†
k,q

)
τ

. (46)

The decomposition of the interaction field M̂k,q into an
amplitude Mk and an SU(2) “phase” ûk,q in Eq. (45) is a
second important ingredient in the study of the fluctuations in
Sec. V. We will see there that the writing of the nonlinear σ

model relies on the separation between a field depending only
on fast variables Mk , whereas the phase will depend on slow
variables only k̂k,q ∼ ûq .

C. The quadratic term S0
Q

The quadratic term in Sst [Eqs. (24) and (39)] writes

S0
Q = 1

4

∫
x,x ′

Tr
[
Q̂x,x ′ γ̂ −1

x−x ′Q̂x ′,x
]
, (47)

where γ̂ −1 is a bare propagator whose form is not crucial
at this stage, since it is to be renormalized by the thermal
fluctuations described in Sec. V. In the case of the eight-
hot-spot model [72], or of the spin fermion model with hot
regions [73], this term corresponds to antiferromagnetic (AF)
paramagnons mediating the formation of the SC and CDW
orders, but in the minimal version of the model, which is
controlled solely by the SU(2) symmetry, it is not necessary to
mention the origin of the bare propagator.

V. NONLINEAR σ MODEL

We derive the fluctuations induced by the SU(2) structure
presented in the two preceding sections. The generic form
of the O(4) nonlinear σ model is obtained by integrating
out the fermions in Eq. (24) and extracting the SQ action,
which renormalizes Eq. (47). After formally integrating out
the fermions, we get

Seff = 1

4

∫
x,x′

γ̂ −1
x−x ′Tr

[
Q̂x,x ′Q̂x ′,x − 1

2
ln Ĝ−1

x,x ′

]
,

with Ĝ−1
x,x ′ = ∂τ − ξ̂x−x′ + Q̂x,x ′ , (48)

where the Tr operates on the matrix structure except on
the space indices and Q̂ is the SU(2) operator obtained by
the Hubbard-Stratonovich decoupling. We can now Wigner-
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transform Eq. (48), which yields

Seff = 1

4

∑
k,q,q

γ −1
q TrM̂k+q,qM̂k,q − 1

2

∑
k,q

Tr ln Ĝ−1
k,q , (49)

with Ĝ−1
k,q = Ĝ−1

0k − 1

2
M̂k,q, (50)

with the matrix M̂ defined in (45).

A. Separation of variables

The fluctuations associated with the nonlinear σ model are
obtained by separating the fast momenta k ∼ kF and the slow
momenta q � kF, as

M̂k,q = M0,k Ûq, and Ûq =
(

ûq

û
†
q

)
�

, (51)

with M0,k being the “fast varying” component, is a scale
comparable to the SU(2) dome �SU(2) of Sec. III C. The slow
varying variables are taken to act only on the SU(2) matrix Ûq .
In the following, we first assume, using the symmetric part of
the bare action in Eq. (36), that the condition of separation of
variables Eq. (51) is valid everywhere and derive the effective
nonlinear σ model in Secs. V B and V C. The validity of the
hypothesis of separation of variables relies on the physical idea
that the slow varying phases Ûq can be treated as perturbations
around a larger mean-field like field M0,k . This idea will be
tested in Sec. VI A, and we will discover that it is valid only
in a restricted parts of the Brillouin zone (BZ).

The SU(2) condition is now given by

Û †
q Ûq = 1̂, or |�q |2 + |χq |2 = 1. (52)

Thermal fluctuations then correspond to variations of δÛq ,
M0,k being kept as a constant:

δM̂k,q = M0,k δÛq . (53)

Introducing this decoupling back into Eq. (49) we note that
the first term does not contribute because of the unitarity
condition (52). We henceforth expand the free energy in the
second order in the Hubbard-Stratonovich fields. In real space,
from Eq. (38),

Z = e−St , with St = − 1
2 〈(Sint)

2〉φ, (54)

and F = −T ln Z, we get

F [u] = T 2

4

∫
x,x ′,x1,x

′
1

Tr
〈
�̄xQ̂x,x ′�x ′�x1Q̂x1,x

′
1
�x ′

1

〉
φ
,

where the Tr runs over the 4 × 4 matrix and the fields are
defined in Eqs. (25) and (27). Performing the Wick pairing of
the fields yields with the definition of the Green functions in
Eq. (27), we get

F [u] = T 2

4

∫
x,x ′,x1,x

′
1

Tr
[
Q̂x,x ′Ĝx ′,x1Q̂x1,x

′
1
Ĝx ′

1,x

]
, (55)

which after Fourier transforming, gives

F [u] = T 2

4

∑
ε,ε′

∑
k,k′,k1,k′

1

Tr
[
Q̂k,k′Ĝk′,k1Q̂k1,k

′
1
Ĝk′

1,k

]
, (56)

where the Tr runs on the spin indices, as well as on the 4 × 4
matrices, and Ĝ is given by

Ĝ−1
k,k′ = Ĝ−1

0,kδk,k′ − Q̂k,k′, (57)

with Ĝ0,k defined in Eq. (31) and Q̂k,k′ in Eq. (40).

B. Symmetric part

We start by retaining only the SU(2)-symmetric part

Ĝ0,s,k=(iεn − ξk�3)
−1

, leading to

Ĝ−1
s,k,k′ = Ĝ−1

0,s,kδk,k′ − Q̂k,k′,

= (iεn − ξk�3)δk,k′ − Q̂k,k′ . (58)

and Ĝ0,s,k given by Eq. (32). Equation (40) indicates that
Q̂ ∼ �1, such that {Q̂,�3} = 0 holds for arbitrary arguments
x and x ′ ( k and k′, respectively) of the matrix Q̂. Defining

Ĝ
−1

s,k,k′ = (−iεn − ξk�3)δk,k′ + Q̂k,k′, (59)

we find

Ĝ
−1

s Q̂ = −Q̂Ĝ−1
s , (60)

which enables us to rewrite Eq. (56) as

F [u] = −T 2

4

∑
ε,ε′,ε1,ε

′
1

∑
k,k′,k1,k′

1

Tr
[
Q̂k,k′Ĝs,k′,k1Ĝs,k′

1,k
Q̂k1,k

′
1

]
.

(61)

Using the Wigner transformation, Eq. (61) can be recast into
the form

F [u] = −T 2

4

∑
ε,ω,ε′,ω′

∫
k,q,k′,q′

Tr[M̂k,qĜs,k,qĜs,k′,q ′M̂k′,q ′ ].

(62)

Using δMk,q form Eq. (53), we get

F [δu] = − T 2

4

∑
ε,ε′

∫
k,k′

|M0,k||M0,k′ |

×
∑

ω

∫
dqTr[δÛ †

q Ĝs,k,qĜs,k′,qδÛq]. (63)

Expanding Ĝ−1
0 to the second order in ω and q and noting

that the terms depending only on the fact variables ε,k do not
contribute, we obtain

F [δu] = T 2

2

∑
ω,q

Trδû†
q[J0ω

2 + J1q
2]δûq, (64)

where the tr runs on the SU(2) structure and with

J0 =
∑
ε,k

|M0,k|2
|G−1

s |2 , J1 =
∑
ε,k

|M0,k|2v2
k

|G−1
s |2 , (65)

with vk the velocity at the Fermi level. The form (63) is
generic for the nonlinear σ model.J0 and J1 are nonvanishing
only when |M0,k| does not vanish, which restricts the SU(2)
fluctuations to be below the fluctuations dome depicted in
Fig. 7.
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C. Effective model

One can put Eq. (64) into a standard form [71] by
introducing the four fields nα , α = 1,4 such that � = n1 + in2

and χ = n3 + in4. The stands for action for the nonlinear σ

model then writes

Sσ = −ρs

T

∫
dq

[
4∑

α=1

q2n2
α − a0

2∑
α=1

n2
α + a0

4∑
α=3

n2
α

]
, (66)

with ρs = T 3 ∑
ε,k

∑
ω |M0,k|2v2

k/|G−1|2, a0 = a
disp
0 + amf

0 ,

with a
disp
0 = T 3

4ρs

∑
ε,k

∑
ω |M0,k|2(�εk)2/|G−1|2, which will

be treated in details in the next section. The constant term
coming from the integration over ω in Eq. (64) has been
neglected. A small mean-field mass term amf

0 � |M0,k| has
been introduced in Eq. (66), which can be generated, for
example, by a magnetic field (amf

0 < 0), which favors the CDW
state, or by the increase of the chemical potential, favoring the
SC (amf

0 > 0), because of the proportionality ηz to the electron
density Eq. (6b), but is not considered in this work.

VI. THE SU(2) LINE

A. Symmetry breaking term

In this section, we study the domain of validity of the
hypothesis of the factorization of the fields between fast and
slow variables Eq. (51). As noticed above in Eq. (35), it is
possible to models in a simple way the symmetry breaking
term. The term proportional to τ3 in (35) is proportional to

�ξk = 1
2

(
ξk+Q0 + ξk

)
(67)

brings a mass to the free propagator leading to

F [δu]SB = T 2

2

∑
ω,q

∑
ε,k

J3,k Tr[δû†
k,qτ3δûk,qτ3], (68)

where J3,k =1

4

|M0,k|2(�ξk)2

|G−1
s |2 . (69)

The effect of symmetry breaking is to produce a mass term
Eq. (68), which becomes large in the nodal (π,π ) region as
depicted in Fig. 8. We consider that the theory ceases to be valid
when the dispersion mass term J3,k in Eq. (69) becomes larger
than one. This corresponds physically to a situation where the
curvature effects from the Fermi surface in Eq. (67) become
stronger than the value of the dome gap �SU(2). In this case,
the hypothesis of separation of variables ceases to be valid and
the SU(2) fluctuations vanish. This can be taken into account
by replacing Eq. (53) by

δM̂k,q = Mk δÛq,

with Mk = M0,k if k ∈ C,

and Mk = 0, elsewhere. (70)

In the Eq. (70) above, C is the loci of the k points in the BZ
where the mass J3,k � 1, and thus where the theory of slowly
fluctuating SU(2) phases Ûq is valid. A self-consistency shall
be introduced, and the coefficients of the nonlinear σ model
in Eq. (65) shall be evaluated again with the fast and slow
variables decoupling of Eq. (70). Alternatively, the situation
can be viewed from the view point of the magnitude of the

FIG. 8. (a) Visualization of (�εk)2 in the positive region of the
first Brillouin zone that gives rise to SU(2) symmetry breaking mass
contribution. In the blue region, this contribution is small and vanishes
at the two black lines as well as on the hot spots. In the nodal region,
the contribution, and so the mass, is large. (b) Variation of (�εk)2

as a function of kx when we follow the Fermi surface [indicated
by the grey line in (a)]. The mass (�εk)2 vanishes at the hot spot
and is small close to the zone edge but becomes large in the nodal
region. The difference between the two upper and lower panels is
the choice of the charge-ordering vectors. For (a) and (b), the charge
ordering vector connects the two hot spots, whereas in (c) and (d),
it connects the points at the zone edge. The dispersion is modeled
in the tight-binding approximation for Bi2212, Ref. [124] (parameter
set tb2).

SU(2) gap �SU(2) ∼ M0,k over the Fermi surface. Since the
SU(2) gap requires gapping equally in the charge (CDW) and
SC d-wave channels (see Fig. 7), we see from Fig. 6 that it is
nonzero only in a rather wide region surrounding the AF hot
spots [see Eq. (23)]. Since the evaluation of the coefficients
in Eq. (65) requires summation over |M0,k|2, we see that the
contribution of the SU(2) fluctuations is naturally restricted to
the antinodal (0,π ) or (π,0) region.

