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Two-channel Kondo effect and renormalization flow with macroscopic quantum charge
states
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1CNRS, Laboratoire de Photonique et de Nanostructures (LPN), 91460 Marcoussis, France
2Univ Paris Diderot, Sorbonne Paris Cité, LPN, 91460 Marcoussis, France

Many-body correlations and macroscopic quantum be-
haviors are fascinating condensed matter problems. A
powerful test-bed for the many-body concepts and meth-
ods is the Kondo model1,2 which entails the coupling of a
quantum impurity to a continuum of states. It is cent-
ral in highly correlated systems3–5 and can be explored
with tunable nanostructures6–9. Although Kondo phys-
ics is usually associated with the hybridization of itiner-
ant electrons with microscopic magnetic moments10, the-
ory predicts that it can arise whenever degenerate quantum
states are coupled to a continuum4,11–14. Here we demon-
strate the previously elusive ‘charge’ Kondo effect in a
hybrid metal-semiconductor implementation of a single-
electron transistor, with a quantum pseudospin-1/2 con-
stituted by two degenerate macroscopic charge states of
a metallic island11,15–20. In contrast to other Kondo nano-
structures, each conduction channel connecting the island to
an electrode constitutes a distinct and fully tunable Kondo
channel11, thereby providing an unprecedented access to the
two-channel Kondo effect and a clear path to multi-channel
Kondo physics1,4,21,22. Using a weakly coupled probe, we
reveal the renormalization flow, as temperature is reduced,
of two Kondo channels competing to screen the charge
pseudospin. This provides a direct view of how the predicted
quantum phase transition develops across the symmetric
quantum critical point4,21. Detuning the pseudospin away
from degeneracy, we demonstrate, on a fully characterized
device, quantitative agreement with the predictions for the
finite-temperature crossover from quantum criticality17.

In previous experimental investigations, the Kondo
quantum impurity was of microscopic nature and mostly
associated with spin6,7,9,23–25, orbital8,26, or possibly
structural degrees of freedom4,27. In the ‘charge’ Kondo
effect11,16,17, it is a pseudospin-1/2 constituted of two de-
generate states of a macroscopic quantum variable, the
electrical charge of a metallic island comprising several
billions of electrons. The role of the electrons’ spin (↑↓)
in the original spin Kondo problem10 is played by the
electrons’ location, in the island (↑) or elsewhere (↓).
Accordingly, the charge pseudospin flips when electrons
are transferred in and out of the island. The Kondo
channels, each coupling the Kondo impurity (pseudo)spin
with a distinct electron continuum, directly equate with
the different electrical conduction channels connected to
the island (distinguishing between those associated with
different values of the real electron spin). In contrast,
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Figure 1. Hybrid metal-semiconductor single-

electron transistor. a, Colorized picture of the sample

(schematic in inset) constituted of a central metallic island

(bright) connected to large electrodes (white circles) through

the quantum point contacts QPC1,2 formed in a buried 2D

electron gas (darker gray). The lateral continuous gates and

QPCp are used, respectively, to characterize the ‘intrinsic’ and

‘in-situ’ (renormalized) conductances of QPC1,2. The mag-

netic field B ≃ 3.9 T corresponds to the integer quantum Hall

regime, with the current propagating along spin-polarized

edge channels (red lines) in the direction indicated by arrows.

b, c, Kondo renormalized Coulomb peaks. Measured SET

conductance (symbols) versus gate voltage Vg (pseudospin en-

ergy splitting ∆E), for symmetric QPC1,2 set to τ1,2 ≃ 0.06

(b) at T ≃ 11.5 mK or τ1,2 ≃ 0.93 (c) at T ≃ 11.5 mK (red)

and 22 mK (gray). Continuous lines are theoretical predic-

tions (see main text, Methods). The agreement data-theory in

c establishes the predictions for the crossover from quantum

critical behavior as a function of ∆E (main text).

the electrical channels in previous Kondo nanostructures
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normally merged into a single Kondo channel (except in
the ingenious implementation of ref. 9), due to cooperat-
ive spin-flip processes involving charge transfers between
continuums. Furthermore, the charge pseudospin energy
splitting, adjusted by detuning the island from degener-
acy with a gate voltage, is fully equivalent to the Zeeman
splitting of a magnetic Kondo impurity. Finally, of prac-
tical importance, the macroscopic charge pseudospin al-
lows for large channel distances, and thereby enables full
and independent control as well as the in-situ character-
ization of every Kondo parameter, giving access to direct
comparisons with theory.

Here, we investigate a nanostructure designed to dis-
play the two-channel ‘charge’ Kondo effect11,16,17. The
device (Fig. 1a) is a hybrid metal-semiconductor single-
electron transistor (SET) with additional characteriza-
tion probes. It essentially consists of a central metal-
lic island (bright), with a continuous electronic dens-
ity of states, connected to large electrodes through two
quantum point contacts (QPC1,2), each tuned to a single
conduction channel. The QPCs are formed in a Ga(Al)As
two-dimensional electron gas (2DEG) by field effect us-
ing split gates. The 2DEG is further confined by etch-
ing (to the darker gray areas), and electrically connected
to the metallic island by thermal annealing. The lat-
eral continuous gates are used to extract the ‘intrinsic’
transmission probabilities τ1,2 characterizing QPC1,2, re-
spectively, by short-circuiting the central island. The
capacitively coupled gate voltage Vg controls the energy
difference between the island charge states. When set to
weak coupling, QPCp gives us access separately to the
‘in-situ’ conductances G1,2 of QPC1,2, respectively. Ex-
cept when specifically indicated, QPCp is disconnected.

The experiment is performed down to an electronic
temperature T ≃ 11.5 mK (Methods), in a perpendicular
magnetic field B ≃ 3.9 T that breaks the spin degeneracy
and corresponds to the integer quantum Hall effect at
filling factor 2. In this regime, the current flows along
two (spin-polarized) chiral edge channels. Red lines in
Fig. 1a represent the outer channel, closest to the edge,
with the propagation direction indicated by arrows. It is
partially transmitted across QPC1,2, whereas the inner
channel (not shown) is fully reflected and can be ignored.

