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Controlling charge quantization with quantum 
fluctuations
S. Jezouin1*, Z. Iftikhar1*, A. Anthore1, F. D. Parmentier1, U. Gennser1, A. Cavanna1, A. Ouerghi1, I. P. Levkivskyi2, E. Idrisov3, 
E. V. Sukhorukov3, L. I. Glazman4 & F. Pierre1

In 1909, Millikan showed that the charge of electrically isolated 
systems is quantized in units of the elementary electron charge e.  
Today, the persistence of charge quantization in small, weakly 
connected conductors allows for circuits in which single electrons 
are manipulated, with applications in, for example, metrology, 
detectors and thermometry1–5. However, as the connection 
strength is increased, the discreteness of charge is progressively 
reduced by quantum fluctuations. Here we report the full quantum 
control and characterization of charge quantization. By using 
semiconductor-based tunable elemental conduction channels to 
connect a micrometre-scale metallic island to a circuit, we explore 
the complete evolution of charge quantization while scanning the 
entire range of connection strengths, from a very weak (tunnel) 
to a perfect (ballistic) contact. We observe, when approaching the 
ballistic limit, that charge quantization is destroyed by quantum 
fluctuations, and scales as the square root of the residual probability 
for an electron to be reflected across the quantum channel; this 
scaling also applies beyond the different regimes of connection 
strength currently accessible to theory6–8. At increased temperatures, 
the thermal fluctuations result in an exponential suppression of 
charge quantization and in a universal square-root scaling, valid 
for all connection strengths, in agreement with expectations8. 
Besides being pertinent for the improvement of single-electron 
circuits and their applications, and for the metal–semiconductor 
hybrids relevant to topological quantum computing9, knowledge 
of the quantum laws of electricity will be essential for the quantum 
engineering of future nanoelectronic devices.

Some of the most fundamental theoretical predictions have so far 
eluded experimental confirmation. Charging effects are generally found 
to diminish as the conductances of the contacts are increased10–18; 
 however, although some measurements support the  fundamental 
prediction6–8 that charge quantization vanishes in the presence 
of one ballistic channel10–12,17, others conclude the opposite18–23. 
Unsurprisingly, the scaling behaviour predicted for the reduction of 
charge quantization6–8 has also remained elusive, until now, despite 
several attempts16,17.

A plausible explanation of the varying results regarding the charge 
quantization criteria is that, in the previously investigated devices, the 
quantum channels and the conductor were not completely distinct 
circuit elements. With a small island, in which the density of states is 
discrete, the non-local electronic wave functions merge the  connected 
channels and the island into a complex quantum conductor, where 
Coulomb interactions may play a non-trivial role. As a result,  charging 
effects can develop even if one of the conduction channels taken 
 separately is perfectly ballistic. This phenomenon is called mesoscopic 
Coulomb blockade18,22,24.

Investigating charge quantization at the most elemental single- 
channel level therefore requires tunable conduction channels linked 

to a conductor with a negligible electronic level spacing. Although this 
can be realized by making the island larger, its size must remain small 
enough to preserve charge quantization. Indeed, thermal fluctuations 
average out charge quantization unless the charging energy associated 
with the addition of one electron in the island—EC =  e2/2C, where the 
geometrical capacitance of the island C increases with size—is larger 
than the thermal energy kBT, with kB the Boltzmann constant and  
T the temperature1,2.

We have solved these conflicting requirements with the hybrid 
metal–semiconductor single-electron transistor (SET) shown in  
Fig. 1a, implementing the schematic circuit of Fig. 1b: a central  metallic 
island with a continuous density of states (coloured red in Fig. 1a, b) is 
connected to large electrodes (represented by white disks) through two 
Ga(Al)As quantum point contacts (QPCL,R) that emulate single- channel 
quantum conductors over the entire range of coupling strengths.

The metallic island, which is made of a metallic AuGeNi alloy, has 
a negligible electronic level spacing δ ≈  kB ×  0.2 μ K, five orders of 
 magnitude smaller than the base electronic temperature T ≈  17 mK. 
It is galvanically connected, by thermal annealing, to a 105-nm-deep, 
Ga(Al)As, high-mobility two-dimensional electron gas (2DEG; darker 
grey areas delimited by bright lines in Fig. 1a). Achieving an almost 
perfectly transparent metal–2DEG electrical contact is crucial to reach 
the ballistic channel limit. Remarkably, the reflection probability of 
electrons at the interface is below 0.05%.

The QPCs are located in the 2DEG and tuned by field effect with the 
voltage applied to capacitively coupled metallic split gates (coloured 
green in Fig. 1a; the top-right split gates that are coloured yellow are 
negatively biased to remove the 2DEG underneath). Besides tuning, 
the precise characterization of each QPC, independently, is necessary 
for the quantitative exploration of charge quantization versus 
 connection strength. However, in the SET configuration, the QPC 
 conductances are interconnected and renormalized by Coulomb 
 blockade. Moreover, only their series combination is accessible. To 
completely characterize QPCL,R, we implemented with adjacent gates 
(coloured blue in Fig. 1a) the on-chip switches shown in Fig. 1b. The 
measured quantities τ ≡ /G h eL,R L,R

qpc 2  (with h the Planck constant and 
GL,R

qpc the conductances of QPCL,R when switches are closed (inset of  
Fig. 1c)) directly give the ‘intrinsic’ (not renormalized by Coulomb 
blockade) electron transmission probabilities of the constitutive 
 quantum channels, which fully characterize the connection strength to 
the metallic island. As illustrated in Fig. 1c, τL(R) ≤  1 corresponds to a 
single (spin-polarized, see below) channel of transmission probability 
τL(R) across QPCL(R). For 1 <  τR ≤  2, there are two channels across 
QPCR—one fully ballistic and the other with transmission probability 
τR −  1. With this approach, we achieve an accuracy down to 0.1% near 
the ballistic limit.

The sample is immersed into a perpendicular magnetic field 
B ≈  4 T, which corresponds to the integer quantum Hall effect at filling 

1Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Université Paris Sud–Université Paris-Saclay, Université Paris Diderot-Sorbonne Paris Cité, 91120 Palaiseau, France. 2Institute for 
Theoretical Physics, ETH Zurich, CH-8093 Zurich, Switzerland. 3Département de Physique Théorique, Université de Genève, CH-1211 Genève, Switzerland. 4Department of Physics, Yale University, 
New Haven, Connecticut 06520, USA.
* These authors contributed equally to this work.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature19072


LETTER RESEARCH

4  A U G U S T  2 0 1 6  |  V O L  5 3 6  |  N A T U R E  |  5 9

factor ν =  2. In this regime, the electrical current propagates along two  
edge channels (shown as a single red line in Fig. 1a) in the direction 
indicated by arrows, which does not influence charge quantization (for 
a  specific discussion see Methods section ‘Conductance in the near-bal-
listic regime with strong thermal fluctuations’). The large Zeeman split-
ting results in the full separation between the successive openings of 
the two spin-polarized quantum channels across the QPCs (Fig. 1c).