We make the claim here that fluctuations associated with
the SU(2) fields are present in the theory, but act only in
restricted areas of the BZ. This produces SU(2) lines of
massless fluctuations along which the electron self-energy
diverges. This produces a line of zeros in the electron Green’s
function, in analogy with the findings of other theoretical
approaches [6,151,159], Fig. 8 shows two typical cases of
SU(2) lines. Figures 8(a) and 8(b) are concerned with a charge
wave vector lying on the diagonal of the form (Q0,Q0), while
Figs. 8(c) and 8(d) show the same lines of zeros of the Green’s
function, but for a wave vector located at the ZE. We can see
in Fig. 8(b) that the minimum of the mass is located at the
AF hot spots, while in Fig. 8(d), we see that it is at located
at the zone edge. A more detailed study for various wave
vectors, including the evolution with doping, is given in the
next section.
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FIG. 9. Evolution of the SU(2) fluctuations as a function of the hole doping. The k points, which have the SU(2) mass J3,k < 1 in Eq. (69),
are represented in brown. This criterion defines the “hot regions” for which the SU(2) fluctuations are important. Note that the “hot regions”
are centered around the hot spots and extend in the antinodal part of the BZ. We present two sets of curves: (a) for the axial wave vector
Q0 = (Q0,0), and (b) for the diagonal wave vector Q0 = (Q0,Q0). In Eq. (69), we approximate the factor |M0,k/G−1

s |2 ∼ 1/�2
SU(2), with a

phenomenological form for �SU(2) = T ∗( pc−p

pc−p0
), with T ∗ = 3 × 10−2, pc = 0.22, p0 = 0.12, and p is the hole doping. In brown are the regions

where the dispersion mass J3,k � 1 in Eq. (69). Note that in both cases, the dispersion mass has a minimum at the hot spots. The electron
dispersion is modeled in tight-binding approximation for Bi2212, Ref. [124] (parameter set tb2).

B. Evolution with doping

In Fig. 9, we present the evolution with doping of the
hot regions for two configurations of the charge modulation
wave vector. Figure 9(a) relates to the diagonal wave vector
Q0 = (Q0,Q0), while Fig. 9(b) describes the axial wave vector
Q0 = (Q0,0) observed experimentally. Note that both sets of
SU(2) fluctuations are massless at the hot spot. According to
the simple calculation presented in Fig. 7, and assuming the
relation p  J0 − J , we have modeled the PG by the following
phenomenological variation with doping

�SU(2) = T ∗
(

pc − p

pc − p0

)
, (71)

with p the hole doping, p0 = 0.12 and pc = 0.22.
The brown region corresponds to the loci of the points

where the SU(2) mass J3,k in Eq. (69) is less than one,
and hence where the SU(2) fluctuations are coupled to the
electrons. A massless line, or SU(2) line, is visible and crosses
the Fermi surface at the AF hot spots. Although the shape
of the SU(2) line does not change much with doping, its
width decreases until it gets located at the hot spots and then
disappears. This study makes very clear the fractionalization
of the Fermi surface between hot regions and cold regions.
The case for a wave vector at the zone edge (ZE) is presented
in Appendix B. We see that in that case, the mass minimum is
located at the zone edge.

VII. ROTATION OF THE CHARGE ORDERING WAVE
VECTOR AND NEMATICITY

In Sec. IV, we have decided to rotate the d-wave SC
state towards a d-wave charge channel with diagonal wave
vector Q0 = (Q0,Q0). This choice was rather arbitrary, con-
sidering that all the wave vectors considered in Sec. III are
quasidegenerate. We chose the diagonal wave vector simply
for historical reasons, that the eight-hot-spot spin fermion
model considered in our previous work possesses an exact
SU(2) symmetry involving charge order with diagonal wave
vectors [70,72]. In this section, we explore the effects of the
SU(2) pairing fluctuations on the modulations wave vector in
the charge sector. We show that the main surprising effect
of these fluctuations is to lift the degeneracy between the
various modulation vectors, with the uniform Q0 = 0 and axial
wave vectors Q0 = (Q0,0) and Q0 = (0,Q0) becoming the
leading ones. This leads to the emergence of d-wave axial
charge modulations associated with a d-wave Pomeranchuk
instability, or nematic order.

A. Bare polarization

We start with a simple study of the bare polarization plotted
in Fig. 10(a) with the band structure of Bi2212:

�a
bare(p,0) = −T

∑
k

GkGk+p, (72)

with k = (k,ε) and G−1
k = iεn − ξk. Here we notice the

well-known features corresponding to a maximum along the
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FIG. 10. Real part of the bare polarization bubble in the static
limit. The electron dispersion corresponds to the usual one of
Bi2212, Ref. [124]. In (a), we have depicted the bare polarization
bubble, showing a maximum at the diagonal wave vector (Q0,Q0),
as well as some features around (π,π ). In (b), we show the same
polarization, but restricted to the domain of validity of the SU(2)
fluctuations, shown in (c). Remarkably, we observe that the intensity
gets displaced, with the emergence of a peak at Q = (0,0), and also the
predominance of the axial wave vectors (0,Q0), and (Q0,0), compared
to the diagonal one.

diagonal, at the wave vector (Q0,Q0), as well as some structure
lying close to the (π,π ) region. Nothing particular is visible
on the axes, apart from the line corresponding to the 2pF wave
vectors, but overall, the value of the polarization on the axes
is less important than on the diagonal. In Fig. 10(b), we give
the same study of the bare polarization, but with a width of
integration in k space restricted to the SU(2) hot regions [insert
in Fig. 10(c)]:

�b
bare(p,0) = −T

∑
k

M0,kM0,k+pGkGk+p. (73)

The result is drastically different from the bare polarization,
with the emergence of a structure at Q = (0,0), accompanied
by a drastic increase of the pics along the axes, which precisely
correspond to the wave vectors observed experimentally
(0,Q0) and (Q0,0). This effect of the SU(2) regions on the pair-
ing fluctuations is the generic feature that we describe in this
section. It shows that, even if we start with a diagonal modula-
tion vector, at rather high energy, upon the effect of the SU(2)
pairing fluctuations the wave vector is tilting along the axes.

B. Vertex corrections

We provide the study of the SU(2) pairing fluctuations in
Figs. 11 and 12,

�v(p,0) = −T
∑
k,q

πs
k,k+p,qGkGk+pG−k−qG−k−p−q, (74)

with the four variables k = (k,ε), q = (q,ω), G−1
k = iεn − ξk,

and G−1
−k = −iεn − ξ−k. The form of the SU(2) pairing prop-

agator 〈�†
k,q�k′,q ′ 〉 = πs

k,k′,qδq,q′ has been defined in Sec. IV,
Eqs. (64), (68), and (66):

πs
k,k′,q = M0,kM0,k′

π0

J0ω2
n + J1(v · q)2 − a0

. (75)

The presence of the vertex factors M0,k and M0,k′ in Eq. (75)
restrict the summation over k to the antinodal region of the
Brillouin zone. We observe that the same physical effects as
the ones present in Fig. 10(b) are present in Fig. 11(a). The
shape of the SU(2) hot regions does not really affect the two
main observable effects, as we show in Appendix C as long as
the hot regions are centered around the host spots. We observe
the emergence of a peak at zero wave vector as well as the
predominance of the response along the axes over the response
on the diagonal. As we show in Fig. 26, the inclusion of
Aslamazov-Larkin diagrams does not change the conclusion.

In Fig. 12(a), the same study is performed for hot regions
centered at the zone edge. In this case, the effect is even more
pronounced, with nothing left on the diagonal but a range of
wave vectors that dominate around (0,Q0), and (Q0,0), with a
line still visible at the wave vectors 2pF.

C. Implications for the phase diagram of the cuprates

When comparing the bare polarization Fig. 10(a) with the
effects of the SU(2) paring in Figs. 11 and 12, two main effects
are noticeable. First, we observe a shift of the spectral weight
from the diagonal to the axes, with the formation of CDW
instabilities around the experimentally observed wave vectors
(0,Q0) and (Q0,0) and second, we see the emergence of a peak
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FIG. 11. (a) Real part of the polarization bubble, with one vertex
correction, in the static limit. The electron dispersion corresponds to
the usual one of Bi2212, Ref. [124]. The charge response is depicted
in the case where the fluctuations are centered at the hot spots as
shown in (b). In this case, the peak along the diagonal remains but
with a lower intensity than the response along (0,Q0) and (Q0,0).

at Q = (0,0). The effect of the SU(2) pairing fluctuations is
thus twofold, with the peak at Q = (0,0) hinting at the presence
of a nematic precursor around the temperature T ∗ [160,161],
while the peaks at finite wave vectors along the axes correspond
to the CDW modulations observed experimentally.

A comment with respect to the center of mass symmetry
is in order. The SU(2) fluctuations considered here do not
favor any specific symmetry, whether it is s (or s ′), or d

wave. Since those fluctuations connect gap equations around
q = 0, the gaps are stabilized around one k point in the
Brillouin zone instead of coupling two antinodal regions as
it is the case for the AF coupling. The d-wave symmetry
of the Q = (0,0) and (0,Q0) and (Q0,0) orders comes from
the original AF correlations describes in Sec. III. The SU(2)
fluctuations are lifting the degeneracy whereas the d-wave
character of the charge instabilities remain. This has the
important consequence that axial orders are systematically
accompanied with a Pomeranchuck or nematic instability
within our model.

In Appendix D, we argue that there is no vertex/self-energy
cancellation in the case of a wavy fluctuations line in the

FIG. 12. Real part of the polarization bubble, with one vertex
correction, in the static limit. The electron dispersion corresponds to
the usual one of Bi2212, Ref. [124]. The charge response is depicted
in the case where the fluctuations are centered at the zone edge, with
a rather small extension. In this case, the peak along the diagonal is
completely lost, while only the response along (0,Q0) and (Q0,0) is
retained.

Cooper channel, which leads us to consider the Q = 0 peak as
a real effect which accompanies the CDW modulations at finite
wave vectors. In Fig. 12, when the SU(2) original wave vector
has rotated around the zone edge, we observe a dispersion
line around 2pF, with a finite range of quasidegenerate wave
vectors, and no well-defined peak at a preferential one. We
argue in the next section, Sec. VIII, that this corresponds to
the formation of excitonic pairs, which can take many wave
vectors around 2pF in the antinodal region around the zone
edge. These excitonic pairs are instrumental in the formation
of the pseudogap as they will proliferate with temperature,
leading to a gapping out of the antinodal region at T ∗.

An important point, is that the nonlinear σ model provides
a strong constraint between the charge and SC channels.
This in turn gives strong mode-mode coupling. The ther-
modynamics of such a model typically produces some phase
separation [144,145,162,163], which leads to the creation of
patches of charge modulations. Whether the particle hole pairs
have many wave vectors 2pF or condense only to one or two
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wave vectors (0,Q0) and (Q0,0), depends on the degree of
fluctuations in the system. A lot of SU(2) fluctuations produce
the emergence of excitonic patches with multiple wave vectors,
whereas when the fluctuations are frozen, the bosons condense
to one wave vector. The detailed statistical study of the phase
separation is left for for later work, while we give in the next
section, Sec. VIII a derivation of the formation of patches of
excitonic pairs with multiple wave vectors 2pF.

VIII. PREFORMED PARTICLE-HOLE PAIRS

Nonlinear σ models are the theoretical tools for describing
fluctuations from a non-Abelian group. As we saw in the
previous section, Sec. VI, on the case of the SU(2) pseudospin
symmetry, the corresponding nonlinear σ model is O(4). Three
phases describe the fluctuations : the SC phase, the CDW
phase and the phase rotating between the two modes. The goal
of this section is to focus on the emergence of local modes
coming from the nonlinear coupling between the two modes.
These local singularities have been described as “skyrmions”
or static topological defects of the theory in the past. We defer
a thorough study of these for future work and focus here on a
more pedestrian approach leading to similar local droplets- or
patches of particle-hole pairs.

A. Particle-hole pairing formation

In this section, we study the possibility of the formation of
particle hole pairs, or excitons, with strong binding energy. We
will show that the excitons are bosons with a quasidegenerate
line of finite momenta around 2pF in the antinodal region.
We proceed as for the study of Cooper pairing and show
that a logarithm is present in the solution of the Schrödinger
equations, which is cutoff only by the curvature of the Fermi
surface. Hence, for flat enough regions of the electronic
dispersion, the excitonic pairing can occur.