We now review the main requirements for mapping the
physics of this device to the two-channel Kondo (2CK)
problem. Firstly, the typical electronic level spacing
δ in the metallic island should be much smaller than
the thermal energy: δ ≪ kBT , with kB the Boltzmann
constant16,17. We estimate δ ≈ kB × 0.2 µK (Meth-
ods), nearly five orders of magnitude smaller than kBT .
Secondly, the charging energy EC = e2/2C, with e the
electron charge and C the overall island geometrical capa-
citance, should be larger than kBT to reduce the access-
ible charge states to a pseudospin-1/2. We obtain from
standard Coulomb diamond analysis EC ≃ kB × 290 mK
(Methods). Thirdly, the metallic island should be in
nearly perfect contact with the 2DEG, in particular to
avoid resonances involving the 2DEG-metal interface.
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Figure 2. Observation of the ‘charge’ Kondo effect. a,

The normalized SET conductanceGSET/G∞, at charge degen-

eracy (δVg = 0) and for symmetric QPC1,2, is plotted as sym-

bols versus the temperature on a log scale for different values

of τ ≡ τ1 ≃ τ2. Continuous straight lines are guides to the eye

proportional to log(T ). The grey dots are the orthogonal pro-

jections of the different temperature measurements onto the

plane (τ,GSET/G∞). b, The data in a at T ≤ 80 mK, rescaled

in temperature into a universal conductance curve (symbols).

The violet dashed line displays the theoretical (thy) T ≫ TK
prediction GSET ∝ log−2(T /αTK). The red short-dashed line

displays the T ≪ TK prediction e2/2h−GSET ∝ T /TK (Meth-

ods). Inset, the extracted scaling parameter TK(τ) (symbols)

is compared to theoretical predictions (see Eqs. 2 and 3 for

the definitions of the Kondo temperatures T τ≪1
K and T num

K ,

and Methods for T 1−τ≪1
K ).

We find that the outer edge channel is fully transmit-
ted into the metallic island, with a reflection probability
smaller than 0.05% (Methods). Finally, QPC1,2 should
implement point-like contacts, with a small energy de-
pendence of τ1,2. For the experimental set points, we
find using the lateral characterization gates that τ1,2 in-
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crease monotonically with energy by at most 11% up to
2EC (Methods). Together, the last two tests rule out any
resonant effects.

From the influence of the charge states’ energy splitting
on conductance, we observe first indications of 2CK ef-
fects and establish that the measurements are performed
in a regime where this physics is expected. The meas-
ured conductance GSET of the QPC1-island-QPC2 SET
is shown as symbols versus gate voltage for symmetric
QPCs set in the tunnel and weak-backscattering regimes,
τ ≡ τ1 ≃ τ2 ≃ 0.06 (T ≃ 11.5 mK) and 0.93 (T ≃ 11.5
and 22 mK), in Fig. 1b,c respectively. The conductance
exhibits periodic peaks located at successive charge de-
generacy points (one full period ∆ ≃ 0.72 mV is shown in
Fig. 1c, Methods).

The tunnel data in Fig. 1b are compared with the pre-
diction for incoherent sequential tunneling events28

GSET =

G∞

2

2EC(δVg/∆)/kBT

sinh(2EC(δVg/∆)/kBT )

, (1)

with G∞ = (e2/h)/(τ−11 + τ−12 ) the ‘classical’ SET con-
ductance and h the Plank constant. We find that the
data (symbols) can be accurately reproduced with a fit
temperature of 10 mK (continuous line), slightly smaller
than but compatible with T ≃ 11.5 ± 1.5 mK. However,
the maximum peak conductance is much higher than the
standard prediction G∞/2 (dashed line), and G∞ was
left as a free fit parameter. Such an increase is expec-
ted from the Kondo renormalization of the conductance,
even for relatively low characteristic Kondo temperat-
ure scales TK ≪ T . In this limit, Eq. 1 is predicted to
provide a good approximation when substituting G∞ by
∼ log−2(T /αTK), with α a numerical factor17 (Methods).
Assuming τ ≪ 1, the Kondo temperature reads17:

T τ≪1
K ∼ (EC/kB) exp(−π2

/

√

4τ). (2)

In the opposite limit of weak-backscattering (1−τ ≪ 1),
the 2CK physics is expected to be well developed. We
find that the τ ≃ 0.93 data (Fig. 1c, symbols) are accur-
ately reproduced, quantitatively and without fit para-
meters, by the predictions (lines) from the theoretical
framework where the Kondo mapping is established17

(Methods).
With these indications of 2CK effects, we now provide

direct experimental evidence of Kondo physics from the
temperature dependence GSET(T ) at the charge degen-
eracy point, with QPC1,2 remaining symmetric.

In standard metallic SETs, with many opaque con-
duction channels, the peak conductance monotonically
decreases from its high temperature classical value G∞

as the temperature is reduced29. In stark contrast, we
find that GSET(δVg = 0) increases as the temperature is
reduced and, at T ≃ 11.5 mK, always exceeds the clas-
sical conductance G∞, by up to nearly 30% (Fig. 2a).
Note that the separately characterized intrinsic energy
dependencies of τ1,2 correspond to an opposite decrease
of GSET smaller than 1% for T ≲ 80 mK. Remarkably,

the conductance increase is logarithmic in T (continuous
lines, for T ≲ 80 mK), which is a typical signature of the
Kondo effect.

A characteristic of Kondo systems, arising from renor-
malization group physics2, is that they follow univer-
sal scaling laws. We demonstrate that the conduct-
ance data at T ≤ 80 mK can be rescaled into a single
curve GSET(T, τ) = GSET(T /TK), and that the extrac-
ted TK(τ) agrees with the theoretical prediction for
the Kondo temperature (Fig. 2b). The simple rescal-
ing procedure (Methods) relies on GSET overlaps for dif-
ferent τ , and on the prediction GSET(T /TK ≫ 1) ∝

log−2(T /αTK) (violet dashed line). The T ≪ TK pre-
diction e2/2h−GSET ∝ T /TK is displayed as a red short-
dashed line17 (Methods). The experimental scaling law
covers an unprecedented range of T /TK and most of
GSET ∈ [0,0.5]e2/h, thanks to the fully and independ-
ently tunable τ . Given the important GSET overlaps,
involving up to three successive values of τ , the rescaling
accuracy provides a stringent test of the universal scal-
ing law hypothesis. This conclusion is further established
by confronting extracted TK(τ) (symbols in inset) with
the predictions derived at 1− τ ≪ 1 (Methods, red short-
dashed line), τ ≪ 1 (Eq. 2, violet dashed line) and its
generalization tested numerically (continuous line)20

T num
K ∼ (EC/kB)tρ exp(−π/(4tρ)), (3)

where πtρ ≃

√

2(1 −
√

1 − τ)/τ − 1. Adjusting the un-

known theoretical prefactor to match TK(τ ≪ 1) or
TK(1 − τ ≪ 1), we find an overall agreement over the
whole range τ ∈ [0,1].
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Figure 3. Interplay of two Kondo channels revealed by

tuning the asymmetry. Main plot, the SET conductance

at charge degeneracy and T = 11.5 mK is displayed (symbols)

versus QPC1,2 ‘intrinsic’ transmission probabilities τ1,2. Nar-

row gray lines connect data points with the setting of one

QPC fixed while the other is changed. The color code rep-

resents GSET/G∞ (black lines indicate GSET = G∞). Lateral

panels represent the same data (symbols) for a fixed value of

τ2 ≃ 0.47 (left) or τ1 ≃ 0.25 (right), together with G∞ (con-

tinuous line).