Charge quantization in the central island is unequivocally evidenced 
by periodic oscillations of the SET differential conductance GSET (across 
QPCL–island–QPCR) when sweeping a capacitively coupled gate 
 voltage, which develop into Coulomb diamonds with d.c. bias voltage 
Vdc (Fig. 1d). With both QPCs in the tunnel regime, τL,R � 1, the span 
of the diamonds in Vdc gives the charging energy EC ≈  kB ×  0.3 K 
(C ≈  3.1 fF).

We first probe the evolution of charge quantization with  transmission 
probability directly from GSET raw periodic modulations. Figure 2a 

displays GSET measured at T ≈  17 mK and Vdc =  0 while sweeping 
the capacitively coupled gate voltage Vg (Fig. 1a), for QPCL fixed to 
τL =  0.24 and with each panel corresponding to a different QPCR  tuning 
(τR =  0.1, 0.6, 0.88, 0.98 and 1.5, from left to right). These raw data 
reveal the remarkable robustness of charge quantization to connec-
tion strength. At τR =  0.1 and τR =  0.6, the presence of sharp periodic 
peaks separated by intervals in which GSET ≈  0 signals an essentially 
unaltered charge quantization over the greater part of transmission 
probabilities. Although GSET(δ Vg) progressively evolves with increas-
ing τR <  1 into a sinusoid with non-zero minima, relatively important 
modulations of fixed (τR-independent) period persist very close to the 
ballistic limit, at τR =  0.98. In stark contrast, GSET is independent of 
Vg at τR =  1.5, confirming the predicted complete collapse of charge 
quantization in the presence of a fully ballistic channel. Note that GSET 
remains reduced by Coulomb interactions, even at τR =  1.5, as evi-
denced by the pronounced conductance dip at low Vdc (inset of Fig. 2b).  

Figure 1 | Tunable quantum connection to a metallic island. a, Coloured 
sample micrograph. A micrometre-scale metallic island (red) is connected 
to large electrodes (white circles) through two quantum point contacts 
(QPCs, green split gates) formed in a buried two-dimensional electron gas 
(2DEG; darker grey delimited by bright lines). The lateral gates (blue) 
implement short-circuit switches as shown in b. The yellow gates, tuned  
at Vg negative enough to deplete the 2DEG underneath, are capacitively 
coupled to the island and used to evidence charge quantization. In the 
applied field B ≈  4 T, the current propagates along two edge channels  
(red lines) in the direction indicated by arrows. b, Sample schematic; 
colours as in a; Q represents the excess charge that can accumulate on the 

metallic island. c, The ‘intrinsic’ (switch closed; see inset schematic) 
conductance GL,R

qpc  across QPCL,R (shown top-right and bottom left, 
respectively, in a) is shown versus split gate voltage V L,R

qpc  as black (L) and 
red (R) lines. Symbols indicate the set-points of QPCL used thereafter.  
The number and transmission probabilities of electronic channels through 
the QPC (pair of green triangles) are schematized for τR <  1and τR >  1:  
a dashed (solid) red line represents a partially (perfectly) transmitted 
channel. d, Coulomb diamond patterns in the device conductance GSET 
(larger shown brighter, from 0 in dark blue up to 0.13e2/h in white) 
measured versus gate (Vsw) and bias (Vdc) voltages for tunnel contacts 
τL,R � 1.
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Indeed, the so-called dynamical Coulomb blockade does not rely on 
a quantized island charge, but results from the discreteness of charge 
transfers across non-ballistic channels1,2.

The degree of charge quantization versus connection strength is 
characterized, separately from the dynamical Coulomb blockade renor-
malization of the channels, by focusing on the visibility of the periodic 
modulations Δ ≡( − )/( + )Q G G G GSET

max
SET
min

SET
max

SET
min , with ( )GSET

max min  the 
maximum (minimum) SET conductance over one gate-voltage period 
and, from now on, Vdc =  0. A visibility Δ Q =  1 (Δ Q =  0) signals a full 
(an absence of) charge quantization. Moreover, the visibility Δ Q is 
directly proportional to the charge oscillations of the island with gate 
voltage (that is, charge quantization) when one channel approaches the 
ballistic limit (for example, τR →  1)7,25–27. As put forward in ref. 26, this 
proportionality coefficient reduces to the numerical factor e/(2π  ×  1.59) 
for τL � 1 and kBT � EC.

Figure 2b shows Δ Q versus τR at T ≈  17 mK, with each set of symbols 
corresponding to a different tuning of the second QPC (τL ∈  {0.075, 
0.24, 0.49, 0.75, 0.975, 0.983}). The robustness of charge quantiza-
tion with the connection strength of one channel (τR) is established 
 independently of the second channel (τL), from the nearly constant  
Δ Q for τR  0.6. When further increasing τR, Δ Q noticeably 
 diminishes and systematically collapses to zero precisely at the ballistic 
critical point τR =  1. For τR ≥  1, in the presence of one ballistic channel,  
Δ Q remains perfectly null at experimental accuracy (see Methods for 
additional tests).

Power laws characterizing the scaling of charge quantization as 
τR →  1 are best revealed by plotting Δ Q versus the ‘distance’ from the 
ballistic critical point 1 −  τR >  0 on a log–log scale. As shown in  
Fig. 3, the T =  17 mK data (symbols) systematically vanish as τ−1 R  
(straight lines) for 1 −  τR  0.02.
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Figure 2 | Charge quantization versus connection strength at 
T ≈ 17 mK. a, Conductance sweeps GSET(δVg) with fixed τL =  0.24 and 
varying τR =  0.1, 0.6, 0.88, 0.98 and 1.5, from left to right, as indicated.  
b, Visibility of GSET oscillations Δ ≡ ( − )/( + )Q G G G GSET

max
SET
min

SET
max

SET
min  versus 

τR, with each set of symbols corresponding to a different QPCL set-point 
τL, as indicated, corresponding to those indicated by the matching symbols 

in Fig. 1c. Inset, dynamical Coulomb blockade renormalization of GSET 
versus d.c. voltage Vdc in the absence of charge quantization, at τL =  0.24 
and τR =  1.5. The error bars are the standard error on the mean value of  
Δ Q, obtained from the statistical uncertainty of about ten measurements 
of GSET (see Methods).
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Figure 3 | Charge quantization scaling near the ballistic critical point. 
The Δ Q data at T ≈  17 mK are displayed versus 1 −  τR on a log–log scale, 
with different symbols for the different QPCL set-points, as in Fig. 2. Solid 
lines are quantitative predictions (no fit parameters) derived assuming 
kBT � EC, 1 −  τR � 1 and either τL � 1 (top (black) line) or 1 −  τL � 1 
(bottom three (purple, green and orange) lines). The power law 

τΔ ∝ −Q 1 R  (straight, dashed lines) is systematically observed for 
1 −  τR  0.02 and at intermediate τL. The horizontal error bars arise from 
the dispersion of at least 40 transmission settings; the vertical error bars 
are calculated from the statistical uncertainty of about 10 measurements  
of one period of GSET (see Methods).
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The Coulomb blockade theory of electronic transport in the presence  
of a nearly ballistic channel (1 −  τR � 1) relies on the bosonization 
approach that was initially developed to address correlated electrons 
in one dimension. Quantitative predictions were obtained for kBT � EC 
and for a second channel in either the tunnel (τL � 1) or almost-bal-
listic (1 −  τL � 1) regime25,28. In both cases, Δ Q is expected to vanish as  

τ−1 R :

τ τ τΔ ( − )≈ . − ( )� � �Q k T E1 1; 1, 5 7 1 1R L B C R

τ τ τΔ




−





≈ . − −� �Q k T

E
E

k T
1 1 0 57 (1 )(1 ) (2)L,R

B

C

C

B
L R

Such a scaling, initially proposed in ref. 6, was also predicted for 
the gate-voltage modulation of thermodynamic quantities for 
multi- channel junctions using an extension8 of the instanton  
technique1,29.