1. Wave function

The wave function for the particle-hole pair writes

ψCh
r,r′ =

∑
k̃,P

e−iP·( r+r′
2 )eik̃·(r−r ′)χk̃,P, (76)

with k̃ = −k + P, P = {2kF } scans the wave vectors rep-
resented in Fig. 2(a). In order to discuss the most generic
solution, we first set χk̃,P = cte. The summation over P
in Eq. (76) has an important consequence to localize the
center of mass of the excitonic pair at the point zero (with
this representation). The structure in k then gives the finite
extension for the local patch as well as some possible intrinsic
pattern. Note that the wave function for a Cooper pair
� ∼ σ 〈ψk,σψ−k,σ 〉 with modulation vector P takes a very
similar form:

ψSC
r,r ′ =

∑
k

e−iP·( r+r′
2 )eik·(r−r ′)�0. (77)

2. The Schrödinger equation

We focus now on the particle-hole instability in manner
of Cooper pairing. We start from the Fermi liquid and look
whether a particle-hole pair of the form given by Eq. (76) can

destabilize the ground state. The equation of motion for ψr,r′

writes [
− h̄2

2m

(
∂2

r − ∂2
r′
) + V

(
r,r′)]ψr,r′ = Eψr,r′ . (78)

We study the potential term by taking the average over space
〈〉r.r′ of Eq. (78), which is equivalent to taking the (k,k′) = 0
component in momentum space:

〈Vr,r′ψr,r′ 〉 =
∑

k,k′,k1,k′
1

Vk,k′ψk1,k′
1

∑
r,r′

ei(k+k1)·re−i(k′+k′
1)·r′

=
∑
k,k′

Vk,k′ψk,k′ . (79)

Within the change of variables k → k̃ − P/2; k′ → k̃′ + P/2,

and P = 2kF , we get the following equations:(
E − h̄2

m
kF · k̃

)
χk̃,p = C,

(80)
C =

∑
k̃

Vk̃,k̃′χk̃,P,

where Vk̃,k̃′ = ∫
r V (r)ei(k̃−k̃′)·r is an attractive potential coming

from the pairing fluctuations. With ωF the width of the
fluctuation spectrum, we model

V̄ = − V

L2
, if 0 < k̃,k̃′ <

ωF

ρ0
,

= 0 elsewhere. (81)

Herein, ρ0 is the electronic density of states at the Fermi level.
Equation (10) can then easily be solved, leading to the bonding
energy

E = −2h̄ωF e−2/(ρ0V ). (82)

The formation of particle-hole pairs at multiple 2kF wave
vectors is a logarithmic instability of the Fermi liquid in
the presence of an attractive potential. In the standard BCS
theory, the coupling between density and phase fluctuations
is weak. In some specific cases, however, like the attractive
Hubbard model, density and phase couple strongly and our
model likewise predicts the emergence of s-wave excitonic
patches. Within the SU(2) scenario for cuprates, the typical
scale associated with the pairing fluctuations is strong, of order
of the formation of the SU(2) dome, and can naturally be
associated with the PG scale T ∗.

B. Integrating the SU(2) fluctuations

In order to derive the effective action for the subleading
orders, we integrate out the SU(2) fluctuations, averaging now
over the effective modes Q̂:

Zfin = e−Sfin , with Sfin = − 1
2 〈(Sint)

2〉Q. (83)

From Eq. (38), we have

Sfin = −1

8
Tr

∫
x,x ′,x1,x

′
1

〈
�xQ̂x,x ′�x ′�x1Q̂x1,x

′
1
�x ′

1

〉
Q
, (84)
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where Q̂ and Q̂ are defined in Eqs. (40) and (41). Using the
more practical Wigner- transform defined in Eq. (51), we get

Sfin = −1

8
Tr

∑
k,q,k′,q ′

〈�k+qM̂k,q�k�k′+q ′M̂k′,q ′�k′ 〉Q. (85)

Disentangling Eq. (85) is quite lengthy but the result
produces a sum of an effective component in the SC
channel (86) and another one in the charge channel (87)
Sfin = Sa

fin + Sb
fin, with

Sa
fin = − 1

2
Tr

∑
k,q,k′,q ′,σ,σ ′

σσ ′〈�†
k,q�k′,q ′ 〉Q

× ψ
†
k+q/2,σ ψ

†
−k+q/2,−σ ψ−k′+q ′/2,−σ ′ψk′+q ′/2,σ ′ , (86)

Sb
fin = − 1

2
Tr

∑
k,q,k′,q ′,σ,σ ′

〈χ †
k,qχk′,q ′ 〉Q

× ψ
†
k+q/2,σ ψk+Q0−q/2,σ ψ

†
k′+Q0−q ′/2,σ ′ψk′+q ′/2,σ ′ . (87)

Note that since the bosonic propagator Eq. (63) conserves
the number of particles, there is no mixed term in the above
equations. The forms of 〈�†

k,q�k′,q ′ 〉
Q

and 〈χ †
k,qχk′,q ′ 〉

Q
are

identical, up to a mass term, and are given by the nonlinear σ

model, Eqs. (64) and (68),

〈�†
k,q�k′,q ′ 〉Q = πs

k,k′,qδq,q′ , (88)

〈χ †
k,qχk′,q ′ 〉Q = πc

k,k′,qδq,q′ , (89)

where the form of the SU(2) propagator has been defined in
Sec. IV, Eqs. (64), (68), and (66):

πc
k,k′,q = M0,kM0,k′

π0

J0ω2
n + J1(v · q)2 + a0

, (90)

πs
k,k′,q = M0,kM0,k′

π0

J0ω2
n + J1(v · q)2 − a0

, (91)

where a0 is the mass term from Eq. (66),

C. Excitonic patches

One can now perform a second Hubbard-Stratonovich
transformation in order to decouple Sa

fin[ψ] in Eq. (86) in the
charge channel, to get Sa

fin[ψ] = Sa
0 [χ ] + Sa

1 [ψ,χ ], with

Sa
0 [χ ] = −

∑
kk′q,σ

π
S−1
k,k′,qχ−σ,q−k,q−k′χσ,k,k′ , (92)

Sa
1 [ψ,χ ] =

∑
kk′,σ

[χ−σ,−k+q,−k′+qψ
†
k,σψk′,σ

+ χσ,k,k′ψ
†
−k+q,−σψ−k′+q,−σ ]. (93)

A stationarity of the free energy leads to

χσ,k,k′ =
∑

q

πs
k,k′,q〈ψ†

−k+q,σψ−k′+q,σ 〉. (94)

We will drop in the following the spin label of the χk,k′ field,
since both spin configurations are degenerate. Together with

FIG. 13. Infinite ladder series corresponding to the gap equations
(101).

the bare fermionic action (25) one obtains the effective action

Sa
0 [ψ] + Sa

1 [ψ,χ ] = −
∑
kk′σ

ψ̃kĜ
−1
k,k′ψ̃k′ (95)

with the two-component fermionic field

ψ̃k = (ψk,−σ ,ψk′,σ )T (96)

and the inverse propagator

Ĝ−1
k,k′ =

(
(iεn − ξk) −χ−σ,k,k′

−χσ,k,k′ (iεn + ξk′)

)
. (97)

D. Gap equation for the charge order

The gap equation to study the charge ordering of our system
stems directly from the Dyson equation for the fermionic
propagator:

Ĝ−1
k,k′ = Ĝ−1

0 − �̂k,k′, (98a)

with Ĝ−1
0 =

(
iεn − ξk

iεn − ξk′

)
, (98b)

and �̂k,k′ =
(

χk,k′

χk,k′

)
. (98c)

Ĝk,k′ = −〈T ψ̃kψ̃k′ 〉, (99)

is obtained by inverting Eq. (97) and one finds

[Ĝk,k′]12 = −〈ψ†
k,−σψk′,−σ 〉

= − χk,k′

(iεn − ξk)(iε′
n − ξk′) − χ2

k,k′
, (100)

which finally yields (see Fig. 13):

χk,k′ =
∑

q

πs
k,k′,q[Ĝq−k,q−k′ ]12. (101)

The maximum solution comes from the denominator in
Eq. (100), and especially from the (k,k′) point close to the
Fermi surface. In order to keep the solution tractable without
loosing some physical effects, we neglect the frequency
dependence of χ . We can then easily compute the Matsubara
sum at T = 0. We find

χk,k′ = π̄0

∑
q

I (k,k′,q) (102)
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with

I (k,k′,q) = χq−k,q−k′

2

[
(|ω1| + |ω2| + r)sgn(ω1ω2) − r

r(|ω1| + |ω2|)(|ω1| + r)(|ω2| + r)

]
(103)

and

r =
√

J̄1ξ 2
q + ā0, (104a)

ω1/2 = (ξq−k + ξq−k′)/2 ±
√

(ξq−k − ξq−k′)2/4 + χ2
q−k,q−k′ ,

(104b)

where π̄0 = π0/J0, J̄1 = J1/J0, and ā0 = a0/J0.

1. Dependence of the solution on the exciton wave vectors

In a first study, we want to find all wave vectors (k,k′),
which give the maximum response. For this task, we solve
Eq. (102) for the charge ordering parameter χ numerically
for arbitrary coupling vector P = k′ − k. We further make the
approximation χq−k,q−k′ ≈ χ−k,−k′ on the right hand side of
Eq. (102). Fixing then a reference point k in the first BZ,
we solve the mean-field equation upon varying the coupling
vector P = k′ − k and look for the points k′ where the solution
is maximal. As already suspected from Eq. (102), nonzero
solutions are obtained only when both points k and k′ are
situated close to the FS. The numerical solution in Fig. 14
shows that for all couplings {P} connecting two points of the
Fermi surface, the height of nonzero χ is very similar.

2. Solution for k′ − k = 2pF

In Fig. 15, we present the solution of the gap equations
for a range of wave vectors connecting points around the
Fermi surface in the antinodal region. Hence we called these
wave vectors 2pF. We observe that, as the coupling strength is
increased, the 2pF wave vectors are able to gap out the entire
antinodal region in the BZ. The main idea here is that the
SU(2) pairing fluctuations not only rotate the original charge
modulation wave vector from the diagonal to the axes, but
gives space for a range of wave vectors to participate to the
electron-hole pairing. As shown in Sec. VIII A, the set of 2pF

leads to a logarithm in the direction perpendicular to the Fermi
surface, and hence leads to the formation of preformed pairs.
Each 2pF wave vector shares only a small portion of the phase
space in momentum k, around the Fermi surface, therefore
the logarithmic divergence is finally cut by curvature in the
direction transverse to the corresponding Fermi wave vector.

A remark about the symmetry of the charge modulations
in the patch are in order here. The 2pF order comes from
πs

q in Eq. (101) and thus connect the ordering parameters
χk,k′ around the same points in the Brillouin zone. The
solution of the gap equation (101) alone cannot distinguish
between d-wave and s or s ′ order. However, as before, we
have seen in Sec. III, that d-wave 2pF order already emerges
from short-range AF correlations. The SU(2) fluctuations have
thus to be seen as an additional force action on top of AF
correlations, which altogether leads to the stabilization of the
d-wave symmetry for the 2pF droplets. Hence the effect of the

FIG. 14. Density plots of the charge order parameter |χk,k′ |
obtained from a numerical solution of Eq. (102) as a function of
the coupling vector P = k′ − k. Red, white, and blue represents,
respectively, high, intermediate, and low values of χ . The white dotted
line represents the Fermi surface. We have fixed the k point in (a) the
point (π,0), (b) the point on the Fermi surface at the zone edge, and
(c) a point shifted a little from the Fermi surface (see the yellow
point). The interaction is π̄0 = 0.3 and the mass ā0 = 5. The form of
the solution only depends on the k point.

SU(2) fluctuations will be to select the involution A [Eq. (10)]
as the preferential SU(2) partner of d-wave SC.

The spreading of the wave vectors is typical of the formation
of patches in real space, that we have described in a previous
paper [164]. The patches have an internal modulation structure
very close to the checkerboard observed experimentally. They
can be frozen, or fluctuate at a temperature closer to the PG.
The detailed study of this intricate dynamics goes beyond the
scope of this paper. It relies on the existence of the constraint
in the nonlinear σ model, which creates strong effective
correlations between the charge and SC modes, and finally
a type of mode-mode coupling in the charge sector. This in
turn typically leads to phase separation, and entropic effects.
In Sec. X A, we give a heuristic picture of the phase diagram
in this approach.

3. Solution for k′ = −k

For this type of involution, we do not find any formation
of a gap. It is not surprising, since it does not imply any
band crossing of the electronic dispersion, as already noticed
in Fig. 2(c′). Indeed, the involution that is sending k → −k
leaves the electronic dispersion ξk invariant.

The parameters in Fig. 16 are π̄0 = 0.3, J̄1 = 10−6, ā0 = 5
in units of the band gap and we take a constant mass ā0 over
the BZ. The dispersion is approximated by a tight-binding
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FIG. 15. Density plots of the charge order parameter |χk,k′ |
obtained from a numerical solution of Eq. (102) in the first BZ
for the coupling vector P = −2k for different interaction strength
(a) π̄0 = 0.01, (b) 0.03, (c) 0.3 and the mass ā0 = 5. Red, white,
and blue represents high, intermediate, and low values of |χk,k′ |,
respectively. The white dotted line represents the Fermi surface. The
magnitude as well as the size of the gap increases with the strength
of the interaction.

dispersion ξk with parameter set “tb2” from Ref. [124] and the
chemical potential adjusted to account for 10% hole doping.
In fact, the shape of the numerical solution of χ turns out to
be not very sensitive to the model parameters J̄1 and ā0.