4

With the ‘charge’ Kondo effect established, we turn
to exploring the 2CK physics, which originates from the
channels’ competition to screen the (pseudo)spin-1/2.
Two symmetric Kondo channels are expected to flow,
as T → 0, toward the so-called17 strong-coupling fixed
point characterized in the ‘charge’ Kondo implementa-
tion by two ballistic conduction channels (G1,2 → e2/h).
In contrast to the one-channel Kondo (1CK) effect, this
produces an over-screening of the pseudospin and, con-
sequently, a non-Fermi liquid 2CK state with collect-
ive low-energy excitations21. The 2CK state is pre-
dicted to be unstable with an energy splitting of the
pseudospin and with channel asymmetry, resulting in a
T = 0 quantum phase transition21. Indeed, in the pres-
ence of an asymmetry the most strongly coupled Kondo
channel takes over, fully screening the pseudospin-1/2 at
low temperatures and thereby hiding (decoupling) it from
the other channel (see ref. 9 for first evidence of such a
decoupling with a specific spin Kondo nanostructure30).
From the quantum phase transition perspective, the 2CK
non-Fermi liquid character appears as a general con-
sequence of the divergent correlations near the quantum
critical point (symmetric and at degeneracy)1. At finite
T ≲ TK , the quantum critical (non-Fermi liquid) beha-
vior is preserved for a range of channel asymmetries and
pseudospin energy splittings, which narrows down as T
is reduced. Consequently, a non-Fermi to Fermi liquid
crossover takes place4,21,22.

The data in symmetric QPC configurations (Fig. 1b,c,
Fig. 2b) already reveal information on the 2CK phys-
ics. First, the experimental scaling law (Fig. 2b) shows
that two symmetric Kondo channels flow monotonic-
ally toward the expected strong-coupling fixed point
(2GSET ≃ G1 ≃ G2 → e2/h as T → 0). Note that for
N ≥ 3 Kondo channels, the predicted symmetric fixed
point is different12,17,21. In particular, for the (N = 3)-
channel ‘charge’ Kondo effect, the in-situ conductance
of each of the three (symmetric) QPCs is expected to
flow toward 2 sin2

(π/5)e2/h ≃ 0.69e2/h as T → 0, see
ref. 12. Second, the crossover from quantum critical to
Fermi liquid behavior with the pseudospin energy split-
ting ∆E = 2ECδVg/∆ is explored in Fig. 1c. Starting
from a well-developed 2CK state at δVg = 0 (T /TK ≈

0.003 and 0.005), the SET conductance progressively
moves away from the strong coupling fixed point e2/2h
and, at sufficiently large ∆E, decreases as the temper-
ature is reduced from 22 to 11.5 mK. Remarkably, the
demonstrated agreement data-theory for arbitrary δVg
validates, quantitatively, the theoretical description of
the crossover17. In particular, the crossover energy scale
(such that GSET = 0.5 × e2/2h) increases with T , closely

following the generic expectation kBTK
√

T /TK (Meth-
ods; we are preparing a thorough study of the crossover).

We provide a first evidence of the channels’ com-
petition by exploring the effect of QPC asymmetry on
GSET. Symbols in Fig. 3 represent GSET(τ1, τ2) meas-
ured at T ≃ 11.5 mK at the charge degeneracy point,
while the color code corresponds to the ratio GSET/G∞.

Note that it is only for nearly symmetric QPC1,2 that
GSET exceeds the ‘classical’ value G∞ (black continuous
lines). The stronger GSET renormalization for symmet-
ric QPCs indicates that they influence each other. Strik-
ingly, GSET exhibits a maximum and then decreases as
the transmission probability of one QPC is continuously
increased with the other fixed (symbols in lateral pan-
els). This non-monotonic behavior demonstrates that the
two QPCs are not independently renormalized, and val-
idates expectations for two competing Kondo channels in
series17,22.

Figure 4. Two-channel renormalization flow. The ‘in-

situ’ (Kondo renormalized) conductances (G1,G2) measured

at T ≃ {80,38,22,14} mK at charge degeneracy are displayed

as symbols, with a line connecting different temperatures of

a same QPC1,2 setting (characterized by the ‘intrinsic’, un-

renormalized, τ1,2), and a color code associated with ∣τ1 − τ2∣
(from purple for ∣τ1 − τ2∣ ≃ 0, to red for ∣τ1 − τ2∣ ≃ 0.57). The

arrows pointing to the 14 mK conductance data points show

the flow direction for decreasing temperatures. Indicative er-

ror bars are obtained by repeating the measurement at sev-

eral nearby charge degeneracy points. The 2CK (1CK) zone

of influence is displayed as a gray (light gray) background.

The conductance flows predicted at small G1,2 ≪ e2/h, for

the parameters corresponding to the crossed data line of the

same color, are shown as dashed lines (Methods).

The 2CK phenomenology is directly revealed by the
Kondo renormalization flow of the channels’ coupling, as
temperature is reduced. It is experimentally character-
ized by the (renormalized) ‘in-situ’ conductances G1,2.
We extract G1 and G2 separately by slightly opening
QPCp, with Gp ≪ G1,2 in order to minimize its ef-
fect (Methods). Figure 4 displays the (G1,G2) renor-
malization flow for T ≃ {80,38,22,14} mK. The con-
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tinuous lines connect data points (symbols) obtained for
identical (τ1, τ2), with an arrow indicating the flow direc-
tion and a color corresponding to ∣τ1−τ2∣ (τ1,2 ≲ 0.12 and
∣τ1 − τ2∣ ≳ 0.57 are not included due to the small signal to
noise).

First, note that asymmetric G1,2 flow away from the
symmetric line, exposing plainly the development of the
predicted quantum phase transition across the symmetric
quantum critical point4,17,21,22. Second, the renormaliz-
ation flow also displays the predicted crossover from 2CK
to 1CK behavior. The 2CK zone of influence, shown as
a gray background in Fig. 4, is characterized by an in-
crease of both G1 and G2 as T is reduced. This occurs
for G1,2 ≲ 0.5e2/h (that is, T ≲ TK) or for relatively sym-
metric G1,2. The 1CK zone of influence, shown as a light
gray background in Fig. 4, is characterized by the reduc-
tion of the smallest ‘in-situ’ conductance as T is lowered,
while the largest further increases until reaching ∼ e2/h.
This occurs for asymmetric G1,2 and only if the largest
‘in-situ’ conductance is above ∼ 0.5e2/h, corresponding to
an important screening of the pseudospin. Note that the

limit of one perfectly ballistic QPC was previously invest-
igated in the context of dynamical Coulomb blockade31.