The data establishes the τ−1 R  scaling for arbitrary τL ∈  [0, 1], 
beyond the tunnel and ballistic limits currently accessible to transport 
theory. The dashed lines in Fig. 3 display the asymptotic 
( τ− /� k T E1 L,R B C ), quantitative predictions of equation (2) for our 
completely characterized device at T =  17 mK, without fitting 
 parameters. The non-asymptotic Δ Q predictions (equation (1) for 
τL � 1; see Methods for 1 −  τL � 1) are shown versus 1 −  τR <  0.25 as 
solid lines. Data and quantitative predictions are indistinguishable  
for 1 −  τR  0.1 for τL =  0.983, τL =  0.975 and, more surprisingly, 
τL =  0.75. The  equation (1) prediction (black line in Fig. 3) remains 
noticeably (about 25%) above the τL =  0.075 data for 1 −  τR � 1. This 
numerical difference could result from the finite experimental T, 
because equation (1) is exact only at T =  0.

We now investigate the ways in which the combination of thermal 
and quantum fluctuations impacts the quantization of charge. As 
 temperature rises, the population of additional charge states is expected 
to average out charge quantization1,2. Figure 4a displays the measured 
Δ Q (symbols) versus 1 −  τR at different temperatures, from T =  17 mK 
(darker filling) to T =  166 mK (brighter filling), for the representative 
QPCL setting τL =  0.75. As naively expected, ΔQ decreases as  
T increases. In line with thermodynamic expectations8 (Methods), the 

τΔ ∝ −Q 1 R  scaling (straight lines) that originates from quantum 

fluctuations not only persists for increasing T, but extends over a 
 widening range of τR, up to the full-scale τR ∈  [0, 1].

The crossover towards this universal behaviour is established by 
comparing the rescaled visibility τΔ / −Q 1 L  for different τL settings 
with 1 −  τR. The symbols in Fig. 4b represent the rescaled data at 
T =  17 mK, T =  47 mK and T =  82 mK, with brighter filling at higher 
temperatures. As T increases, the scatter associated with the various τL 
values narrows. For T ≥  82 mK, the rescaled data collapse onto a single,  
universal (for all τL), straight line τ τΔ ∝ − −Q (1 )(1 )L R  over the  
full range τL,R ∈  [0, 1].

The temperature dependence is further characterized by plotting 
τ τΔ / − −Q (1 )(1 )L R  (determined at low enough 1 −  τR such that 
τΔ ∝ −Q 1 R ) versus temperature on a semi-log scale (Fig. 4c, 

 symbols). The kBT � EC prediction of equation (1) (equation (2)) is 
displayed as a black (green) solid line for T <  75 mK (T <  115 mK). We 
find for T ≥  82 mK (up to 166 mK, 2.8 ≤  π 2kBT/EC ≤  5.6) that the 
 different τL data points collapse onto the same exponential decay 
(dashed line in Fig. 4c): τ τΔ ≈ − − − . π /Q k T E(1 )(1 ) exp( 0 8 )L R

2
B C   .  

We have extended the Coulomb blockade theory for the conductance 
to include thermal fluctuations in the limits of tunnel or nearly ballistic 
channels (Methods). In the regime of strong thermal averaging,  
we predict τ τΔ ∝ − − −π /Q k T E(1 )(1 ) exp( )L R

2
B C (neglecting  

fac tors not exponential in T)—a dependence that is also expected for 
 thermodynamic properties8 (Methods)—in close agreement with the 
experimental findings regarding the effect of τL,R and T.

Although theoretical predictions for low-temperature  transport 
 currently apply to only the nearly ballistic and tunnel limits, we  anticipate 
that recent advances, including those in numerical  renormalization 
group methods30, will open up access to the full range of connection 
strengths. Our results may therefore provide a test-bed for strongly 
correlated electron-theoretical methods, for which non- perturbative 
techniques are ubiquitous. The understanding and on-demand control 
of charge quantization in mesoscopic circuits might lead to applica-
tions beyond the field of single electronics. The central role of charge 
quantization in the different quantum laws of electricity with  coherent 
conductors indicates that direct quantum engineering could have impli-
cations for future nanoelectronics, such as  semiconductor–metal hybrid 
devices that are crucial for  developing topologically  protected  quantum 
bits9. The hybrid implementation we have presented also  enables  further 
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Figure 4 | Crossover to a universal charge quantization scaling as 
temperature is increased. a, Symbols display Δ Q versus 1 −  τR at 
τL =  0.75 and for T ≈  17 mK, 32 mK, 47 mK, 82 mK, 119 mK and 166 mK, 
from top to bottom. The τR range over which τΔ ∝ −Q 1 R  (straight, 
dashed lines) extends up to the full interval τR ∈  [0, 1] when increasing T. 
b, The rescaled τΔ / −Q 1 L  is shown versus 1 −  τR, with a different set of 
symbols corresponding to different QPCL set-points as in c. Solid lines 
separate the data at T ≈  17 mK (top, darker filling), T ≈  47 mK (middle) 
and T ≈  82 mK (bottom, brighter filling). At T =  82 mK, all the data 
collapse onto a single universal curve τ τΔ ∝ − −Q (1 )(1 )L R . c, Symbols 

display the fully rescaled data τ τΔ / ( − )( − )Q 1 1L R  versus T on semi-log 
scale, extracted in the regime in which 1 −  τR is small enough that 

τΔ ∝ −Q 1 R ; data for τL =  0.975 are plotted only for T ≤  47 mK. 
Horizontal error bars represent the experimental temperature uncertainty 
at T =  17 ±  4 mK and T =  32 ±  1 mK. Solid lines are the quantitative 
predictions in the quantum regime kBT � EC, given by equation (1) (black, 
horizontal) and equation (2) (green, curved). The straight dashed line 
displays an exponential decay close to predictions in the presence of strong 
thermal fluctuations (see text).
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fundamental exploration,  including of charge  quantization with corre-
lated electrons such as in the  multi-channel Kondo regime and/or with 
fractionally charged anyonic quasiparticles.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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for different values of the switch conductance GR
sw. Indeed, the capacitive crosstalk 

depends on the precise paths of the edge channels, which screen the gate potentials. 
The crosstalk compensations used in the experiment when setting the adjacent 
switch from open to closed are Δ ≈−V 6 mVR

qpc   for QPCR and Δ ≈−V 10 mVL
qpc  

for QPCL.
Calibrations. The reflected signal VRR is normalized by the signal τ =V RR

0L,R  
 measured when setting τL,R =  0. The injection voltage and amplifier gain thereby 
cancel out in the expression of the SET conductance GSET:

= ( − / )τ =G e
h

V V2 1SET
2

RR RR
0L,R

To reduce the noise level, we also extract GSET from the (redundant) transmitted 
signal VLR (see Extended Data Fig. 1):

= ( / ) /τ =G e
h

V V G G2
SET

2
LR RR

0
R LL,R

with GR (GL) the gain of amplification chain R (L). The ratio GR/GL is determined 
by setting QPCL,R at τL,R =  1 and measuring both the signals reflected ( τ =V RR

1L,R ) 
and transmitted ( τ =V LR

1L,R ):

=
− /

/
≈ .