IX. PAIR DENSITY WAVE (PDW)

In this section, we look at the potential generation of other
types of order, and in particular, of the pair density wave
(PDW) order from the SU(2) fluctuations.

A. Gap equation

The decoupling of Sb
int in Eq. (87) follows the same

steps as for Eq. (86) performing the Hubbard-Stratonovich
transformation, we get Sb

fin[ψ] = Sb
0 [χ ] + Sb

1 [ψ,χ ], with

Sb
0 [χ ] = −

∑
kk′q,σ

π
c−1
k,k′,q�

a†
−σ,k,k′+Q0

�b
σ,k+Q0+q,k′+q, (105)

Sb
1 [ψ,χ ] =

∑
kk′,σ

[
�

a†
−σ,k,k′+Q0

σψk+Q0+q,−σ ψk′+q,σ

+ σψ
†
k,−σ ψ

†
k′+Q0,−σ �b

σ,k+Q0+q,k′+q

]
. (106)

Herein, �a
−σ,k,k′+Q0

is the modulated superconducting field
whose condensation leads to the PDW state. We follow closely

FIG. 16. Density plots of the charge order parameter |χk,k′ |
obtained from a numerical solution of Eq. (102) in the first BZ for
the coupling vector P = −2k for different interaction strength (a)
π̄0 = 0.03, (b) 0.3, (c) 3 and the mass ā0 = 5. Red, white, and blue
represents high, intermediate, and low values of |χk,k′ |, respectively.
The white dotted line represents the Fermi surface. The magnitude of
the peak increases with the interaction contrary to the size of the gap.

the last section (Sec. VIII C) to derive the corresponding
equations for the PDW channel.

Again, the stationarity of the free energy leads to

�a
σ,k,k′+Q0

=
∑

q

πc
k,k′,q〈σψk+q,−σ ψk′+Q0+q,σ 〉. (107)

As developed in the previous section, we obtain the effective
action

Sb
0 [ψ] + Sb

1 [ψ,χ ] = −
∑
kk′σ

ψ̃kσ Ĝ−1
k,k′ψ̃k′,σ (108)

with the four-component fermionic field

�̃k,σ = (ψk,−σ , ψ
†
k′+Q0,σ

, ψk′,−σ , ψ
†
k+Q0,σ

)T , (109)

and the conjugation

�̃ = (ψ†
k,−σ , − ψk′+Q0,σ , ψ

†
k′,−σ , − ψk+Q0,σ ), (110)

and the inverse propagator now writes

Ĝ−1
k,k′ =

(
Ĝb,−1

Ĝa,−1

)
,

(111)

Ĝa,−1 =
(

(iεn − ξk) −σ�a
σ,k,k′+Q0

σ�
a†
σ,k,k′+Q0

(−iεn − ξk′+Q0 )

)
,
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FIG. 17. Infinite ladder series corresponding to the gap equa-
tions (116) and (117).

and

Ĝb,−1 =
(

(iεn − ξk′) σ�b
σ,k+Q0,k′

−σ�
b†
σ,k+Q0,k′ (−iεn + ξk+Q0 )

)
. (112)

The gap equation to study the charge ordering in our system
stems directly from the Dyson equation for the fermionic
propagators:

Ĝa,−1 = Ĝ−1
0,a − �̂a, (113a)

with Ĝ−1
0,a =

(
iεn − ξk

−iεn − ξk′+Q0

)
, (113b)

and �̂a =
(

σ�a
−σ,k,k′+Q0

−σ�
a†
σ,k,k′+Q0

)
, (113c)

and

Ĝb,−1 = Ĝ−1
0,b − �̂b, (113d)

with Ĝ−1
0,b =

(
iεn − ξk+Q0

−iεn − ξk′

)
, (113e)

and �̂b =
( −σ�b

−σ,k+Q0,k′

σ�
b†
σ,k+Q0,k′

)
. (113f)

Ĝk,k′ = −〈T �̃k�̃k′ 〉, (114)

is obtained by inverting Eq. (111) and one finds[
Ĝb

k,k′
]

12 = −σ 〈ψk+Qo,−σ ψk′,−σ 〉

= − �b
−σ,k+Q0,k′

(iεn − ξk+Q0 )(−iε′
n − ξk′) + ∣∣�b

−σ,k+Q0,k′
∣∣2 ,

(115)

and the modulated superconducting field �a
−σ,k,k′+Q0

finally
yields (see Fig. 17):

�a
−σ,k,k′+Q0

= −
∑

q

πc
k,k′,q

[
Ĝb

k+q,k′+q

]
12. (116)

The same derivation goes for the field �b
σ,k,k′+Q0

, leading to

�b
σ,k+Q0,k′ = −

∑
q

πc
k,k′,q

[
Ĝa

k+q,k′+q

]
12, (117)

with[
Ĝa

k,k′
]

12 = −σ 〈ψk,σψk′+Q0,σ 〉

= − �a
σ,k,k′+Q0

(iεn − ξk)
(−iε′

n − ξk′+Q0

) + ∣∣�a
σ,k,k′+Q0

∣∣2 .

(118)

FIG. 18. Density plot of the solution of Eqs. (116) and (117),
searching for a finite center of mass pairing around the resulting wave
vectors (a) (Q0,0), (b) (0,Q0), and (c) (Q0,Q0). Vanishing solutions
are color-coded in blue, while nonvanishing points are depicted in
yellow. We obtain a finite response in the antinodal region. We are
not able to distinguish here between wave vectors along the axes and
on the diagonal, but on the other hand our result give wave vectors
starting with the first frequency Q0 and not from the second harmonics
2Q0 [87].

B. Numerical solution

The solution of Eqs. (115) and (116) is given in Fig. 18. We
observe the formation of a PDW order, or superconducting
order with finite resulting momentum. The wave vector
obtained from the SU(2) fluctuations directly depends on
our starting point wave vector for the charge channel. When
we start with a diagonal wave vector Q0, which led to the
effective actions Eqs. (68), (64), and (66), this in turn led to
a diagonal wave vector for the PDW instability as seen in
Fig. 18(c). However, starting with the two axial wave vectors
Qx and Qy (with Qx ∼ 0.3π/a and Qy ∼ 0.3π/a) forming
the checkerboard structure observed in experiments, we obtain
the formation of a similar PDW instability, but with axial wave
vectors, respectively, Qy and Qx , as depicted in Figs. 18(a) and
18(b).

An important point concerns the symmetry of the PDW
order generated this way. As was commented previously,
since the SU(2) propagator πc

q is centered around q = 0 in
Eq. (117) the SU(2) fluctuations alone do not select any
specific symmetry, whether it is s ′ or d wave. Contrarily to
the previous modulations, which were already generated by
the AF correlations described in Sec. III, here the PDW order
parameter is directly emerging from the SU(2) fluctuations.
Hence the symmetry could be either s ′ or d wave at this stage
of the theory. It is possible that the experimental context,
like the presence of strong disorder finally selects the s ′
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symmetry, as recently seen in experiments [77]. Another
important point in our study, is modulation wave vector
associated with the PDW order is precisely the wave vector of
the CDW observed experimentally, and not its second, or
higher harmonics. This is in agreement with the findings of
the key STM experiment, showing the presence of a very
small PDW order with the same wave vector as the charge
order [77]. The generation of PDW starting from a CDW
instability has been described in detailed in a recent work,
using a Ginzburg-Landau formalism [87]. Here we give an
alternative way to generate the PDW instability, starting from
a formalism which involves the SU(2) fluctuations. Note that
the form of the SU(2) fluctuations obtained in Eqs. (68), (64),
and (66) remains unchanged, when the starting wave vector is
varied.

X. GLOBAL PHASE DIAGRAM FOR CUPRATE
SUPERCONDUCTORS

A. The physical lines

1. Generic trends

In order to obtain the temperature-hole doping phase
diagram, we developed a minimal model based on Ginzburg-
Landau functional. The free energy depends on the SU(2) order
parameter �SU(2) and writes

FSU(2) = aSU(2)�
2
SU(2) + gSU(2)

2
�4

SU(2), (119)

where we assume that �SU(2) is homogeneous and aSU(2) and
gSU(2) are energy parameters. Minimizing the free energy (119)

as regards to �SU(2) gives the relation �SU(2) =
√

aSU(2)

gSU(2)
. We

assume that the magnitude of the order parameter at zero
temperature is proportional to the critical temperature. The
doping dependence of the critical temperature of the SU(2)
can be reproduced by parametrizing the energy parameters
as aSU(2) = āSU(2)(pc

SU(2) − p) and gSU(2) = 1 + mSU(2)(p −
pc

SU(2)), where pc
SU(2) is the hole doping where the SU(2) is

expected to disappear. In our model, the temperature where
the SU(2) symmetry disappear is associated with T ∗.

In this simple model, the Copper pairing (CP) and pre-
formed excitonic pairing (PEP) energy scales are related by
SU(2) symmetry. From a theoretical point of view, it means that
both SC and PhP order parameter are constrained as exposed
in the relation (4) that writes �SU(2) =

√
�2

CP + �2
PEP, where

�CP and �PEP are the CP and PEP gap scales, respectively.
Considering, in a mean-field heuristic picture, a coexisting SC
and PhP phase, we can write the free energy as

F1 = aCP�
2
CP + gCP

2
�4

CP + aPEP�
2
PEP + gPEP

2
�4

PEP, (120)

where aCP, gCP, aPEP, and gPEP are energy parameters. Taking
into account the SU(2) constraint of Eq. (4), we can replace
the order parameter in Eq. (120) by the relation �PEP =√
�2

SU(2) − �2
CP, where �SU(2) has been determined from

Eq. (119). Minimizing the free energy as regards to the CP
energy scale, one can find the expression of the SC and PhP

FIG. 19. Temperature-hole (T ,p) phase diagram calculated from
the simplified Ginzburg-Landau model. The SU(2) order parameter
critical temperature (solid line) follows the PG critical temperature
T ∗. The temperature scale corresponding to Cooper pairing TCP has
the form of a domelike in real compounds. The PEP critical tem-
perature (dash-dotted line) decreases with doping. The “excitonic”
patches proliferation temperature vanishes in the underdoped regime
and increases at doping close to 0.12.

scales as

�CP =
√

aCP − aPEP + gPEP�
2
SU(2)

gPEP + gCP
,

(121)

�PEP =
√

�2
SU(2) − �2

CP,

where aCP = lCP(pc
CP − p), aPEP = lPEP(pc

PEP − p), gPEP =
M + p, and gCP = M + Mp with M, LPEP, and lSC are free
parameters.

The phase diagram of Fig. 19, can be understood as follows.
The black line TSU(2) corresponds to the SU(2)-dome, depicted
in Sec. III, Fig. 7. It defines the upper energy scale, above which
we lose the SU(2) fluctuations. The temperature TCP(dashed
line, red) corresponds to the typical energy for Cooper pairing.
The temperature TPEP (dashed-dotted line, blue) is the typical
energy associated with the formation of particle-hole pairs. It
is proportional to the SU(2) fluctuations, as shown in Secs. IV
and VIII. The particle hole pairing strength is driven by the
SU(2) propagator for the nonlinear σ model, as visible in
Eq. (101). Note that at the point where TCP = TSU(2), TPEP = 0
since there is space for fluctuations. As doping decreases, TPEP

increases, and crosses TCP in the middle, for a doping 0.010 <

pc < 0.013. We note that there is a threshold in temperature,
above which the patches of excitons start to proliferate. For
p < pc, since TPEP > TCP the excitonic patches have a higher
binding energy, and entropic effects due to the finite size of
the patches, leads to a proliferation temperature very close
to zero. Alternatively, for p > pc, since TPEP < TCP, there is
a competition between Cooper pairing with the tendency to
form a global SC state, and formation of excitonic patches.
In this case, the competition holds between the two states,
and the proliferation temperature Tprolif (dotted magenta line)
gradually increases up to TSU(2) around optimal doping. A
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simple evaluation of the proliferation temperature is given in
the next paragraph.

Interestingly, the phase diagram of Fig. 19 singles out an
intermediate critical doping pc  0.12, which differentiates
two regions in the underdoped regime. For p < pc, the picture
is of a complete fractionalization of the Fermi surface, with at
T = 0 a SC order around the nodes and the antinodal region
fully gapped out by excitonic patches. It is in line with a
“two-gap” picture. On the other hand, for p > pc, at T = 0
the system in in the SC state, with excitonic patches starting
to proliferate as temperature is raised. It is a one gap picture,
which becomes fully valid at p0  0.21, where the SC state is
gapping out the Fermi surface up to the energy TSU(2).