Further information are disclosed by the experimental
renormalization flow, including the temperature evolu-
tion of channel asymmetry. Intriguingly, we also ob-
serve (Fig. 4) that the ‘in-situ’ conductance of the most
strongly coupled QPC can slightly overstep the standard
quantum limit e2/h. This overshoot is robust to exper-
imental conditions, above noise level and not a simple
calibration artifact (Methods).

The present observation of the two-channel ‘charge’
Kondo effect demonstrates that Kondo physics applies to
the degenerate macroscopic quantum states of electrical
circuits. Our hybrid device allows full control and char-
acterization of the Kondo parameters, and gives access
to (N ≥ 2)-channel Kondo physics. The implementation
in the quantum Hall regime also opens the path to ex-
ploring the Kondo physics with anyonic quasiparticles, at
fractional filling factors. One limitation is the smallness
of the charging energy EC . However, we anticipate that
much higher EC are feasible by replacing the buried 2D
electron gas with a surface conductor, such as graphene.
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METHODS
Experimental setup. The measurements were performed
using standard lock-in techniques, at frequencies below
100 Hz, in a dilution refrigerator. Multiple filters along the
electrical lines and two shields at the mixing chamber protect
the sample from spurious high energy photons.
Sample. The sample is nanostructured by standard e-
beam lithography in a 70 nm deep GaAs/Ga(Al)As two-
dimensional electron gas of density 2.5 × 1011 cm−2 and mo-
bility 106 cm2V−1s−1. The metallic island is constituted of
nickel (30 nm), germanium (60 nm) and gold (120 nm).
Electronic temperature. The electronic temperature T
and the associated error bars are obtained from standard
quantum shot noise measurements across both QPC1,2 and,
at T ≥ 38 mK, also from the readings of a RuO2 thermo-
meter. The temperature stability is ascertained by measuring
the electronic temperature before and after data acquisition,
as well as with continuous RuO2 readings. For details on the
noise measurement setup see the supplementary materials of
ref. 32.
Electronic level spacing in the metallic island. The
typical energy spacing between electronic levels in the cent-
ral metallic island is evaluated from the standard expression
δ = 1/(νFΩ), with Ω the island’s volume and νF the elec-
tronic density of states per unit volume and energy in the
metallic island. Injecting the island’s volume Ω ≃ 3 µm3 and
a typical density of states for metals νF ≈ 1047 J−1m−3 (in
gold, the main constituent, νF ≃ 1.14 × 1047 J−1m−3), we find
δ ≈ kB × 0.2 µK ⋘ kBT . The very small electronic level
spacing, more than four orders of magnitude smaller than the
thermal energy kBT , verifies the essential hypothesis δ ≪ kBT
in the theory11,16,17. To further demonstrate that, in gen-
eral, the electronic level spacing in the island is fully neg-
ligible, one can compare δ with the electronic level energy
width h/τφ, where τφ is the electronic quantum coherence
time. Indeed, δ ≪ h/τφ corresponds to a continuous elec-
tronic density of states. The typical electron quantum coher-
ence time is in the 10 ns range at low temperatures in similar
diffusive metals33 (see e.g. ref. 34 for the measurement of
τφ in gold). The corresponding electronic level energy width
h/τφ ∼ kB × 5 mK ⋙ δ is therefore greater than the typical
level spacing by approximately four orders of magnitude.
Interface metallic island - 2D electron gas. It is crucial
to achieve a nearly perfect transmission of the outer electronic
channel propagating along the edge of the buried 2DEG to-
ward the central metallic island. Here, we detail the proced-
ure to precisely determine this transmission probability. The
notations are recapitulated in Extended Data Figure 1. In the
following, the lateral gates are fully depleted. First, QPC1,2,p

are set to the middle of the very flat and large (∼ 0.4 V) inter-
mediate plateau at τ1,2,p = 1 (thanks to the robust quantum
Hall effect, see Extended Data Fig. 2c for the corresponding
plateau across a lateral characterization gate) and we measure

the corresponding V
τ1,2,p=1

ii (i ∈ {1,2, p}). The transmission
probability τΩ−i of the outer edge channel from QPCi into the
metallic island is then given by the expression

V
τ1,2,p=1

ii = (2 − τΩ−i)Vi/2 + τΩ−i
τΩ−iVi/2

τΩ−1 + τΩ−2 + τΩ−p
.

Note that we made absolutely sure there are no other ways
than through the metallic island to go from QPCi to QPCj ,
with i ≠ j. This is done by etching trenches in the 2DEG un-
derneath the island (see Fig. 1a and Extended Data Fig. 1).
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Second, we eliminate calibration uncertainties by measuring

the reflected signals V
τ1,2,p=0

ii = Vi with QPC1,2,p disconnected

(depleted). The ratios V
τ1,2,p=1

ii /V τ1,2,p=0

ii give τΩ−i independ-
ently of the injection and measurement chains calibrations:

V
τ1,2,p=1

ii

V
τ1,2,p=0

ii

= (2 − τΩ−i)/2 + τΩ−i
τΩ−i/2

τΩ−1 + τΩ−2 + τΩ−p
. (4)

With this approach, we obtain ∣1 − τΩ−i∣ ≲ 3 × 10−4:

τΩ−1 = 0.9997, τΩ−2 = 1.0003, τΩ−p = 1.0001.

The outer edge channel is perfectly transmitted into the
metallic island at our experimental accuracy.
Calibration of injection and measurement chains. In
the same spirit as above, and now assuming τΩ−i = 1, we nor-
malize the signal Vij (see notations in Extended Data Fig. 1)

by the signal V
τi,j(k)=1(0)
ij measured when setting τi,j = 1 with

the other QPC disconnected, τk = 0. For i ≠ j, this gives

vij ≡ Vij/V
τi,j(k)=1(0)
ij = GiGj2h/e2

G1 +G2 +Gp
. (5)

The same information can also be extracted by solving the
set of three equations for the reflected signals (i = j)

vii ≡ Vii/V τ1,2,p=0

ii = (1 −Gih/2e2) + G2
ih/2e2

G1 +G2 +Gp
. (6)