τ τ

τ τ

= =

= =
G
G

V V
V V

1
1 0105R

L

RR
1

RR
0

LR
1

RR
0

L,R L,R

L,R L,R

Experimental determination of ΔQ. For τR ≤  0.99, the signal-to-noise ratio is always 
sufficient to accurately extract the values of GSET

max,min directly from the periodic con-
ductance maximums and minimums, which stand out very strongly from the back-
ground noise. The error bars on the visibility Δ ≡ ( − )/( + )Q G G G GSET

max
SET
min

SET
max

SET
min  

were calculated from the statistical uncertainty on GSET
max,min, which is typically 

 estimated from ten different sweeps of one period. In this regime (τR ≤  0.99), the 
calculated error bars are smaller than the size of the symbol and are therefore not 
shown.

For τR ∈  [0.99, 0.998], although the periodic oscillations can still be clearly 
 distinguished in the raw data (see Extended Data Fig. 3), the above direct procedure 
would result in uncertainties that can become quite large, especially at base tem-
perature and in the presence of a weakly transmitted second channel (τL =  0.075). 
To improve our extraction of Δ Q, we take advantage of the observation that the 
conductance oscillations are sinusoidal for τR ≥  0.98 (see Extended Data Fig. 3), as 
is expected from theory (see equations (3) and (6), and solid lines in Extended Data 
Fig. 3): the visibility of the conductance oscillations Δ Q is then extracted from a 
sinusoidal fit of the conductance sweeps GSET(Vg). The displayed error bars are the 
statistical error on the mean value obtained from the distinct Δ Q values obtained 
by separately fitting approximately six different conductance sweeps. The two pro-
cedures give the same value of Δ Q in the intermediate regime τR ∈  [0.98, 0.99] for 
which they both accurately apply.

For τR ≥  1, there are no periodic oscillations directly visible in the raw conduct-
ance sweeps GSET(Vg) (see right panel in Fig. 2a). To put experimental bounds on 
the basic statement Δ Q ≈  0, we determined the visibility Δ Q (displayed Fig. 2b) 
using the following procedure. First, we determine the most probable positions of 
the conductance maximums and minimums by ‘fitting’ a conductance sweep  
(typically extending over ten Coulomb oscillation periods) with a sinusoidal 
 function at the known period of Coulomb oscillations, using its phase as a fitting 
parameter. For each of these positions, a different value of GSET

max or GSET
min is obtained 

by averaging the data over an extension of one quarter of a period (assuming 
sinusoidal oscillations, this would result in a visibility reduction smaller than 10%). 
By separately extracting GSET

max,min for the approximately ten periods, we calculate 
their mean values and estimate the corresponding standard errors. The error bars 
displayed Fig. 2b are the standard error on the mean value of Δ Q, obtained from 
the statistical uncertainty on GSET

max,min.
Predictions in the quantum asymmetric regime. In the quantum asymmetric regime  
(kBT  �  EC, τL � 1, 1 −  τL � 1), the conductance reads (equation (34) in ref. 28):

τ
γ

γξ τ Δ=
π ( )

× − − ( πδ / ) ( )τ τ−� �G e
h

k T
E

V
2

3
[1 2 1 cos 2 ] 3gSET

1,1 1
L

2 4
B

2

2
C
2 R

L R

with γ ≈  exp(0.5772), ξ ≈  1.59, Δ the gate-voltage period and δ Vg the gate-  
voltage difference from charge degeneracy. In the ballistic limit (1 −  τR =  0), 
the conductance does not depend on gate voltage, but vanishes as T2 following 
 quantitatively, with the exact same pre-factor, the dynamical Coulomb blockade 
predictions2 for the same EC and the corresponding series resistance R =  h/e2. Using 
equation (3), the visibility of the oscillations of conductance reads:

τ τ γξ τΔ ( − )= − ( )� �Q 1, 1 1 2 1 4L R R

METHODS
Sample. The sample is nanostructured by standard e-beam lithography in a GaAs/
Ga(Al)As 2DEG located 105 nm below the surface, of density 2.5 ×  1011 cm−2 and 
mobility 106 cm2 V−1 s−1. The ohmic contact between the micrometre-scale 
 metallic island and the buried 2DEG is obtained by thermal diffusion into the semi-
conductor of a metallic multilayer of nickel (30 nm), gold (120 nm) and  germanium 
(60 nm); see, for example, ref. 31. See methods in ref. 32 for the estimation of the 
typical energy spacing between electronic levels in the central metallic island on 
the same sample.
Experimental set-up. The measurements were performed in a dilution  refrigerator 
including multiple filters along the electrical lines and two shields at the  mixing 
chamber. Conductance measurements were carried out by standard lock-in 
 techniques at low frequencies, below 100 Hz, taking advantage of the chiral 
 current propagation in the quantum Hall regime (see Extended Data Fig. 1). Noise 
 measurements for the electronic temperature were performed in the megahertz 
range using a homemade cryogenic amplifier (for details, see the supplementary 
information of ref. 33).
Electronic temperature. The displayed electronic temperatures correspond to 
those extracted on-chip using either quantum shot noise primary thermometry34 
or thermal noise thermometry, with error bars encapsulating also the outcome 
of Coulomb blockade oscillations primary thermometry (at T ≤  32 mK) and/or 
standard thermometry from RuO2 resistors thermally anchored to the mixing 
chamber (at T ≥  32 mK).
Interface between the metallic island and the 2DEG. A 2DEG–metallic island 
transmission probability τΩ–out >  0.9995 is obtained with the self-calibrated 
 procedure described below. Here, the switches are set in open positions as in  
Fig. 1b (with edge channels following the red lines shown Fig. 1a and Extended 
Data Fig. 1). First, QPCL,R are set at τL,R =  1, in the middle of the very flat and broad 
intermediate plateau (owing to the robust quantum Hall effect), and we measure 
the reflected signal τ =V RR

1L,R  (see Extended Data Fig. 1). The average transmission 
probability τΩ–out of the first (outer-edge quantum Hall) channel emitted from 
QPCL and QPCR into the metallic island then reads:

–τ= ( − / )τ =
ΩV G V1 4RR

1
R out RL,R

with VR the (a.c.) voltage applied at the input of QPCR (see Extended Data Fig. 1) 
and GR the gain of amplification chain R. Second, we eliminate calibration uncer-
tainties by measuring the reflected signal =τ =V G VRR

0
R RL,R  with QPCL,R depleted 

(τL,R =  0). The ratio /τ τ= =V VRR
1

RR
0L,R L,R  gives τΩ–out directly. With this approach, we 

obtain | 1 −  τΩ–out|  <  5 ×  10−4 (τΩ–out ≈ 0.9997 ±  0.0002). The same approach 
including also the second (inner-edge quantum Hall) channel gives τΩ−in ≈  0.9976. 
Note that it is usual to have better ohmic contacts with the outer quantum Hall 
channels, which are closest to the sample edges.
Short-circuit switch operation. In practice, closing the short-circuit switches is 
realized by changing the voltage applied to the adjacent characterization gate (blue 
in Fig. 1a, see Extended Data Fig. 2a for the conductance versus gate voltage of 
switch R) from − 0.35 V (2DEG depleted/switch open) to 0.1 V (two edge channels 
perfectly transmitted/switch closed).
Capacitive crosstalk corrections. The transmission probability across each QPC 
is slightly modified when changing the voltage applied either to its adjacent char-
acterization gate or to the gate tuning the other QPC. Owing to the large, 
 micrometre-scale distances, this modification remains relatively small, particularly 
near the ballistic critical point (< 1% for τL,R ∈  [0.9, 1] when changing the adjacent 
switch from closed to open). Let us first consider the crosstalk from one QPC to 
the other, which is more straightforward to extract. For this purpose, the charac-
terization gate adjacent to the QPC, for which the crosstalk is to be compensated, 
is set to its short-circuit/closed position (as in Fig. 1c) such that the gate-voltage 
change that tunes the other QPC is felt only through the capacitive crosstalk. We 
find that this crosstalk can be precisely compensated by a relatively small shift 
(approximately − 1%) of the split gate voltage. Regarding the capacitive crosstalk 
due to the adjacent characterization gate, the difficulty is to isolate this contribution 
from changes in the Coulomb blockade renormalization of the QPC conductance. 
To suppress this renormalization, the other QPC is set in the middle of its τL(R) =  1 
plateau and we apply a large d.c. bias voltage compared to the charging energy. 
Extended Data Fig. 2b displays the differential conductance of QPCR, measured 
in the presence of the applied bias VR =  72 μ Vdc, versus gate voltage VR

qpc  for the 
adjacent switch set to position open (red line) and closed (blue line). The gate 
voltage shift ΔV R

ct that is needed to compensate the crosstalk is determined at low 
QPC conductances  . /G e h0 1R

qpc 2 , for which the d.c. voltage drop across the QPC 
is nearly independent of the switch position. Extended Data Fig. 2c displays as 
symbols the crosstalk compensation for QPCR in response to increasing the 
 adjacent characterization gate voltage from =− .V 0 5 VR

sw . The amplitude of the 
negative crosstalk compensation is found to increase linearly, with different slopes 

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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The temperature dependence of τ τ−� �GSET
1,1 1L R  (associated with dynamical 

Coulomb blockade) cancels out in Δ Q. Charge discreteness also affects the 
gate-voltage dependence of thermodynamic quantities, such as the average charge 
(〈 Q〉 ) or the differential capacitance (Cdiff ≡ ∂ 〈 Q〉 /∂ Vg). The effect of Coulomb 
blockade on thermodynamic quantities was studied most comprehensively for 
tunnel junctions1,29: at T =  0 and G � e2/h, the amplitude of average charge 
 oscillations decays exponentially with Gh/e2; see, for example, refs 35–37. The 
theoretical extension to multi-channel junctions of arbitrary transmission, beyond 
the tunnel limit, was performed in ref. 8. In the presence of a single, nearly  ballistic 
channel, the bosonization approach allows for an exact solution of the average 
charge in the metallic island in the low-energy ‘quantum’ regime kBT � EC 
 (equation (26) in ref. 7):

Δ
γ τ Δ〈 〉 = −
π

− ( π / )+τ τ−� �Q
eV e V Q1 sin 2 g

1,1 1 g
R 0

L R

with Q0 a charge offset. In the ballistic limit (1 −  τR =  0), the charge increases 
 linearly with gate voltage, corresponding to an absence of charge quantization. The 
degree of charge quantization can be characterized by the relative amplitude of the 
oscillations of charge or, equivalently, by the visibility of the differential capacitance 
(Cdiff ≡  ∂ 〈 Q〉 /∂ Vg) oscillations:

τ τ γ τΔ ( − )≡
−
+

= − ( )� �C C C
C C

1, 1 1 2 1 5diff L R
diff
max

diff
min

diff
max

diff
min R

The degree of charge quantization vanishes as τ−1 R  when approaching the 
ballistic limit, and does not depend on temperature in the quantum regime 
(kBT � EC). Importantly, the visibility in the SET conductance oscillations is 
directly proportional to the visibility of the differential capacitance oscillations26, 
up to the fixed numerical factor ξ ≈  1.59:

τ τ ξ τ τΔ ( − )= Δ ( − )� � � �Q C1, 1 1 1, 1 1L R diff L R

Predictions in the quantum near-ballistic regime. In the quantum near-ballistic 
regime (kBT � EC, 1 −  τL,R � 1), the conductance GSET reads (equations (38) and 
(26) in ref. 25):

∫ Γ
γ Γ

=







−

/ ( )
( π / ) +









( )
∞

−

−

G e
h

x
x k T E

x
2

1 cosh d 6SET
2

0

2 2

2
B C

2 2

with γ ≈  exp(0.5772) and

Γ τ τ τ τ Δ= ( − )+ ( − )− ( − )( − ) ( πδ / )− V1 1 2 1 1 cos 2L R L R g

with Δ the gate-voltage period. The quantitative Δ Q predictions calculated with 
the maximum and minimum of GSET inferred from equation (6) are displayed as 
coloured solid lines in Fig. 3. When approaching the ballistic critical point 
( τ− /� �k T E1 1L,R B C ), the visibility Δ Q reduces to the simple asymptotic 
expression (equation (2) with γ/π  ≈  0.57, reprinted here for convenience):

τ γ τ τΔ



−



 = π

− −� �Q k T
E

E
k T

1 1 (1 )(1 ) (7)L,R
B

C

C

B
L R

The differential capacitance (Cdiff) when one QPC approaches the ballistic critical 
point (τR →  1) reduces to the asymptotic expression (equation (41) in ref. 27):

γ
Δ

τ τ τ
Δ Δ

=− ( − ) ( − )( − )




πδ 



+τ τ− −� �C e V e4 ln 1 1 1 cos

2
diff
1 1 1

L L R
gR L

and the visibility in the oscillations of the differential capacitance reads:

τ τ γ τ τ τΔ ( − − )=− ( − ) ( − )( − )� �C 1 1 1 4 ln 1 1 1diff R L L L R

We recover the same τ−1 R  scaling behaviour near the ballistic critical point 
(τR =  1) that was found in the asymmetric regime (equations (4) and (5)), and 
which is also found in the visibility of the conductance Coulomb oscillations 
 (equation (7)). For two identical (for example, spin-degenerate) channels 
(τ ≡  τL =  τR) near the ballistic critical point (1 −  τ � 1), the differential capacitance 
reads (equations (49) and (52) in ref. 7; a factor eΔ/(2EC) was applied to match the 
definition Cdiff ≡  ∂ 〈 Q〉 /∂ Vg):

γ
Δ

τ
Δ

τ
δ
Δ Δ

=
π





 −





πδ 



+







× −




π 



+

τ τ τ− ≡ − = − �C e V k T
E

V e

4 ln (1 )sin

(1 ) cos
2

diff
1 1 1 1 2 g B

C

g

L R

When approaching the ballistic critical point (τ →  1), the visibility in the oscillations 
of the differential capacitance asymptotically vanishes as 1 −  τ, as in equation (7)  
with τL =  τR.
Predictions in the presence of strong thermal fluctuations. In the presence of 
strong thermal fluctuations, kBT � EC/π 2, charge discreteness leads to periodic 
oscillations of the observables (for example, conductance and differential 
 capacitance) while sweeping a capacitively coupled gate voltage. Quantum fluctu-
ations decrease the oscillations, which are further attenuated by thermal 
 fluctuations for increasing temperature, until the amplitude becomes exponentially 
small for kBT � EC/π 2. The exponential temperature dependence in kBT/EC is  
quite robust, applying to thermodynamic1,8,29 and transport (Methods) properties. 
It can be demonstrated in the limits of both small and large transmission  
probabilities of the conduction channels comprising the junctions, and for various 
models of the metallic island. The presence of thermal fluctuations not only  
preserves the quantum τ−1  suppression of the oscillations, but it is expected 
from the results of ref. 8 that the square-root scaling of the differential capacitance 
extends with increasing temperature, up to the full range of τL,R ∈  [0, 1]. The  
relative oscillations in the differential capacitance and in the conductance charac-
terize the degree of charge quantization equally well, both following the same 

τ τ(−π / ) ( − )( − )k T Eexp 1 12
B C L R  behaviour. Further information regarding 

the predictions and theoretical methods in the presence of strong thermal  
fluctuations are provided in the following four sections.
Differential capacitance in the tunnel limit with strong thermal fluctuations. 
This regime corresponds to kBT   � EC/π 2 and τL,R � 1. To start with, we evaluate 
the oscillatory part of the free energy of the island in the limit τL,R � 1, where the 
suppression of charge quantization is entirely due to thermal fluctuations. 
Considering high temperatures, it is convenient to transform the partition function 
of the isolated island,

∑=





−
( ) 





( ) = ( − )
=−∞

∞ N
N NZ E

k T
E E nexp ,

n

n
n

B
C

2

using the Poisson summation formula; the result is

∑=
π

(− π )




−
π 




( )
=−∞

∞
NZ k T

E
ik k T

E
kexp 2 exp 8

k

B

C

2
B

C

2

Here N  ≡  Vg/Δ  (with Δ  the period in gate voltage Vg) is the charge induced by 
the gate voltage in units of e, and the summations are performed over integers n 
and k. The k =  0 and k =  ± 1 terms in the sum in equation (8) yield, respectively, 
the leading N -independent and N -dependent contributions F0 and δ F(N ) to the 
free energy F =  − kBTln(Z) at kBT   � EC/π 2. The resulting oscillatory part of the 
differential capacitance,

Δ Δ Δ
≡




− ∂



 = −

π 



−
π 



( π ) ( )τ NN

�C e
E

F e e k T
E

k T
E

1 1
2

4 exp cos 2 9diff
1

C

2
2

B

C

2
B

C

L,R

is exponentially suppressed at high temperatures.
Differential capacitance in the near-ballistic regime with strong thermal 
 fluctuations. This regime corresponds to kBT   � EC/π 2 and 1 −  τR � 1. A similar 
suppression of oscillations of the thermodynamic characteristics can also be 
demonstrated in the case of high-transmission junctions, where both thermal and 
quantum fluctuations contribute to the reduction of charge quantization. For 
 definiteness, we consider here a single-junction case (τL =  0) with 1 −  τR � 1. 
Evaluation of τ τ= − �Cdiff

0,1 1L R  can be performed using the bosonization scheme 
developed in ref. 7. In that formalism, the N -dependent part of the differential 
capacitance reads

Δ
τ ϕδ =−

π
− π − ( )τ τ= − N�C e

E
D2 1 cos[2 0 ]diff

0,1 1
2

C
R

L R

where the bosonic quantum field ˆϕ( )= π /Q e0 2   corresponds to the charge Q̂  
passed through the junction (x =  0), and D is the energy bandwidth appearing in 
the definition of boson variables. Averaging 〈 …〉  is performed over the fluctuations 
of the field ϕ(x). The Hamiltonian describing these fluctuations consists of two 
parts7, representing the energy of particle–hole excitations and the charging energy, 
respectively. The former part depends on (∇ϕ)2 and the latter part has the form 
EC[ϕ(0)/(2π )]2. Replacement of the ground-state averaging7 with an average over 
the Gibbs distribution of fluctuations, which is proportional to exp{− [EC/(kBT)]
[ϕ(0)/(2π )]2}, results in the renormalization of the bandwidth D to a physically 
meaningful value of approximately kBT and in exponential suppression of the 
 oscillations at kBT   � EC/π 2:
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Δ
τδ ≈−
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2
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Because it follows from ref. 8, equation (10) is applicable in the full range of τR for 
kBT   � EC/π 2 (the numerical coefficient in equation (10) was established with the 
help of ref. 8). The identical exponential suppression for an almost-isolated island 
(equation (9)) is therefore simply equation (10) in the limit τR � 1. In addition, 
quantum fluctuations contribute to the same suppression factor τ−1 R  derived 
at 1 −  τR � 1 in the quantum regime kBT � EC (equation (5)). Furthermore, 
 equation (10) derived for kBT   � EC matches the T =  0 result of ref. 7 at kBT ≈  EC; 
however, given the large numerical factor π 2 in the exponent of equation (10), there 
may be a broad crossover temperature region between the two limits.
Conductance in the tunnel limit with strong thermal fluctuations. This regime 
corresponds to kBT   � EC/π 2 and τL,R � 1. Turning now to conductance oscillations, 
we again start from the simpler case of low-transmission barriers (τL,R � 1). In that 
limit, the rate equation for current carried by spin-polarized electrons yields38:
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where f(x) =  x/(1 −  e−x). Application of the Poisson summation formula to the 
above equation is tedious, but straightforward. The result is an expression for 
τ �GSET

1L,R  that involves a sum of harmonics proportional to cos(2π kN ), similar to 
equation (8). The largest term,

τ τ
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1 1 11
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does not oscillate and is simply the conductance of two resistors connected in 
series. The leading oscillatory term,
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exhibits the same exponential suppression as the differential capacitance (equation 
(9)).
Conductance in the near-ballistic regime with strong thermal fluctuations. This 
regime corresponds to kBT � EC/π 2 and 1 −  τ � 1. Regarding the conductance 
across a metallic island with high-transmission contacts, we (A) present a 
 formalism that is somewhat different from ref. 25, details of which will be published 
separately (E.I., I.P.L. and E.V.S., manuscript in preparation) and (B) further 
 establish the predictions by extending the formalism of ref. 25 to high  temperatures.