The doping pc  0.12 is thus the doping at which the
two scales of formation of the excitonic patches and Cooper
pairs are equal TCP = TPEP. It is conceivable that around this
doping, the SU(2) symmetry is strong enough to produce phase
separation, but the SU(2) fluctuations are frozen enough so that
we observe experimentally one (or two) resulting modulation
wave vectors around (Q0,0) and (0,Q0) extending up to ten
lattice sites, and thus experimentally detectable. A real-space
picture of this scenario is given in Ref. [164].

a. Proliferation temperature. We give here a simple
derivation of the proliferation temperature. We have a com-
petition between Cooper pairing, leading to the formation of
a global SC state, and a local state of particle hole excitonic
patches, each carrying a specific entropy. Suppose there is np

excitonic patches and thus 1 − np Cooper pairs (to simplify
the discussion we took a “two-fluid” only model). The global
free energy writes

F = −(1 − np)
a2

CP

4g
+ np

(
−a2

PEP

4g
+ T ln np

)
, (122)

where g is a high-energy coupling constant that we take equal
for the two fluids, −a2

CP/(4g) and −a2
PEP/(4g) come from the

mean-field minimization for each order parameter, coming
for example from Eq. (120). We have aCP = T − TCP and
ap = T − TPEP. Minimizing Eq. (122) with respect to np leads
to

ln np = − 1

T

a2
CP − a2

PEP

4g
, (123)

which leads to a temperature above which np  1, also called
proliferation temperature

Tprolif =
{

a2
CP−a2

PEP
4g

, if |aCP| > |aPEP|
0, elsewhere

.

B. Strange metal phase

This part explores the consequences of the RES for the
phase diagram of cuprates (see Fig. 20) when this mode
becomes critical. There are experimental indications that the
electric transport in this system has both 2D and 3D character.
We will thus calculate the resistivity ρ in d = 3 and d = 2,
in the absence of a gap and show that it differs from the
usual Fermi liquid T 2 scaling with a typical T/ ln T behavior.
Therefore we evaluate the bosonic polarization induced by
critical χ -modes. Details can be found in Appendix F. At
quadratic order in the excitonic fluctuations, we obtain the

FIG. 20. Schematic phase diagram of cuprate superconductors
as a function of hole doping and temperature T where PG is
the pseudogap phase, AF is the antiferromagnetic phase, and SC
is the superconducting phase. In the grey shaded strange metal phase,
the electrical resistivity scales linearly with T .

following effective interaction:

Scrit[ψ] =
∑

kk′qP,σ

�P
q ψ

†
σ,k ψσ,k+P+q ψ

†
−σ,k′ ψ−σ,k′−P−q,

(124)
see Figs. 21(a) and 21(b), with �P

q = 〈χ−P−qχP+q〉. The
form of above interaction corresponds to a coupling with
a collection of bosons [see also Eq. (F1)]. The renor-
malized bosonic propagator follows from Dyson’s equation
[�P

q(�)]−1 = q2 + m − �P
q(�). Therein, the bare propagator

is assumed to have Ornstein-Zernike form. The retarded
bosonic polarization �P

q = �′
q + i�′′

q in Fig. 21(c), evaluated
for P = 2pF, yields �′

q(�) = c[(� + q‖) ln |� + q‖| − (� −
q‖) ln |� − q‖|] and �′′

q(�) = πc[(� + q‖)θ (−� − q‖) +
(� − q‖)θ (� − q‖)]. With � we denote real frequencies and
c is a nonuniversal factor depending on the details of the
dispersion.

FIG. 21. (a) Graphical representation of the interaction in
Eq. (124). The wavy line represents the bosonic propagator �P

q
at criticality for |q| � |P|. (b) RES scattering between two elec-
trons close to the FS at k and k + 2pF according to Eq. (124).
(c) Diagrammatic representation of the one-loop bosonic polarization
�q and the fermionic self-energy �q for the RPE mode.
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Next, we calculate the electronic self-energy depicted in
Fig. 21(c). Here again we refer the reader to Appendix G
for details. Note that the self-energy requires a summation
over all ordering vectors P. Up to logarithms, each P
wave gives the same contribution. In the quantum critical
regime, we have, the scaling behavior �′

q(�) ∼ 2cq‖ ln |�|,
and �′′

q(�) ∼ πc�. We use this scaling law to evaluate
the self-energy of an electron scattering through a single
bosonic mode written in Matsubara form as �−1

P (iωn) =
γ |ωn| − v‖q‖ ln |ωn| + v⊥q2

⊥/2. The evaluation is performed
in d = 3, and at the first order in the leading singularity,
we obtain �(iεn) = iεn/(4πv‖v⊥ ln |εn|). We note that with
logarithmic corrections, this form is typical of a marginal
Fermi liquid [165] and can account for the properties of
the strange metal phase depicted in Fig. 20. In d = 2, the
self-energy scales like �(iεn) ∼ i

√|εn|Sgn(εn).
We turn now to the discussion of the relaxation time

for electron-electron scattering process from a semiclassical
Boltzmann treatment. Details are given in Appendix H.
The Boltzmann equation for the nonequilibrium electron
distribution fk writes [166,167](

∂fk

∂t

)
collisions

= −eE · ∇kfk = −Iei[fk] − Iee[fk], (125)

where e is the elementary charge, E a static electric field and
Iei , respectively, Iee are the electron-impurity, respectively,
electron-electron collision integrals. The electron-electron
collision integral is obtained from Fermi’s golden rule,

Iee[fk] = 1

V

∑
q

∫ ∞

−∞
d� Im�q(�)δ(εk − εk+P−q − �)

× [fk(1 − fk+P−q)(1 + nB(�))

− (1 − fk)fk+P−qnB(�)], (126)

with nB(x) = (exp (x/T ) − 1)−1 and we drop the contribution
from Iei . The relaxation-time approximation amounts to set-
ting fk  f0,k − gkf0,k(1 − f0,k), where f0 is the equilibrium
distribution and gk = τeE · vk/T . In this approximation,
Eq. (126) becomes

Iee[fk] = 1

V

∑
q

∫ ∞

−∞
d� Im�q(�)nB(�)f0,k+P−q(1 − f0,k)

× (gk+P−q − gk)δ(εk − εk+P−q − �). (127)

We see from Eq. (127) that this theory has a nonvanishing
imbalance velocity factor, since for q = 0, (gk+P − gk) �= 0.
This implies that no additional T dependence arises from the
angular part of the integral. To make the connection of the scat-
tering time τ and resistivity ρ, we write the electrical current
density as J = −2e〈v〉 and note its connection to ρ via J =
ρ−1E. For small electric fields, ρ ∼ τ−1, and solving the above
Boltzmann equation for τ yields τ−1 ∼ T/ ln(T ), such that
ρ ∼ T/ ln(T ). In d = 2, the resistivity scales like ρ ∼ √

T .
The scaling forms given here are valid in the antinodal region of
the BZ, while the nodal region will provide a Fermi liquidlike
T 2 law both in the PG phase and in the strange metal phase.
The study of the strong anisotropy of the scattering rates
along the Fermi surface, and interplay between the T 2 and
anomalous behaviors is the subject of active experimental

investigations [168–170] and we will devote a further detailed
development of our theory to address the issue.

XI. CONCLUSION

This paper has been devoted to the study of the implications
of the nonlinear σ model, which describes the fluctuations of
the SU(2) rotation matrix between the d-wave SC state and
the d-wave charge order. One important result of this paper
is that, when interacting with the conduction electrons, hot
regions are created in the Brillouin zone, and in particular a
line where the SU(2) fluctuations are massless, which we called
an SU(2) line, was found, crossing the Fermi surface at the AF
hot spots. The main effect of the SU(2) pairing fluctuations on
the charge sector is to tilt the modulation wave vector from
the diagonal to the axial wave vectors (0,Q0) and (Q0,0).
Secondarily, SU(2) fluctuations affect the SC sector by creating
a small PDW instability on top of an already existing d-wave
superconducting phase. Lastly, the SU(2) pairing fluctuations
lead to the formation of preformed particle-hole pairs, which
we have called “excitons,” for which a range of 2pF wave
vectors are allowed. The intrinsic constraint of the nonlinear
σ model creates some strong mode coupling within the charge
sector and thus the creation of excitonic patches, which then
proliferate up to the PG temperature T ∗. We give a preliminary
description of the phase diagram of the cuprates, including a
preliminary theory for the anomalous transport properties in
the strange metal part of the phase diagram. Implications of
the theory for various experimental probes are left for future
publications.

The ultimate goal of this theory is to address all possible
experimental results, but this goes beyond the scope of this
paper. Note that, within the SU(2) scenario, a few experimental
issues have already been addressed. The phase diagram as a
function of magnetic field and temperature was considered in
Ref. [81], the structure of the modulations inside a vortex core
in Ref. [83]. A study of the Raman A1g mode was given in
Ref. [120], and the gapping out of the Fermi surface in the
antinodal region seen in ARPES was described in Ref. [171].
The findings of modulations up to T ∗ seen, by STM in Bi2212,
as well as the resonance of neutron scattering in Hg1201 will
be addressed in forthcoming publications [164].

The presence of electron pockets in the AN zone of the first
BZ is a very ongoing debate in the cuprate community [172].
The Hall resistivity measurements in YBCO have shown a
change in the carrier density n (between the n = p regime
at low doping to n = 1 − p regime at high doping) around
p = 0.19 [173,174]. This change of regime has been associ-
ated with the opening of the PG around the hot spot, in the AN
zone of the first BZ that should be present at any doping [172].
Our scenario can provide an explanation of the change in
the carrier density that will be addressed in a shortcoming
work [175]. Therefore the absence of such electron pockets in
the AN zone of the first BZ at any doping could be one check
of the validity of our scenario.

Moreover, one specific signature of the preformed particle-
hole pairs could be the photoluminescence signal. It is well-
known in semiconductor physics that excitons exhibit a pho-
toluminescence signal [176]. In our model, the stabilization of
such exciton particle-hole pair patches could also lead to such
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photoluminescence signal. The exploration and the calculation
of such signature is left to later work.

The SU(2) scenario presented here should be applicable for
materials where the SC and the CDW states are close in energy.
Another condition should be the presence of an interaction
that could stabilize such SU(2) fluctuations (like short-range
AF correlations). The underdoped cuprate compounds are
currently the best candidates wherein these two conditions
are present.
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APPENDIX A: MEAN-FIELD GAP EQUATIONS:
STRONG COUPLING CASE

We give in Fig. 22 the solution of the gap equations (19)
and (21) in the strong coupling case, for which we have
taken J = 0.9 eV. We observe, as the coupling is increased, a
pronounced difference between the SC solution and the CDW
solutions, in that the SC solution gaps out the entire Fermi
surface, whereas the CDW solution remain confined in the
antinodal regions of the Brillouin zone.

APPENDIX B: ZONE EDGE HOT LINES

We present in Fig. 23 the evolution of the hot regions for
a charge wave vector located at the zone edge. Note that the
fractionalization of the Fermi surface is also efficient in that
case, with a minimum of the mass (or infinite fluctuations)
located at the zone edge.

APPENDIX C: TEST OF VARIOUS ANISOTROPIES

This Appendix gives a thorough study of the effect of the
SU(2) hot regions in the response of the charge susceptibility.
We look at various types of anisotropy (Figs. 24 and 25) in
the size and shape of the hot regions. The main conclusion is
that in all cases, the axial response is favored compared to the
diagonal one.

The typical form of the Aslamazov-Larkin polarization is
shown in Fig. 26,

�AL(p,0) = −T
∑

q

πs
qπ

s
p+q(Bq)2, (C1)

with Bq =
∑

k

GkGk+pG−k−q, (C2)

with the four variables k = (k,ε), q = (q,ω), G−1
k = iεn − ξk,

and G−1
−k = −iεn − ξ−k. This contribution typically behaves in

the same manner as the vertex corrections. We show it here for
completeness for one typical form of the SU(2) hot region.