Note that if Gp = 0, the measurements of v11, v22, v12 and v21

are redundant and only give access to GSET = 1/(G−1
1 +G−1

2 ),
but not to G1 and G2 separately.
Quantum point contacts characterization. Extended
Data Fig. 2a(b) displays as a continuous line the measured ‘in-
trinsic’ (not renormalized by Kondo effect or Coulomb block-
ade) transmission probability τ1(2) of QPC1(2) versus the gate
voltage Vqpc1(2) applied to one side of the corresponding split
gate (T ≃ 11.5 mK, no dc bias voltage). The symbols indic-
ate the QPC set points used in the experiment. Note that for
larger (less negative) values of Vqpc1,2, the ‘intrinsic’ quantum
point contact conductances exhibit a wide (∼ 0.4V) plateau,
precisely at e2/h and robust to dc voltages within the ex-
plored range ∣Vdc∣ < 100 µV. This is followed by a second
step up to 2e2/h corresponding to the opening of a second
electronic (inner edge) channel (not shown but similar to the
lateral characterization gate, see Extended Data Fig. 2c). The
insets in Extended Data Fig. 2a,b show the relative variation
of the corresponding ‘intrinsic’ QPC differential conductance
with the applied dc bias voltage, up to ∣Vdc∣ = 50 µV ≃ 2EC/e
and for τ1,2 ≃ {0.06,0.47,0.93} (data shifted vertically by 0.1
for clarity). The relatively small impact of dc bias voltage
corroborates a point-like description of the quantum point
contacts within the pertinent energy range, below EC . Note
that the broad dip visible in the transmission across QPC1 at
larger split gate voltages Vqpc1 (Extended Data Fig. 2a) has
no impact at the used experimental set points. In particular,
it does not result in strongly energy dependent transmission
probabilities (inset of Extended Data Fig. 2a and Extended
Data Fig. 2e) and it has no impact on the dynamical Coulomb
blockade low bias conductance suppression (Extended Data
Fig. 2d). To perform the measurements in Extended Data
Fig. 2a,b, both lateral characterization gates (Fig. 1a, color-
ized yellow for QPC2, not colorized for QPC1) were set to zero
gate voltage. As shown Extended Data Fig. 2c, this corres-
ponds to fully transmitting the two electronic edge channels

across the lateral gates, thereby effectively short-circuiting the
central metallic island (in normal operations the lateral char-
acterization gates are set to ≈ −0.4 V in order to deplete the
2DEG underneath, for further details regarding the lateral
characterization gates ‘switch’ operation see the supplement-
ary information in ref. 35). Extended Data Fig. 2d shows as
continuous lines the differential conductance across QPC1,2

measured at 22 mK as a function of dc voltage with the nearby
lateral characterization gate set to deplete the 2DEG (biased
at ≈ −0.4 V, as when exploring the 2CK physics) while the
lateral gate on the opposite side of the metallic island is set
to transmit the two edge channels (biased at ≈ 0 V), as il-
lustrated schematically. The central conductance dip at low
dc voltage corresponds to the dynamical Coulomb blockade
suppression of the conductance31,35, while the flat plateaus
at large dc voltages are used to extract the ‘intrinsic’ trans-
mission probabilities τ1,2 here displayed as horizontal dashed
lines. The precise values of the ‘intrinsic’ transmission prob-
abilities τ1,2 at the experimental set points, and their relative
increase ∆τ1,2/τ1,2 between zero bias and ±50 µV (corres-
ponding to our estimated experimental uncertainty on τ), are
recapitulated in Extended Data Fig. 2e.
Capacitive cross-talk. Changing the gate voltage con-
trolling one QPC also slightly affects the other ones. This
cross-talk is determined precisely using the lateral character-
ization gates, from the shift in gate voltage of the QPC ‘in-
trinsic’ conductance curves shown Extended Data Fig. 2a,b.
Thanks to the relatively important distances (several micro-
meters) between QPCs (compared to small quantum dots)
the cross-talk correction is small, typically a few percent. We
take into account the small capacitive cross-talk correction
during data acquisition.
Charging energy characterization. The charging energy
EC = e2/2C ≃ kB × 290 mK is obtained from the measured
Coulomb diamonds displayed Extended Data Fig. 3.
Conductance peak reproducibility. Although a single
period of GSET(Vg) is shown Fig. 1c, we systematically meas-
ured several nearby periods for each configuration. Extended
Data Fig. 4 displays as symbols several consecutive periods
measured at base temperature T = 11.5 mK for the same
configuration τ = 0.93 shown in Fig. 1c, together with the
quantitative theoretical prediction of Eq. 9 (continuous line).
In practice we take the average of the maximum conductance
(at charge degeneracy) measured for different periods, and
we estimate the experimental uncertainty (s.e.m.) from the
the scatter between values. For some relatively rare combina-
tions of QPC settings, temperatures and precise gate voltages,
we find anomalously small values of the maximum conduct-
ance with respect to the overall experimental standard de-
viation. We systematically eliminate such anomalous data
points, which can often be attributed to charge jumps in the
sample vicinity, by considering only the data within a win-
dow of four times the overall experimental standard deviation.
This automatic procedure removes approximately 10% of the
measured local conductance maximums. In Figs. 2,3, the ex-
tracted uncertainty (not shown) is smaller than the symbols.
In Fig. 4, the extracted experimental uncertainty is displayed
as error bars.
Theoretical expression of GSET and G1,2 at τ1,2 ≪ 1
(T ≫ TK). In the limit T ≫ TK (also corresponding to the
tunnel regime τ1,2 ≪ 1) the two Kondo channels are inde-
pendent from one another since they only weakly screen the
pseudospin-1/2. Consequently the ‘in-situ’ (Kondo renormal-
ized) conductances G1,2 ≪ e2/h renormalize independently,
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increasing as temperature is reduced near charge degener-
acy (δVg ≈ 0) due to the Kondo effect. Theory predicts that
the standard expression Eq. 1 for independent sequential tun-
neling events holds provided that the ‘intrinsic’ transmission
probabilities τ1,2 in G∞ = (e2/h)/(τ−1

1 + τ−1
2 ) are substituted

by the Kondo renormalized values17

τ1,2 → π2/ log2(max{T,2EC ∣δVg/∆∣/kB}/αTK1,2), (7)

where α is a numerical factor depending on the precise defin-
ition of TK1,2 = TK(τ1,2) (Eq. 2, see ‘Rescaling procedure’
below for the determination of α). Note that the substitution
Eq. 7 leaves the width of the conductance line shape essen-
tially proportional to temperature, although slightly narrower
in reasonable agreement with the data. Consequently, at a
good approximation in the tunnel regime, the Kondo effect
essentially results in an increased value of the parameter G∞
in Eq. 1. In this spirit, we have fitted the tunnel data shown
Fig. 1b (symbols) using Eq. 1 with the temperature and G∞
as free parameters (continuous line). In Fig. 2b, at charge
degeneracy (δVg = 0), the displayed theoretical (thy) T >> TK
prediction (violet dashed line) is given by

G
thy T /TK≫1
SET (T /TK) = 9.62

e2

h
log−2 ( T

0.0037TK
) . (8)

In Fig. 4, the displayed predictions for the renormalization
flow at small G1,2 ≲ 0.6e2/h (dashed lines with the same color
code as the corresponding data) are calculated without ad-

ditional fit parameters, using G1,2 = 2G
thy T /TK≫1
SET (T /TK1,2),

with TK1,2 = TK(τ = τ1,2) given by the previously extrac-
ted experimental scaling temperature shown in the inset of

Fig. 2b, and with G
thy T /TK≫1
SET given by Eq. 8.