(A) In the first approach, we start from the chiral edge excitations of the integer 
quantum Hall regime, in close correspondence with the experimental  configuration. 
Although we are interested in the high-temperature limit, all the energy scales in 
the experiment remain much smaller than the quantum Hall energy gap. At such 
low energies, the quantum Hall edge states may be described by the effective 
 theory39–41. According to this theory, edge excitations can be viewed as bosonic edge 
magneto-plasmons. The corresponding one-dimensional charge density waves 
ρsα(x) (s ∈  {L, R}, α ∈  {1, 2}; see Extended Data Fig. 4 for notations) verify the 
canonical commutation relations  

′ ′ρ ρ δ δ δ( ) ( ) = (− ) π ′( − )α β
α

αβx y ie x y[ , ] 1 2s s ss
2 , 

where the sign accounts for the propagation direction of the chiral edge states, δss′ 
and δαβ are Kronecker delta functions, and δ′ (x −  y) is the derivative of the Dirac 
delta function.

The Hamiltonian of the experimental set-up contains three terms: 
ℋ =  ℋ0 + ℋint + ℋT. The first term describes the dynamics of the bare edge states:

∫∑ ρ= ( )
α

αℋ
hv
e

x x
2

d
s

s0
F
2

2

where vF is the Fermi velocity of the quantum Hall edge states. The second term 
describes Coulomb interactions at the metallic island:

ˆ= ( / − ) ( )ℋ NE Q e 12int C
2

ˆ ∫ ∫∑ϕ ϕ ρ ρ=
π

( )− ( ) =






( ) + ( )






( )
α

α α

∞

−∞
Q e x x x x

2
[ 0 0 ] d d 13L R

0
L

0
R

The first equality in equation (13) defines the Bose field operators that are also used 
in the derivation of equation (10), but here for the case of two contacts. The last 
term in the Hamiltonian describes the backscattering of electrons at the two QPCs:

= + + . .ℋ A A h cT L R

†γ ψ ψ= ( ) ( ) ( )A 0 0 14s s s s1 2

∫ψ ρ( ) =





π

( )






( )α α
−∞

D
hv

i
e

x x0 exp 2 d 15s s
F

0

where the backscattering amplitudes γL,R depend on the ‘intrinsic’ transmission 
probabilities τL,R (in the near ballistic regime, 1 −  τL(R) ≈  | γL(R)| 2/(ħvF)2).

We set the distance between the metallic island and the QPCs, which is much 
shorter than the wavelength of excitations in the experiment, to zero. We stress 
that exactly the same Hamiltonian arises in the absence of the quantum Hall 
effect, when applying the bosonization procedure to a metallic island connected 
to  reservoirs through spin-polarized electron channels (as in refs 7 and 25). 
Consequently, the predictions below apply beyond the quantum Hall  configuration 
used here as a starting point.

Focusing on the near ballistic regime 1 −  τL,R � 1, we apply the scattering  theory 
approach developed in refs 42 and 43. The average 〈 I〉  ≡  tr(ρI) of the current 
operator I =  vF[ρR1(0) −  ρR2(0)] is evaluated perturbatively in backscattering 
 amplitudes (equation (14)). With this aim, we express the density matrix ρ =  Uρ0U† 
in terms of its equilibrium value ρ0 ∝  exp[− (ℋ0 +  ℋint)/(kBT)], and expand the  
evolution operator ˆ ∫= 

− π / ( )U T i h tH texp 2 d T in powers of γs, where T̂exp  
indicates the time-ordered exponential. This results in the two leading terms:

∬ħ
〈 〉 = 〈 〉 + ′ ″ ( ′) ( ″) ( )ℋ ℋI I t t t t I1 d d { , [ , ]} 160 2 T T

0

where the average is taken with respect to the equilibrium density matrix ρ0.
The Hamiltonian ℋ0 +  ℋint is quadratic in plasmon operators. Consequently,  

the corresponding dynamics can be accounted for exactly within the scatter-
ing  theory approach for bosons42,43. For instance, the scattering matrix for the 
 interaction Hamiltonian ℋint (ignoring the backscattering Hamiltonian ℋT), which 
relates the currents in the incoming (L1, R2, L2, R1) and outgoing (L2, R1, L1, R2) 
channels at the frequency ω/(2π ), reads:

ω( ) =







− −
− −

− −
− −







( )S

z z z z
z z z z
z z z z
z z z z

1
2

2
2

2
2
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where z =  1/[ihω/(4EC) +  1]. Taking the limit ω →  0 (ref. 43), we determine the 
first term in equation (16): 〈 I〉 0 =  e2Vdc/(2h). The bare conductance is thus half 
the conductance quantum. In the limit of small d.c. bias Vdc, the second term can 
be rewritten as

ħ
† †

∫δ〈 〉 = ( )+ ( ) ( ) + ( )I t A t A t A Ad [ , 0 0 ]e
L R L R 02

This term contains the  coherent contribution

ħ
⁎ † †∫γ γ ψ ψ ψ ψδ〈 〉 = ( ) ( ) ( ) ( ) ( )I e t t tRe d 0, 0, 0, 0 0, 0 18osc 2 L R L2 L1 R1 R2 0

which oscillates as a function of the induced charge eN .
In general, one can use the scattering matrix equation (17) to evaluate the 

 average in equation (18), which leads to a complex expression (E.I., I.P.L. and E.V.S., 
manuscript in preparation). However, the leading high-temperature asymptotics 
can be found using exactly the same argument as for the case of the differential 
capacitance considered above. Specifically, according to equation (15), the particu-
lar value of the charge Q in the island leads to the phase shift of exp[2π i(Q/e −  N )] 
in the correlation function in equation (18). Therefore, by averaging the correlation 
function over instant fluctuations of this charge, which are distributed with the 
equilibrium Gibbs weights (proportional to exp[− (Q/e)2EC/(kBT)]), we determine 
the high-temperature behaviour of the oscillating part of the current:

∫

τ τ
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2
dc
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The validity of this simplified approach is confirmed by calculations (E.I., I.P.L. 
and E.V.S., manuscript in preparation).
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(B) An alternative route of calculation amounts to re-working equation (A5) of 
ref. 25 for the case 1 −  τL,R � 1 or equation (A27) for the asymmetric case τL � 1, 
1 −  τR � 1. In either case, the largest term in the limit kBT � EC/π 2 is, 
 unsurprisingly, N -independent. Like equation (11), it represents the conductance 
of two junctions connected in series: G∞ ≈  e2/(2h) in the case of 1 −  τL,R � 1 and 
G∞ ≈  (e2/h)τL in the case τL � 1, 1 −  τR � 1. The leading oscillatory term in the 
former case is