FIG. 22. Solution of the gap equations, in the case of a strong
AF coupling, from Eqs. (19) and (21) for various modulation wave
vectors with (a) the diagonal wave vector (Q0,Q0) linking two hot
spots, (b) the axial wave vector (Q0,0), (c) (0,Q0), which are observed
experimentally, (d) the AF wave vector (π,π ), and (e) the null wave
vector. The solution of the SC gap equation is given in (f). The
calculations are made on the band structure of Bi2212 form Ref. [124]
(see details in the text for the band parameters). Vanishing solutions
are color-coded in blue while nonvanishing points are depicted in
yellow. The calculations are made within the approximation Jq =
Jδ(q), with J = 0.9, which restricts the q integration at the vector
(π,π ). The energy units, if not stated otherwise, are in eV.

APPENDIX D: NEMATICITY AND CHARGE
CONSERVATION

1. Cancellation in the Fermi liquid case

We first consider the Fermi liquid case depicted in
Figs. 27(a) and 27(b). There is a well-known cancellation
between the two diagrams:

Ia + 2Ib = 0, (D1)

which we reproduce here for completeness. We have

Ia =
∑
k,q

FqGkGk+pGk+qGk+p+q, (D2)
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FIG. 23. Evolution of the SU(2) fluctuations as a function of the hole doping. We present two set of curves for the zone edge wave vector
2pF. Note that in this case, the mass has a minimum lying at the ZE. The electron dispersion is modeled in the tight-binding approximation for
Bi, Ref. [124] (parameter set tb2).

Ib =
∑
k,q

FqG
2
kGk+pGk+q, (D3)

FIG. 24. The real part of the polarization bubble, with one vertex
correction, in the static limit. The electron dispersion corresponds
to the usual one of Bi2212, Ref. [124]. We show here that for a
dispersion centered exclusively at the hot spots (c), the response on
the axes (0,Q0) and (Q0,0) has still a stronger amplitude than the
response on the diagonal (Q0,Q0).

where k,q stand for the 4-vector k,q, Fq is the boson line, Gk is
the fermionic Green’s function, with G−1

k = iεn + �(εn) − ξk.
We use the decoupling trick

GkGk′ = Gk − Gk′

G−1
k′ − G−1

k

. (D4)

FIG. 25. Real part of the polarization bubble, with one vertex
correction, in the static limit. The electron dispersion corresponds to
the usual one of Bi2212, Ref. [124]. Same study as in Fig. 25, but for
a “flat pancake” shape of the SU(2) fluctuations.
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FIG. 26. Real part of the polarization bubble, corresponding to
the Aslamozov-Larkin diagrams, in the static limit. The electron
dispersion corresponds to the usual one of Bi2212, Ref. [124]. This
contribution typically behaves in the same way as the polarization
with vertex corrections.

Using Eq. (D4), we have

Ia =
∑
k,q

Fq

(
GkGk+p − GkGk+p+q

H 2
q

× −Gk+pGk+q + Gk+qGk+p+q

H 2
q

)
, (D5)

Ib =
∑
k,q

Fq

[
G2

kGk+q

Hq

− Gk+p

(
Gk − Gk+q

H 2
q

)]
, (D6)

FIG. 27. The standard vertex self-energy cancellation due to
charge conservation. The sum of the diagrams a) + 2b) = 0.

FIG. 28. Vertex corrections and self-energy corrections at the one
loop level. We check in the text that there is no cancellation in the
case of pairing lines a) + 2b) �= 0.

where Hq = G−1
k+p − G−1

k+p+q  −iω + �(εn) − �(εn +
ωn) + vF · q. We observe that terms of the kind

∫
k Gn

kGk+p =
0 for all integers n > 1 because, since the external momentum
p = (p,0) carries no frequency, the poles are in the same half-
plane, which leads to (in the limit where p → 0)

Ia = −2
∑

q

Fq

GkGk+q

H 2
q

, (D7)

Ib =
∑

q

Fq

GkGk+q

H 2
q

. (D8)

This in turn gives the result of Eq. (D1).

2. Absence of cancellation in the case of SC lines

We now apply the same recipes to the diagrams of Fig. 28,
and see that the cancelation does not hold in this case. We have

Ia =
∑
k,q

FqGkGk+pG−k−qG−k−p−q, (D9)

Ib =
∑
k,q

FqG
2
kGk+pG−k−p, (D10)

with G−1
−k = −iεn + �(−εn) − ξ−k. Using Eq. (D4), this can

be cast into

Ia =
∑
k,q

Fq

(
−GkGk+p + G−k−qGk+p

Hk,q

+ G2
kGk+p

Hk,q

)
,

(D11)

Ib =
∑
k,q

Fq

(
G2

k + G
2

−k−q − 2G3
k

Hk,q

)
, (D12)

with Hk,q = G−1
−k−q − G−1

k  −2iεn − iω + � (−εn −
ωn) − �(εn) + vF · q + 2ξk. To check the noncancellation of
diagrams, we can take the difference dI = Ia + 2Ib, which
gives, in the limit where p → 0,

dI =
∑
k,q

Fq

(
G2

−k−q − G2
k

Hk,q

+ 2
G3

k

Hk,q

)
. (D13)

The first term in Eq. (D13) vanish after a change of
variables, and we end up with a nonzero contribution

dI = 2
∑
k,q

Fq

G2
kGk+p

Hk,q

. (D14)

To fix the ideas, we plot dI in Eq. (D14) in Fig. 29.
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FIG. 29. Plot of dI in Eq. (D14). The electron dispersion
corresponds to the usual one of Bi2212, Ref. [124].

APPENDIX E: GAUSSIAN FLUCTUATIONS

We study now the case where the charge order becomes
critical for some region of oxygen doping, under the SC dome.
Fluctuations of the charge mode are treated at the Gaussian
level. The effective action S1, Eq. (92), which describes the
coupling of the fermion to the excitonic patches, can be written
as

S1 = 1

2

∑
σ,k,p

χk,k+pψ
†
k,σ ψk+p,σ , (E1)

where p = P + q is the fluctuation around the ordering wave
vector P = 2pF and χk,k+p is the bosonic charge mode with
wave vector P. This charge order is peculiar in the sense that
χ depends not only on the slow fluctuations around the wave
vector P but as well on the fast momentum k. We account for
this dependence through a form factor via the definition

χk,k+p ≡ χpFk, (E2)

where Fk is a form factor having a finite extension around
the nesting point kn associated with P. The form of the boson
propagator �q = 〈T χ−pχp〉 is given by

exp [−S�] = 〈exp [−S1]〉ψ = exp
[

1
2

〈
S2

1

〉
ψ

]
. (E3)

Expanding then to the second order in χ we obtain

S� = −1

2

∑
k,p,σ,k′,p′,σ ′

χpχp′FkFk′ 〈ψ†
k,σψk+p,σ ψ

†
k′,σ ′ψk′+p′,σ ′ 〉ψ.

(E4)

The contraction of indices leads to the conditions σ ′ = σ ,
p′ = −p and k′ = k + p. From which we get

S� = 1

2

∑
p

χ−p�−1
p χp (E5)

with �−1
p =�−1

0,p − �p,

�p = − T
∑
ε,k,σ

FkFk+pGkGk+p. (E6)

For the evaluation of the bosonic bubble �p, the form factors
have been neglected in the evaluation of �p. �−1

0,p = ω2 +
q2 + m is a high-energy contribution of the Ornstein-Zernike
type. The resulting scattering of the fermions around the
bosonic charge mode writes

exp [−Scrit] = 〈exp [−S1]〉χ = exp
[

1
2

〈
S2

1

〉
χ

]
, (E7)

with

Scrit = −1

2

∑
k,k′,σ,σ ′,p,p′

〈χpχp′ 〉χFkFk′ψ
†
k,σψk+p,σ ψ

†
k′,σ ′ψk′+p′,σ ′ ,

= −1

2

∑
k,k′,σ,σ ′,p

�pFkFk′ψ
†
k,σ ψk+p,σ ψ

†
k′,σ ′ψk′−p,σ ′ .

(E8)

APPENDIX F: BOSONIC POLARIZATION BUBBLE

The renormalized bosonic propagator follows from Dyson’s
equation

[�q(�)]−1 = q2 + m − �q(�). (F1)

Therefore we evaluate the bosonic polarization �q with P =
2pF as depicted in Fig. 4(c) of the main text. The diagram
writes

�q(iωm) = − 1

βV

∑
εn,k

G(iεn + iωm/2,k + q/2)

× G(iεn − iωm/2,k + P − q/2), (F2)

with temperature T = β−1 and V being the volume of the
system. We will evaluate the diagram using bare Green
functions of the form

G(iεn,k)−1 = iεn − ξk, (F3)
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with ξk = εk − μ, where εk is the fermion dispersion and μ

their chemical potential. It is convenient to measure the three-
dimensional momentum vector k ≡ (k‖,k⊥) (where k‖ is a
scalar and k⊥ is a two-dimensional vector) relative to a point
on the Fermi surface. The coordinate system is then chosen
such that the two components of k⊥ are oriented perpendicular
to the surface normal vector and the k‖ component parallel to
it, as depicted in Fig. 4(b) of the main text. The dispersion is
then approximated by

ξk = v‖k‖ + v⊥k2
⊥/2 (F4)

and from the construction follows ξk+P = ξ−k. The momentum
transfer q between the two coupled electrons is quasi-one-
dimensional in parallel direction only, so that we calculate �q
for q ≡ (q‖,0). Equation (F2) then yields

�q(iωm)

= − 1

βV

∑
εn,k

1

i(εn + ωm/2) − v‖(k‖ + q‖/2) − v⊥k2
⊥/2

× 1

i(εn − ωm/2) + v‖(k‖ − q‖/2) − v⊥k2
⊥/2

, (F5)

Evaluating the Matsubara sum at T = 0 gives

�q(iωm) = − 1

v‖v⊥V

×
∑

k

θ (2k‖ + q‖ + k2
⊥) − θ (−2k‖ + q‖ + k2

⊥)

iωm − 2k‖
, (F6)

where θ (x) denotes the Heaviside step function and we have
also rescaled the parallel momenta to measure it in units of v‖
as well as the perpendicular momenta by

√
v⊥. We can now

perform the analytic continuation to real frequencies � by
setting iωm = � + iδ and we write the retarded self-energy as
�q(�) ≡ �q(� + iδ) for convenience. In the infinite volume
limit and for � �= |q‖|, the polarization yields

�q(�)

= − c

π

∫
dk⊥

[
P

∫ �

−k2
⊥

dy

� + q‖ − y
− P

∫ k2
⊥

−�

dy

� − q‖ − y

− iπ (θ (k2
⊥ + � + q‖) − θ (k2

⊥ − � + q‖))

]
, (F7)

with c−1 = (4π )2v‖v⊥, P stands for the Cauchy principal
value and � is an UV cutoff. The special cases for � = |q‖|
is not explicated here but can be obtained in the same fashion.
After integrating over the parallel component, we get

�q(�) = − c

π

∫
dk⊥[ln |k2

⊥ + � + q‖| + ln |k2
⊥ − � + q‖|

− iπ (θ (k2
⊥ + � + q‖) − θ (k2

⊥ − � + q‖))], (F8)

where some nonuniversal contributions that depend solely on
� were dropped. The remaining two-dimensional integral over
k⊥ is now easily computed in polar coordinates. Regularizing
again the UV sector by a cutoff �, we find (up to some pure

cutoff contributions)

�q(�) = �′
q(�) + i�′′

q(�), (F9a)

�′
q(�) = c[(� + q‖) ln |� + q‖| − (� − q‖) ln |� − q‖|],

(F9b)

�′′
q(�) = πc[(� + q‖)θ (−� − q‖) + (� − q‖)θ (� − q‖)],

(F9c)

where �′ and �′′ denote the real, respectively, imaginary
part of the polarization. In a last step, we invert Dysons
equation (F1) to obtain the imaginary part of �q, which
is responsible for damping. Because the leading scattering
contribution to the resistivity comes from the low momentum
and frequency transfer of the critical bosonic mode, one can
drop the entire �−1

0,q(�) term compared to �q. One obtains

Im�q(�)  �′′
q(�)

(�′
q(�))2 + (�′′

q(�))2
(F10)

and we can write Im�q in compact form as

Im�q(�) = 1

πc
bq(�) (F11)

with

bq(�) = sθ (−s) + tθ (t)

π−2[s ln |s| − t ln |t |]2 + [sθ (−s) + tθ (t)]2
(F12)

where s = � + q‖ and t = � − q‖.
The study of this paper corresponds to the regime q‖��.