Theoretical expression of GSET at τ1,2 ≈ 1. The quant-
itative expression of GSET has been established for arbit-
rary offsets from the charge degeneracy point (δVg), in the
limit where both QPC1,2 are set close to the ballistic limit
(1 − τ1,2 ≪ 1) and for low temperatures with respect to the
charging energy kBT ≪ EC (ref. 17, based on the theoret-
ical framework developed in ref. 16). The prediction shown
as a continuous line in Fig. 1c is obtained quantitatively,
without fit parameters, from the following theoretical expres-
sion (Eqs. 38, 26 and A9 in ref. 17):

GSET = e2

2h
[1 − π

3γΓ+kBT
16EC

− ∫
∞

0

Γ2
−/ cosh2(x)

(xπ2kBT /γEC)2 + Γ2−
dx],

(9)
with γ ≃ exp(0.5772) and

Γ± = 2 − τ1 − τ2 ± 2
√

(1 − τ1)(1 − τ2) cos(2πδVg/∆).

Note that we have supplemented Eq. 38 of ref. 17 with the
small correction proportional to kBT /EC in Eq. A9, following
the same procedure used in Fig. 2 of ref. 17. The function Γ−
reduces to zero when the sample is set to display the 2CK
effect (τ1 = τ2 and δVg = 0). Instead, the integral term with
Γ− in Eq. 9 determines the crossover from quantum critical-
ity, as further discussed in the next section. In symmetric
situations (τ1 = τ2) and at the degeneracy point (δVg = 0),
all the temperature dependence describing the flow toward
the 2CK state (quantum critical point) results from the term
proportional to Γ+ in Eq. 9. Without additional hypothesis
than τ ≡ τ1 = τ2 and δVg = 0, Eq. 9 can be reformulated as a
universal scaling function, whose value tends linearly toward

the quantum critical point e2/2h when the temperature goes
to 0:

GT≪TK
SET (T /T 1−τ≪1

K , δVg = 0) = e2

2h
(1 − T /2T 1−τ≪1

K ) , (10)

with the Kondo scaling temperature defined as

T 1−τ≪1
K = 2EC

π3γkB(1 − τ) . (11)

Note that although for small enough 1 − τ the Kondo tem-
perature can become larger than the charging energy EC , the
latter remains a high energy cutoff for the Kondo physics
since at larger energies (e.g. kBT ≳ EC) additional charge
states of the island become accessible. Note also that equally
valid definitions of the Kondo temperature can differ by a con-
stant multiplicative factor: replacing T /2T 1−τ≪1

K in Eq. 10 by
αT /2T 1−τ≪1

K would change the expression of T 1−τ≪1
K by the

multiplicative factor α. Here, the definition of T 1−τ≪1
K was

chosen such that GT≪TK
SET (T = T 1−τ≪1

K , δVg = 0) = 0.5 × e2/2h
(although T = T 1−τ≪1

K is beyond the range of validity of
Eq. 10). The red short-dashed line displayed in the main
panel of Fig. 2b is the quantitative prediction for GSET(T )
calculated with Eq. 10 for τ = 0.86 and EC = kB × 290 mK.
It was rescaled in T /TK using the same experimental scaling
temperature TK(τ = 0.86) ≃ 1.4 K as the τ = 0.86 data (and
not T 1−τ≪1

K (τ = 0.86) ≃ 0.075 K) to allow a direct comparison
data/theory in Fig. 2b. In the inset of Fig. 2b, a constant
multiplicative factor is applied to T 1−τ≪1

K ∝ 1/(1 − τ) (red
short-dashed line) to match the experimental scaling temper-
ature at τ ≈ 1.
Predictions for the crossover from quantum critical-
ity. In this section, we show that the predictions of Eq. 9
correspond to generic expectations for the crossover from
quantum criticality4,22,36. An asymmetry between Kondo
channels (τ1 − τ2 ≠ 0) or a lifting of the charge pseudospin de-
generacy (δVg ≠ 0) is predicted to destroy the unstable 2CK
state at vanishing temperatures; and a crossover from non-
Fermi liquid (quantum critical) to Fermi liquid behavior is
expected to take place as temperature is reduced. The corres-
ponding crossover temperature is generically expected4,22,36

to depend quadratically on the strength of the perturbations
near the symmetric (τ1 = τ2, δVg = 0) quantum critical point.
The theoretical prediction of Eq. 9 describes quantitatively
the crossover from quantum criticality for the present two-
channel ‘charge’ Kondo effect, in the presence of an asym-
metry between the two channels and/or of a pseudospin en-
ergy splitting. As generically expected, Eq. 9 predicts that
any perturbation (τ1 ≠ τ2 and/or δVg ≠ 0) results in a
SET conductance vanishing in the low temperature limit as
T 2, the standard Fermi-liquid power law (see also Eq. 39
in ref. 17). The crossover behavior is described by a single
function, independent of the perturbations (channel asym-
metry δτ = τ1 − τ2, energy splitting ∆E = 2ECδVg/∆, or
both simultaneously) that are encapsulated in the parameter
Γ−, thereby corroborating the universal behavior put forward
in ref. 36. The crossover temperature Tco can be extrac-
ted from Eq. 9. Here it is defined as the temperature at
which GSET = 0.5 × e2/2h (assuming a fully developed 2CK
state in absence of perturbation, ie neglecting the term pro-
portional to Γ+T /EC in Eq. 9). At δVg = 0 and for small
δτ ≪ 2− τ1 − τ2, one obtains from Eq. 9 the crossover temper-
ature Tco(∆E = 0, δτ) ≃ (γ2π/4)T 1−τ≪1

K (δτ)2, corresponding
to generic predictions (detailed in e.g. ref. 36). At δτ = 0 and
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for small δVg ≪ ∆, one obtains from Eq. 9 the crossover tem-
perature Tco(∆E, δτ = 0) ≃ (4/π3)T 1−τ≪1