τ τδ ( ) ≈




−
π 



( − )( − ) ( π )τ− � N NG T e

h
k T
E

, exp 1 1 cos 2SET
1 1

2 2
B

C
L RL,R

In the asymmetric case, the factor τ τ( − )( − )1 1L R  in the above expression is 
replaced by τ τ−1L R . The visibility of conductance oscillations now reads:

τ τΔ ≈




−
π 



( − )( − )Q k T

E
exp 1 1

2
B

C
L R

This form correctly extrapolates between the symmetric and asymmetric cases.
Conductance at T ≈ 17 mK versus quantum regime predictions. Although the 
visibility Δ Q of the oscillations in the SET conductance best reflects the degree 
of charge quantization, we can also confront experiment and theory directly at 
the underlying conductance-sweeps level. In Extended Data Fig. 3, we compare 
GSET(δ Vg) measurements (symbols) and predictions near the ballistic critical 
point (1 −  τR ≈  0.02 and 0.004) with QPCL in both the tunnel (τL =  0.075) and 
almost perfectly transmitted (1 −  τL ≈  0.02) regimes. Solid lines are calculated 
with the electronic temperature T =  17 mK, using equation (3) for the top two 
panels (asymmetric regime, τL =  0.075) and equation (6) for the bottom two panels 
(near ballistic regime, τL =  0.983). The grey areas correspond to the experimental 
uncertainty of ± 4 mK. The demonstrated agreement validates the full prediction 
for the renormalized SET conductance.
Charge quantization based on conductance or transmission probability values. 
Theory predicts that as soon as one conduction channel connected to the metallic 
island is ballistic, the charge in the island is completely unquantized. Here we show 
that charge quantization collapses systematically at the ballistic critical point τR =  1, 
independent of the setting of the second channel (τL <  1). We further demonstrate 
that the crucial ingredient is not the overall conductance, but the presence of a 
perfectly transmitted channel. For this purpose, we compare the two configurations 
displayed in Extended Data Fig. 5a, b. In both configurations, QPCL is tuned to the 
same standard setting corresponding to a single conduction channel of ‘intrinsic’ 
transmission probability τL =  0.24. In both configurations, QPCR is set to the same 

overall intrinsic conductance τ≡ / = . /G e h e h1 5R
qpc

R
2 2 . However, in the first  

 configuration (Extended Data Fig. 5a) QPCR decomposes into one ballistic  channel 
and one channel of intrinsic transmission probability 0.5, whereas in the second 
configuration (Extended Data Fig. 5b) it decomposes into two non-ballistic 
 channels of intrinsic transmission probabilities 0.7 and 0.8. (In practice, the QPCR 
of the second configuration is realized using two different physical QPCs biased 
at the same voltage.) As shown Extended Data Fig. 5c, the SET conductance 
 displays strong oscillations in the second configuration, signalling charge 
 quantization in the absence of a ballistic channel. By contrast, the SET conductance 
in the first configuration does not depend on gate voltage, signalling a completely 
unquantized island charge in the presence of one ballistic channel.
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Extended Data Figure 1 | Measurement schematic. The signal VLR (VRR) 
is the voltage measured with amplification chain L (R) in response to the 
injected voltage VR. The trenches etched in the 2DEG, which can be seen 
in the form of a ‘Y’ through the metallic island, ensure that the only way 

from one QPC to the other is across the metallic island. The experiment 
is performed in the quantum Hall regime at filling factor ν =  2, where the 
current propagates along the edges in the direction indicated by arrows.
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Extended Data Figure 2 | Crosstalk compensation. a, (Intrinsic) 
conductance GR

sw across the characterization gate adjacent to QPCR versus 
gate voltage V R

sw. In the experiment, the left and right switches are 
independently set to the open and closed positions with =− .V 0 35VR,L

sw  
and = .V 0 1VR,L

sw , respectively (vertical arrows in c). b, QPCR differential 
conductance in the presence of a d.c. bias of 72 μ V (‘72 μ Vdc’) versus QPC 
gate voltage V R

qpc. The red and blue lines are measured with the adjacent 
switch in the open and closed positions, respectively (see inset 
schematics). The voltage drop across QPCR is smaller with the switch 

open, owing to the added series resistance. Although this does not result in 
a large error, because GR

qpc depends weakly on voltage bias, this effect is 
minimized by extracting the crosstalk compensation ΔV R

ct at low 
 . /G e h0 1R

qpc 2 . c, Symbols represent the crosstalk compensation ΔV R
ct,  

with respect to the gate voltage =− .V 0 5 VR
sw , versus V R

sw. Lines are  
linear fits of the crosstalk compensation at =G 0R

sw  (red, − 2.8% relative 
compensation), < < /G e h0 2R

sw 2  (green, − 1.1% relative compensation)  
and = /G e h2R

sw 2  (blue, − 1.4% relative compensation).
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Extended Data Figure 3 | Conductance measurements versus quantitative predictions. Direct GSET(δ Vg) comparison at T ≈  17 mK between data 
(symbols) and predictions (solid lines, grey areas correspond to the temperature uncertainty of ± 4 mK) in the two limits addressed by theory  
(equation (3) for τL ≈  0 (top panels), equation (6) for τL ≈  1 (bottom panels)).
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Extended Data Figure 4 | Theoretical description of the experimental 
set-up in formalism (A) for strong thermal fluctuations. We consider 
the regime of the quantum Hall effect, where only one spinless edge mode 
contributes to the transport. The corresponding edge states are described 
by four charge density operators, labelled by s ∈  {L, R} and α ∈  {1, 2}. 
These states are mixed (backscattered) at the two QPCs (red dashed lines) 

with amplitudes γL and γR (equations (14) and (15)). The edge densities 
enter into the interaction Hamiltonian (equation (12) through the total 
charge Q̂ of the metallic island (equation (13)). The average current 〈 I〉   
is calculated through a cross-section immediately to the right of QPCR 
(vertical blue lines).
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Extended Data Figure 5 | Charge quantization based on conductance versus  
transmission probability values. a, b, Schematics of the configurations,  
both with the same QPCL setting τL =  0.24. In the configuration shown in a,  
QPCR is set to an ‘intrinsic’ conductance τ≡ / = . /G e h e h1 5R

qpc
R

2 2 , which 
decomposes into one ballistic channel and one channel of intrinsic 
transmission probability 0.5. In the configuration shown in b, QPCR is set 

to the same intrinsic conductance = . /G e h1 5R
qpc 2 , which now decomposes 

into two non-ballistic channels of intrinsic transmission probabilities  
0.7 and 0.8. c, Sweeps of the device conductance are plotted versus gate 
voltage for the two configurations (a, red triangles; b, black squares). 
Conductance oscillations are visible only in the configuration shown in b, 
in the absence of a ballistic channel connected to the island.
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