Reporting this approximation in Eqs. (F9), we get

�′
q(�)  2cq‖ ln |�|, (F13a)

�′′
q(�) = πc�. (F13b)

APPENDIX G: FERMIONIC SELF-ENERGY

The fermionic self-energy is

�k(iεn) = − 1

βV

∑
ωm,q

�q(iωm)G(iεn + iωm,k + q), (G1)

with the fermionic and bosonic Green functions

(G(iεn,k))−1 = iεn − v‖k‖ − v⊥k2
⊥/2, (G2a)

�−1
q (iωm) = γ |ω|m − v‖q‖ ln |ωm| + v⊥q2

⊥/2, (G2b)

where the form of the bosonic Green’s function is taken from
Eqs. (F13a) and (F13b).

The notation ωn = ωn/� where � is an UV cutoff. To
simplify the calculation, we will not calculate the full above
self-energy, but the truncated one:

��(iεn) = �k=0(iεn) − �k=0(0). (G3)
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With the above formulas, the truncated self-energy is written
as

��(iεn) = − 1

βV

∑
ωm,q

1

γω2
m − v‖q‖ + v⊥q2

⊥/2

×
(

1

iεn + iωm − v‖q‖ − v⊥q2
⊥/2

− 1

iωm − v‖q‖ − v⊥q2
⊥/2

)
, (G4)

and the sums are evaluated in infinite volume and vanishing
temperature limit. Rescaling the variables according to v‖q‖ =
x and v⊥q2

⊥/2 = y, the self-energy follows as

��(iεn) = c2T
∑
ωn

Iω, (G5)

with

Iω =
∫ ∞

−∞
dx

∫ ∞

0
dy

1

γ |ωn| − x ln ωn + y

× iεn

(iεn + iωn − x − y)(iωn − x − y)
(G6)

and c−1
2 = 4π2v‖v⊥. We first perform the integration in

x, performed in the complex plane. Two types of poles
are present, the cones coming from the fermionic Green’s
functions on the right, and the ones coming from the boson
propagator.

1. Poles from the Fermionic Green’s function

The contribution of the poles from the fermionic Green’s
function are taken at x0 = iωn − y and give a contribution

I1 =
∫ ∞

0
dy

2iπSgn(εn)θ [|εn| − |ωn|]
γ |ωn| + y − x0 ln ωn

. (G7)

We keep the term proportional to ln ωn in the denominator and
get

I1 =
∫ ∞

0
dy

2iπSgn(εn)θ [|εn| − |ωn|]
(−iωn + y) ln ωn

= 2iπSgn(εn)θ [|εn| − |ωn|]
ln ωn

ln

(
�

−iωn

)
. (G8)

Reporting in (G5) and symmetrizing with respect to ωn leads
to

��(iεn) = c2T
∑
ωn>0

iπSgn(εn)θ [|εn| − |ωn|],

= c2iπεn. (G9)

Note that the logarithmic singularity has been lost here, up to
the UV cutoff. This self-energy will not produce a significant
shortening of the electron lifetime.

2. Poles from the boson propagator

The contribution from the boson propagator is taken at
x0 = (γ |ωn| + y)/ ln |ωn| and is written as

I2 =
∫ �

0
dy

−iπ

ln |ωn|
iεn

(iεn + iωn − x0 − y)(iωn − x0 − y)
.

(G10)

Taking only the term not proportional to 1/ ln |ωn|, we get

I2 =
∫ �

0
dy

−iπ

ln |ωn|
iεn

(iεn + iωn − y)(iωn − y)
. (G11)

The integration over y is done exactly and leads to

I2 = −iπ

ln |ωn| ln

∣∣∣∣ ωn

εn + ωn

∣∣∣∣. (G12)

The form (G12) is nonvanishing only in the limit |ωn| � |εn|.
Expanding in this limit, we get

I2 = iπ

ln |ωn| ln |εn|, (G13)

and reporting in Eq. (G5), we obtain

��(iεn) = c2T
∑

|ωn|�|εn|
iπ

ln |εn|
ln |ωn| ,

= c2iπli(εn) ln |εn|, (G14)

where the function logarithmic integral li(x) is defined by

li(x) =
∫ x

0

dt

ln t
.

Expanding by part and considering the regime where x � 1,
we get

li(x) = x

ln x
+ x

(ln x)2
+ O

[
x

(ln x)3

]
. (G15)

The second term in Eq. (G15) provides the desired singularity,
and we obtain

��(iεn)  c2
iπεn

ln |εn| , (G16)

which, up to a logarithm, is the form for the electron self-
energy in the strange metal phase.

APPENDIX H: BOLTZMANN TREATMENT

1. Relaxation time from the Boltzmann equation

The Boltzmann equation for the nonequilibrium electron
distribution fk is written as [166,167,177](

∂fk

∂t

)
collisions

= −eE · ∇kfk = −Iei[fk] − Iee[fk], (H1)

where e is the elementary charge, E a static electric field
which is supposed to be small and Iei , respectively, Iee are
the electron-impurity, respectively, electron-electron collision
integrals. We make the approximation to consider only
electron-electron scattering such that Iei = 0. The equilibrium
distribution of noninteracting fermions at temperature T is
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f0,k = (exp(βξk) + 1)−1. The distributions are normalized
such that ∫

dk
(2π )3

fk =
∫

dk
(2π )3

f0,k = 2n0, (H2)

for T → 0 and with n0 = k3
F/(3π2). For small electric field

E, one can develop fk around the equilibrium distribution
f0,k and the so-called relaxation-time approximation amounts
to express the collision integral by Iee[fk] = (fk − f0,k)/τ ,
where τ is the relaxation time. Plugging this ansatz in the
kinetic equation (H1), we find

fk  f0,k + τeE · ∇kfk  f0,k + τeE · vk
∂f0,k

∂εk

= f0,k − gkf0,k(1 − f0,k), (H3)

with gk = βτeE · vk. Note that the standard approximations,
to replaced fk on the right-hand-side again by f0,k, neglecting
the momentum dependence of τ and the dispersion relation
for free fermions εk = k2/(2m) now solve the Boltzmann
equation (H1) within relaxation-time approximation and for
small electric field.

The electron-electron collision integral is evaluated using
Fermi’s golden rule which yields

Iee[fk] = 1

V

∑
q

∫ ∞

−∞
d� Im�q(�)δ(εk − εk+P−q − �)

× [fk
(
1 − fk+P−q

)
(1 + nB(�))

− (1 − fk)fk+P−qnB(�)]. (H4)

Here, nB(�) = (exp(β�) − 1)−1 is the Bose function. Using
the fact that Im�q(−�) = −Im�q(�), we can rewrite the
above integral as

Iee[fk] = 1

V

∑
q

∫ ∞

−∞
d� Im�q(�)nB(�)

× [fk(1 − fk+P−q)δ(εk+P−q − εk − �)

− fk+P−q(1 − fk)δ(εk − εk+P−q − �)]. (H5)

From Eq. (H3) and since by definition Iee[f0,k] = 0 for the
equilibrium distribution f0,k, we can rewrite the collision
integral as

Iee[fk] = 1

V

∑
q

∫ ∞

−∞
d� Im�q(�)nB(�)

× f0,k+P−q(1 − f0,k)(gk+P−q − gk)

× δ(εk − εk+P−q − �), (H6)

where contributions ∼E2 have been dropped. We see from
Eq. (H6) that this theory has a nonvanishing imbalance velocity
factor, since for q = 0, (gk+P − gk) �= 0. The nonvanishing
velocity imbalance factor provides that no additional T

dependence arises from the angular part of the integral.

Setting vk = −vk+P  kF/m ≡ vF such that the relaxation
time approximation simplifies to

gk  βτeE · vF, (H7a)

gk′−q  −βτeE · vF, (H7b)

we further multiply the collision integral with vk · e where
e is a unit vector in the direction of E and sum over k.
We find

1

V

∑
k

(vk · e)Iee[fk] = −2βτevF · E Ĩ (H8)

and

Ĩ = 1

V 2

∑
k,q

(vk · e)
∫ ∞

−∞
d� Im�q(�)nB(�)

× [f0,k+P−q/2(1 − f0,k+q/2)

× δ(εk+q/2 − εk+P−q/2 − �)]. (H9)

If we approximate vk ≈ vF , such that Ĩ = vFI with

I = 1

V 2

∑
k,q

∫ ∞

−∞
d� Im�q(�)nB(�)

× [f0,k+P−q/2(1 − f0,k+q/2)δ(εk+q/2 − εk+P−q/2 − �)].
(H10)

For convenience, the electric field was oriented in the direction
of kF and we have symmetrize the last expression in q.

The left-hand side of the Boltzmann equation (H1) yields

−eE · ∇kfk = −eE · vk
∂f0,k

∂εk
, (H11)

where again the relaxation-time approximation Eq. (H3) was
used and we developed for small electric field E. From the
definition of the equilibrium distribution f0, we find for zero
temperature

∂f0,k

∂εk
= −δ(ξk). (H12)

Moreover, let us define the density of states for free fermions,
which yields in d = 3 and for vanishing temperature

ν(ε) = 1

V

∑
k

δ(ε − εk) = m

2π2
(2mε)1/2. (H13)

We then have

1

V

∑
k

∂f0,k

∂ξk
= − 1

V

∑
k

δ(εk − εF)

= − 1

V

∑
k

δ(εk − εF)
∫ ∞

−∞
dε δ(ε − εk)

= −
∫ ∞

−∞
dε δ(ε − εF)ν(ε) = −ρ0, (H14)

with ρ0 = ν(εF) = vF/(2π2) and with εF = k2
F/(2m).

It is again advantageous to multiply Eq. (H11) by vk and to
sum over k. With the identity

∑
k(E · vk)vk = E/3

∑
k v2

k and
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the help of Eqs. (H12) and (H14), we find

1

V

∑
k

vk(E · vk)
∂f0,k

∂εk
= −ρ0v

2
FE

3
. (H15)

Multiplying above equation by E and together with Eq. (H8),
we can solve the Boltzmann equation for the relaxation time

τ−1 = 6βI/ρ0. (H16)

2. Connection between resistivity and relaxation time

The electrical current density is [177]

J = −2e〈v〉 = −2e
1

V

∑
k

fkvk, (H17)

where the factor 2 accounts for the spin. Inserting Eqs. (H3) in
Eq. (H17), the average with the equilibrium distribution f0,k
vanishes and with Eqs. (H12) and (H15), one finds

J = −2τe2

V

∑
k

vk(E · vk)
∂f0,k

∂εk
= 2τρ0e

2v2
FE

3
. (H18)

The conductivity σ is defined as J = σE, such that the
resistivity ρ = σ−1 follows from the above equation as

ρ = 3/
(
2ρ0e

2v2
Fτ

)
. (H19)

Combining Eqs. (H16) and (H19), the resistivity is

ρ =
(

3

eρ0vF

)2

βI. (H20)

The last step is to calculate the integral in Eq. (H10) with ImFq
that we derived previously in Appendix F.

3. Evaluation of the collision integral

To evaluate the integral I in Eq. (H10), we obtain from the
dispersion relation, Eq. (F4),

ξk+q/2 = v‖(k‖ + q‖/2) + v⊥k2
⊥/2, (H21a)

ξk+P−q/2 = −v‖(k‖ − q‖/2) + v⊥k2
⊥/2, (H21b)

such that

I = 1

V 2

∑
k,q

∫ ∞

−∞
d� Im�q(�)nB(�)

× [f0,k+P−q/2(1 − f0,k+q/2)δ(2v‖k‖ − �)]. (H22)

Now the integration over � is trivially performed and we take
the infinite volume limit V → ∞. This amounts to replace

1

V

∑
k

→
∫

dk
(2π )3

≡ 1

(2π )3

∫ ∞

−∞
dk‖

∫
dk⊥, (H23a)

1

V

∑
q

→ 1

2π

∫ ∞

−∞
dq‖, (H23b)

which yields

I = 1

(2π )4

∫ ∞

−∞
dk‖

∫
dk⊥

∫ ∞

−∞
dq‖ Im�q(2v‖k‖)

× nB(2v‖k‖)[f0,k+P−q/2(1 − f0,k+q/2)]. (H24)

For small temperatures, we further approximate

f0,k → θ (−ξk) = 1 − θ (ξk), (H25)

and we rescale the variables as

2v‖k‖ = x, v⊥k2
⊥ = y, v‖q‖ = q, (H26)

in order to obtain

I = c1

∫ ∞

−∞
dx

∫ ∞

0
dy

∫ ∞

−∞
dq Im�q(x)nB(x)

× θ (x + y + q)θ (x − y − q), (H27)

with c1 = (4(2π )3v2
‖v⊥)−1. The integral over y yields∫ ∞

0
dyθ (x + y + q)θ (x − y − q)

= (x − q)θ (x + q)θ (x − q) + 2xθ (x)θ (x − q)θ (−x − q).