K (∆E/kBT 1−τ≪1
K )2,

corresponding to generic predictions36.
Rescaling procedure. We show Fig. 2b that the data
GSET(T, τ) for symmetric QPCs (τ ≃ τ1 ≃ τ2) can be res-
caled into a single curve GSET(T /TK). To illustrate the pro-
cedure let us consider two successive transmissions τ and τ ′

with a conductance overlap such that one can find two data
points GSET(T, τ) = GSET(T ′, τ ′). The existence of a univer-
sal scaling law directly implies TK(τ ′)/TK(τ) = T ′/T . If such
a law exists, then the rescaled data at τ and τ ′ should match
on the full range of conductance overlap. This scheme does
not apply directly for the three lowest transmission probabil-
ities τ ≃ {0.06,0.125,0.245}, since there is no conductance
overlap. However, theory predicts17 in the corresponding
limit T ≫ TK that GSET(T ) ∝ log−2(T /αTK). Using this
expression to fit and extrapolate the τ < 0.25 data points
(dashed line in Fig. 2b), we can apply the above procedure.
Note that TK(τ) is extracted only up to an overall prefactor.
Following standard usage37, we set this prefactor such that
GSET(T /TK = 1) = 0.5 × e2/2h (half the 2CK state conduct-
ance).
Absence of numerical renormalization group calcula-
tions for GSET(T/TK). To the best of our knowledge, there
are no available numerical calculations for the measured con-
ductance GSET. Consequently, there is no theoretical pre-
diction to compare with the experimentally extracted scaling
curve GSET(T /TK) shown Fig. 2b, beyond the limits of large
or small T /TK . Quoting the authors of ref. 22, the root of
the difficulty “is that there is no mapping between the con-
ductance across the island (GSET) and the electron scatter-
ing cross-section in the generic two-channel Kondo model”.
Hopefully, future numerical works, adapted to the present
charge Kondo implementation, will fill this gap and allow a
full quantitative comparison data-theory, including at inter-
mediate values of T /TK .
Extracting separately the ‘in-situ’ conductances G1

and G2 with QPCp. The SET conductance, with QPCp
disconnected, only gives access to the series combination of
the ‘in-situ’ (Kondo renormalized) conductances G1 and G2

(GSET = 1/(G−1
1 +G−1

2 )). This is sufficient in symmetric config-
urations G1 ≃ G2, but not to extract the full renormalization
flow shown in Fig. 4. For this purpose we use an additional
probe QPCp. To minimize the effect of this probe, it is set to a
relatively small coupling with respect to G1 and G2. In prac-
tice, 1/150 < Gp/min(G1,G2) < 1/6, with the largest values
corresponding to the most asymmetric configurations between
QPC1,2. As easily checked from Eq. 5, this gives access dir-
ectly to G1/G2 = vp1/vp2 (or equivalently, G1/G2 = v1p/v2p).
Solving Eqs. 5 and 6, with the measured vij gives all three
‘in-situ’ conductances G1,2,p (provided that G1,2,p ≠ 0).
‘In-situ’ conductances above the standard quantum
limit e2/h. Some of the ‘in-situ’ conductances displayed
Fig. 4 slightly overstep the standard quantum limit e2/h for
asymmetric QPCs configurations and at low temperatures.
Although the standard quantum limit applies to a single
quantum channel connected to voltage biased reservoirs (in
contrast, the central metallic island is floating) and in the
absence of interactions, to the best of our knowledge such
a striking behavior was never observed. In principle, a par-
tial transmission of the second (inner) edge channel across
the QPC could provide a simple explanation for the observa-
tion of an in-situ conductance above e2/h. However this is
unlikely since the second electronic channel is initially com-
pletely reflected, separated from the full opening of the first

(outer) channel by a plateau very wide and very robust to
dc voltage (tested up to ∣Vdc∣ ≃ 100 µV ≈ 4EC/e). Note that
we checked in-situ that the lateral characterization gates set
to reflect the two edge channels (τlcg = 0, at Vlcg ≈ −0.4 V),
as well as QPCp when initially disconnected, remain in this
configuration in presence of the charge Kondo effect. It is
also noteworthy that in the present experimental configur-
ation, in the integer quantum Hall regime at filling factor
ν = 2, the current between the metallic island and the QPCs
is carried by two copropagating quantum Hall channels that
are coupled by the Coulomb interaction. However, for the
short distance island-QPC and very low temperatures in the
present experimental investigation, this coupling is expected
to be negligible38. A similar transient overshoot is predicted
in the related Luttinger liquid problem (at K < 1/2, see Fig. 1
in ref. 39), which corresponds to an ‘in-situ’ single channel
differential conductance above e2/h (in the context of the Lut-
tinger liquid-dynamical Coulomb blockade mapping31,40).

We here show that our intriguing observation is well above
the noise level, that the same result is obtained with differ-
ent sets of measurements, and that it is robust with respect
to injection voltage and to the coupling of QPCp. For this
purpose we focus on the set point (τ1 = 0.76, τ2 = 0.93) at
T ≃ 14 mK. Extended Data Fig. 5a,b,c,d show the normal-
ized transmitted signals vij with i ≠ j and the reflected sig-
nal 2 − vpp, measured in the linear response regime with here
Vi ≃ 1.15 µVrms < kBT /e. The displayed statistical error bars
are here obtained by repeating the measurements ten times
in a row for each data point. Possible charge offsets jumps
are ruled out from the reproducibility of the two displayed
consecutive sweeps (Vg increasing and decreasing). Note that
the same normalized data are found for the reciprocal signals
vij ≃ vji. Note also that QPCp is here set to a different tun-
ing (with a higher conductance) than the corresponding data
point in Fig. 4. First, we extract G1,2,p solving Eq. 5 with
only the transmitted signals (vij with j ≠ i). Averaging all
the data (Vg increasing and decreasing, and reciprocal signals)
at the degeneracy point, we find

G1 = 0.508 ± 0.003 e2/h,
G2 = 1.11 ± 0.02 e2/h,
Gp = 0.0387 ± 0.0005 e2/h.

Second, we show that the same result is obtained with a dif-
ferent set of measurements, now involving also Eq. 6. We use
v12/2 and 2(1 − vpp) (Extended Data Fig. 5d) corresponding
to 1/(G−1

1 +G−1
2 ) and Gp, respectively, in the limit Gp ≪ G1,2,

as well as v1p/v2p = G1/G2 Extended Data Fig. 5e). This gives
the consistent values

G1 = 0.510 ± 0.002 e2/h,
G2 = 1.107 ± 0.006 e2/h,
Gp = 0.0395 ± 0.0002 e2/h.

In fact, no averaging is required to show that G2 > e2/h
well beyond the noise level. Focusing on the smallest sig-
nal v1p/v2p = G1/G2, we observe directly in Extended Data
Fig. 5e that every data point near δVg ≈ 0 is below the red
line displaying the ratio for which G2 = e2/h. Every data
point therefore corresponds to G2 > e2/h. To further confirm
G2 > e2/h, we have also checked that this observation is ro-
bust with respect to injection voltage Vi and to the value of
Gp, as shown Extended Data Fig. 6a,b.
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Extended Data Figure 1. Measurement schematic. Schematic of the measurement setup showing explicitly the nine

different and simultaneously measured signals. Vij (i, j ∈ {1,2, p}) is the voltage measured with amplification chain i in response

to the injected voltage Vj . Trenches etched in the 2DEG in the form of a Y can be seen through the metallic island.



12

0.20.2

-0.7 -0.6 -0.5 -0.4 -0.3

0.0

0.2

0.4

0.6

0.8

1.0

τ 1

Vqpc1 (V)
-0.5 -0.4 -0.3

0.0

0.2

0.4

0.6

0.8

1.0

τ 2

Vqpc2 (V)

∆
τ 2

/τ
2

Vdc2(µ

∆
τ 1

/ τ
1

Vdc1(µV)

a

e

τ1

∆τ1/τ1

0.062 0.125 0.245 0.36 0.465 0.57 0.67 0.76 0.85 0.93

0.11 0.11 0.08 0.06 0.07 0.05 0.05 0.04 0.03 0.01

τ2

∆τ2/τ2

0.06 0.12 0.245 0.365 0.47 0.585 0.68 0.775 0.86 0.93

0.09 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.01 0.01

c

-60 -40 -20 0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

d

2e2/h

-0.40 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

0

1

2

τ l
cg

Vdc (µV)Vlcg (V)

Vdc

G
D

C
B
 (

e2 /h
)

1,
2

GDCB
1

GDCB
1,2

GDCB
2

b

τ1 τ2

0.1

0

-40 -20 200 40

0.1

0

-40 -20 200 40
V)

Extended Data Figure 2. Quantum point contact characterization. a,b, ‘Intrinsic’ transmission probability across

QPC1 (τ1; a) and QPC2 (τ2; b) measured at 11.5 mK (in the linear regime, without dc bias) by opening the QPC lateral

characterization gate (see equivalent schematic in top left insets), and plotted versus the voltage applied to the split gate

tuning the QPC. The experimental transmission set points in the main text are indicated by symbols. Inset, relative variation

of the transmission probability with dc bias voltage, shifted vertically for clarity, for τ1,2 ≃ {0.06,0.47,0.93} from bottom to top

respectively. The larger noise in the inset of panel a (mostly visible for τ1 ≃ 0.06) is from the amplification chain. c, ‘Intrinsic’

conductance across one lateral characterization gate in units of e2/h (τlcg, here adjacent to QPC1) plotted versus lateral gate

voltage Vlcg. Increasing Vlcg results in the successive full opening of two electronic channels, as schematically illustrated. In

practice, we close (open) the lateral characterization gates, corresponding to τlcg = 0 (τlcg = 2), by applying Vlcg ≈ −0.4 V

(Vlcg = 0 V). Grey shaded areas correspond to the partial opening of one of the channel, a configuration not used in the

experiment. d, Conductance of the QPCs measured at T = 22 mK versus dc voltage (continuous lines) with the adjacent lateral

gate closed (τlcg = 0) and the lateral characterization gate opposite to the metallic island set to full transmission (τlcg = 2),

which corresponds to the displayed schematic circuit. The low bias dips result from conductance suppression by the dynamical

Coulomb blockade, while the high bias plateaus correspond to the ‘intrinsic’ transmission probabilities τ1,2 (horizontal dashed

lines). e, ‘Intrinsic’ transmission probabilities τ1,2 at the experimental set points used in the main text, together with their

relative increase ∆τ1,2/τ1,2 between Vdc1,2 = 0 and ∣Vdc1,2∣ = 50 µV. This increase is the main experimental factor of uncertainty

on the determination of τ1,2.
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Extended Data Figure 3. Coulomb diamonds. The conductance GSET (brighter for larger GSET) is displayed versus gate

and dc voltages (δVg and Vdc, respectively), with both QPCs set to a low transmission probability. The Coulomb diamonds

(darker) correspond to a charging energy EC = e2/2C ≃ kB × 290 mK.
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Extended Data Figure 4. Reproductibility of conductance oscillations. Conductance across the hybrid SET when

sweeping the gate voltage across several periods for the symmetric configuration τ1 ≃ τ2 ≃ 0.93 and at base temperature

T ≃ 11.5 mK (one period shown in Fig. 1c). The symbols display the measurements, the continuous line is the quantitative

prediction of Eq. 9.



14

-0.2 0.0 0.2
0.0

0.1

0.2

0.3
v

12
/2

v
21

/2

v i
j/2

-0.2 0.0 0.2
0.000

0.005

0.010

0.015

v
1p

/2

v
p1

/2

-0.2 0.0 0.2
0.00

0.01

0.02

0.03

v
2p

/2

v
p2

/2

a b c

-0.2 0.0 0.2
0.00

0.01

0.02

0.03

0.04

2
(1

 -
 v

pp
)

δV
g

(mV)
-0.2 0.0 0.2

0.2

0.4

0.6

0.8

v
1p

/v
2p

(V
g

increasing)

v
p1

/v
p2

(V
g

increasing)

v
1p

/v
2p

(V
g

decreasing)

v
p1

/v
p2

(V
g

decreasing)
G

1/G
2

δV
g

(mV)

ed

δV
g

(mV) δV
g

(mV) δV
g

(mV)

Extended Data Figure 5. Observation of ‘in-situ’ conductances overstepping the standard quantum limit e2/h.

The displayed Coulomb peaks were measured at T ≃ 14 mK for the asymmetric QPCs configuration (τ1 ≃ 0.77, τ2 ≃ 0.93). Two

sweeps (Vg increasing and decreasing) are shown for each measurement. a,b,c, Symbols are the normalized transmitted signal

vi,j/2, with i ≠ j (Eq. 5) versus gate voltage. Each panel displays the two reciprocal signals vi,j and vj,i. The vertical lines

in panel a are visual markers used in panel e. d, Symbols are the normalized reflected signal at the probe QPCp (2(1 − vpp),
corresponding to Gph/e2 in the limit Gp ≪ G1,2). e, Symbols are the in-situ conductances ratio G1/G2, measured from both

v1p/v2p and vp1/vp2. For each measurement, the two sweeps (Vg increasing and decreasing) are shown with different symbols.

The black line is an average at a given δVg. The red line shows the value below which G2 > e2/h near charge degeneracy

(δVg ≈ 0). The error bars shown in panels a-d represent the statistical uncertainties (s.e.m.) calculated from 10 successive

measurements.
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Extended Data Figure 6. Robustness to experimental conditions of ‘in-situ’ conductances overstepping e2/h.

Symbols display the ‘in-situ’ conductance G2 measured at T ≃ 14 mK for the QPCs setting (τ1 ≃ 0.77, τ2 ≃ 0.93), and under

different experimental conditions. We find repeatedly G2 > e2/h. a, The influence on G2 of the ac injection voltages V1,2,p is

explored. The three lowest Vac correspond to V1 = V2 = Vp = Vac, whereas the fourth data point corresponds to Vp = Vac with

V1 = V2 = 1.15 µVrms. b, Exploration of the influence on G2 of the coupling strength of QPCp, characterized by Gp. The error

bars represent the statistical uncertainties (s.e.m.) calculated from 20 or more different measurements.
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