(H28)

Substituting this integral in the above equation (H27) gives
I = I1 + I2, with

I1 = c1

∫ ∞

0
dx

∫ x

−x

dq (x − q) Im�q(x)nB(x) (H29)

and

I2 = c1

∫ ∞

0
dx

∫ −x

−∞
dq 2x Im�q(x)nB(x). (H30)

To extract the temperature scaling from I , we first rescaling
the variables as βx = x̃ and βq = q̃. With Eq. (F11) the
integrals in Eqs. (H29) and (H30) can be written as I1/2 =
(2π2v‖β2)−1Ĩ1/2, where

Ĩ1 =
∫ ∞

0
dx̃

∫ x̃

−x̃

dq̃
1

ex̃ − 1

× t̃2

π−2[s̃ ln s̃ − t̃ ln t̃ + 2q̃ ln T ]2 + t̃2
(H31)

and

Ĩ2 =
∫ ∞

0
dx̃

∫ ∞

x̃

dq̃
1

ex̃ − 1

× 4x̃2

π−2[s̃ ln s̃ − t̃ ln(−t̃) + 2q̃ ln T ]2 + 4x̃2
. (H32)

We have also used c1/c = 1/(2πv‖), which follows from
above definitions and defined s̃ = x̃ + q̃ and t̃ = x̃ − q̃. Both
integrands in Eqs. (H31) and (H32) are strictly positive within
the integral bounds such that the resistivity, which follows
from Eq. (H20) as

ρ = T

2v‖

(
3

πeρ0vF

)2

Ĩ , (H33)
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is positive and physically meaningful. In the last step, we
will evaluate Ĩ in the absence and then in the presence of
logarithmic corrections.

First, we will evaluate Ĩ1/2 in Eqs. (H31) and (H32) without
logarithmic corrections, that is we set all logarithms to one and
neglect the explicit ln T term. One finds

Ĩ1 
∫ ∞

0
dx̃

∫ x̃

−x̃

dq̃
1

ex̃ − 1
= 2

∫ ∞

0
dx̃

x̃

ex̃ − 1
= π2

3
(H34)

and

Ĩ2 
∫ ∞

0
dx̃

x̃2

ex̃ − 1

∫ ∞

x̃

dq̃
1

(q̃/π )2 + x̃2
= π3 arctan π

6
,

(H35)
and we have also neglected the (2q̃/π )2 term in the denom-
inator of Ĩ1 of Eq. (H31) to perform the integration. From
Eq. (H33), the resistivity follows as

ρ = 3(1 + (π arctan π )/2)T

2v‖(eρ0vF)2
, (H36)

such that ρ ∼ T .
Second, we evaluate Ĩ1/2 in Eqs. (H31) and (H32) including

logarithmic corrections. Since q̃ < x̃ in Ĩ1, we set x̃ − q̃  x̃.
One finds from Eq. (H31)

Ĩ1 
∫ ∞

0
dx̃

∫ x̃

−x̃

dq̃
1

ex̃ − 1

x̃2

(2q̃/π )2[ln x̃ + ln T ]2 + x̃2
.

(H37)

The above q̃ integral has the typical scale

q̃typ = − πx̃

2(ln x̃ + ln T )
, (H38)

such that the main contribution to the integral comes from
the |q̃| � q̃typ sector, while the tail x̃ � |q̃| > q̃typ is only
subleading. We have chosen the sign such that q̃typ is positive
for x̃ < 1 and T < 1. Neglecting the contribution from the
tails, we obtain

Ĩ1 
∫ ∞

0
dx̃

1

ex̃ − 1

∫ ∞

−∞
dq̃

1

1 + (q̃/q̃typ)2

= −π2

2

∫ ∞

0
dx̃

x̃

ex̃ − 1

1

ln x̃ + ln T
. (H39)

We split the remaining integral in two contributions Ĩ1 
Ĩ�T + Ĩ�x̃ , such that the first one Ĩ�T captures the limit
1 > x̃ � T while the second one Ĩ�x̃ the 1 > T � x̃ limit.

For the 1 > x̃ � T limit,

Ĩ�T  − π2

2 ln T

∫ ∞

T

dx̃
x̃

ex̃ − 1

 − π2

2 ln T

∫ 1

T

dx̃ = −π2

2

1

ln T
+ O(T/ ln T ). (H40)

The 1 > T � x̃ limit gives

Ĩ�x̃  −π2

2

∫ T

0
dx̃

x̃

ex̃ − 1

1

ln x̃

 −π2

2

∫ T

0

dx̃

ln x̃
∝ − T

ln T
. (H41)

Next, we evaluate Ĩ2 in Eq. (H32) including logarithmic
corrections. Since q̃ > x̃, we set q̃ ± x̃  q̃ in the logarithms.
One finds from Eq. (H32)

Ĩ2 
∫ ∞

0
dx̃

∫ ∞

x̃

dq̃
1

ex̃ − 1

x̃2

(q̃/π )2[ln q̃ + ln T ]2 + x̃2
.

(H42)

Again, we split the integral in two contributions Ĩ2  Ĩ�T +
Ĩ�x̃ , such that the first one Ĩ�T captures the limit x̃ � T while
the second one Ĩ�x̃ the T � x̃ limit and in both cases T � 1.
For the x̃ � T limit,

Ĩ�T 
∫ ∞

T

dx̃

∫ ∞

x̃

dq̃
x̃2

ex̃ − 1

1

(q̃ ln T/π )2 + x̃2

 − π2

2 ln T

∫ ∞

T

dx̃
x̃

ex̃ − 1
 −π2

2

1

ln T
+ O(T/ ln T ),

(H43)

similar to Eq. (H40) and for T � x̃, one obtains

Ĩ�x̃ 
∫ T

0
dx̃

∫ ∞

x̃

dq̃
x̃2

ex̃ − 1

1

(q̃ ln T/π )2 + x̃2

 − π2

2 ln T

∫ T

0
dx̃ = −π2

2

T

ln T
. (H44)

The total integral is therefore

Ĩ1 = − π2

ln T
+ O(T/ ln T ), (H45)

such that the resistivity with Eq. (H33) yields

ρ = − 1

2v‖

(
3

eρ0vF

)2
T

ln T
+ O(T 2/ ln T ). (H46)

Because T is small, the second contribution is subdominant
and the resistivity scales like ρ ∼ T/| ln T |, with a logarithmic
correction compared to Eq. (H36).
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[3] M. R. Norman and C. Pépin, Rep. Prog. Phys. 66, 1547 (2003).

[4] E. W. Carlson, S. A. Kivelson, D. Orgad, and V. J. Emery,
Concepts in High Temperature Superconductivity (Springer
Berlin Heidelberg, Berlin, Heidelberg, 2004).

[5] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[6] K. Le Hur and T. M. Rice, Ann. Phys. 324, 1452 (2009).

104510-32

https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1103/PhysRevLett.63.1700
https://doi.org/10.1103/PhysRevLett.62.1193
https://doi.org/10.1103/PhysRevLett.62.1193
https://doi.org/10.1103/PhysRevLett.62.1193
https://doi.org/10.1103/PhysRevLett.62.1193
https://doi.org/10.1088/0034-4885/66/10/R01
https://doi.org/10.1088/0034-4885/66/10/R01
https://doi.org/10.1088/0034-4885/66/10/R01
https://doi.org/10.1088/0034-4885/66/10/R01
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1016/j.aop.2009.02.004
https://doi.org/10.1016/j.aop.2009.02.004
https://doi.org/10.1016/j.aop.2009.02.004
https://doi.org/10.1016/j.aop.2009.02.004


EFFECTIVE SU(2) THEORY FOR THE PSEUDOGAP STATE PHYSICAL REVIEW B 95, 104510 (2017)

[7] T. M. Rice, K.-Y. Yang, and F. C. Zhang, Rep. Prog. Phys. 75,
016502 (2012).

[8] M. R. Norman and C. Proust, New J. Phys. 16, 045004
(2014).

[9] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and
J. Zaanen, Nature (London) 518, 179 (2015).

[10] J. P. Carbotte, T. Timusk, and J. Hwang, Rep. Prog. Phys. 74,
066501 (2011).

[11] M. Eschrig, Adv. Phys. 55, 47 (2006).
[12] E. Fradkin, S. A. Kivelson, and J. M. Tranquada, Rev. Mod.

Phys. 87, 457 (2015).
[13] J. C. Campuzano, M. R. Norman, H. Ding, M. Randeria, T.

Yokoya, T. Takeuchi, T. Takahashi, T. Mochiku, K. Kadowaki,
P. Guptasarma, and D. G. Hinks, Nature (London) 392, 157
(1998).

[14] J. C. Campuzano, H. Ding, M. R. Norman, H. M. Fretwell,
M. Randeria, A. Kaminski, J. Mesot, T. Takeuchi, T. Sato,
T. Yokoya, T. Takahashi, T. Mochiku, K. Kadowaki, P.
Guptasarma, D. G. Hinks, Z. Konstantinovic, Z. Z. Li, and
H. Raffy, Phys. Rev. Lett. 83, 3709 (1999).

[15] I. M. Vishik, M. Hashimoto, R.-H. He, W.-S. Lee, F. Schmitt,
D. Lu, R. G. Moore, C. Zhang, W. Meevasana, T. Sasagawa, S.
Uchida, K. Fujita, S. Ishida, M. Ishikado, Y. Yoshida, H. Eisaki,
Z. Hussain, T. P. Devereaux, and Z.-X. Shen, Proc. Natl. Acad.
Sci. USA 109, 18332 (2012).
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[82] H. Meier, C. Pépin, M. Einenkel, and K. B. Efetov, Phys. Rev.
B 89, 195115 (2014).

[83] M. Einenkel, H. Meier, C. Pépin, and K. B. Efetov, Phys. Rev.
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[148] S. Q. Shen and X. C. Xie, J. of Phys. Cond. Mat. 8, 4805

(1996).
[149] E. Demler and S.-C. Zhang, Phys. Rev. Lett. 75, 4126

(1995).
[150] S. C. Zhang, Science 275, 1089 (1997).
[151] S. C. Zhang, J. P. Hu, E. Arrigoni, W. Hanke, and A. Auerbach,

Phys. Rev. B 60, 13070 (1999).
[152] E. Demler, W. Hanke, and S.-C. Zhang, Rev. Mod. Phys. 76,

909 (2004).
[153] E. Demler, A. J. Berlinsky, C. Kallin, G. B. Arnold, and M. R.

Beasley, Phys. Rev. Lett. 80, 2917 (1998).
[154] B. C. den Hertog, A. J. Berlinsky, and C. Kallin, Phys. Rev. B

59, R11645 (1999).
[155] C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).
[156] C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 04, 759

(1990).
[157] C. Nayak, Phys. Rev. B 62, R6135 (2000).
[158] H.-Y. Kee, H. Doh, and T. Grzesiak, J. Phys. Condens. Matter

20, 255248 (2008).
[159] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759

(1988).
[160] M. J. Lawler, K. Fujita, J. Lee, A. Schmidt, Y. Kohsaka, C. K.

Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and E.-A.
Kim, Nature (London) 466, 347 (2010).

[161] A. Mesaros, K. Fujita, H. Eisaki, S. Uchida, and J. C. Davis,
Science 333, 426 (2011).

[162] L. P. Gor’kov and A. V. Sokol, JETP Lett. 46, 420 (1987).
[163] L. P. Gor’kov and A. V. Sokol, Physica C: Superconductivity

159, 329 (1989).
[164] X. Montiel, T. Kloss, and C. Pepin (unpublished).
[165] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E.

Abrahams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996
(1989).

[166] A. A. Abrikosov, Fundamentals of the Theory of Metals
(North-Holland, Amsterdam, 1988).
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(2016).

[172] C. Collignon, S. Badoux, S. A. A. Afshar, B. Michon, F.
Laliberte, O. Cyr-Choiniere, J.-S. Zhou, S. Licciardello,

S. Wiedmann, N. Doiron-Leyraud, and L. Taillefer,
arXiv:1607.05693.

[173] L. Taillefer, S. Badoux, and G. Grissonnanche, Nature
(London) 531, 210 (2016).

[174] J. G. Storey, Europhys. Lett. 113, 27003 (2016).
[175] C. Morice and C. Pépin (unpublished).
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