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ABSTRACT

LaB6–ZrB2 composites obtained by directional solidification at eutectic compo-

sition have been investigated by low-energy electron microscopy (LEEM) and

thermal emission electron microscopy (ThEEM). The transitions from the mirror

electron microscopy mode to the LEEM mode for the hexa- and diborides

indicate lower work functions of the two phases when embedded in the com-

posite compared to the corresponding single phases. In the composite, the work

function of the ZrB2 fibers is similar to that of the matrix and ThEEM images

display a brighter contrast for the fibers. This is explained by the thermally

activated diffusion of La on the fiber surface.

Introduction

Lanthanum hexaboride single crystals are widely

used as electron emitters due to their low work

function, their lower evaporation rate compared to

refractory metals at thermionic emission tempera-

tures, and their higher resistance to poisoning and

ion bombardment. Due to these reasons, LaB6 is one

of the most widely used thermionic emission cath-

odes for a variety of applications and has been

particularly useful as hollow cathodes in Hall thrus-

ters [1]. However, there are drawbacks with the

material. LaB6 is susceptible to thermal shock and

this must be taken into account when determining

operating parameters. Early on it was recognized the

LaB6 directionally solidified eutectics (DSEs) could

offer improvements in mechanical stability while still

preserving the electron emission properties of pure

LaB6 [2]. High-purity, defect-free LaB6 DSE single

crystals were produced by zone refining at the
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National Academy of Science of Ukraine from the 60s

[3]. Investigation of alloying elements to improve the

emission properties has been carried out in Pr

Paderno’s laboratory, which showed the non-solu-

bility of d-transition metal atoms in the hexaboride

and the formation of LaB6–MeB2 eutectics for metals

of the IV column (Ti, Zr, Hf) [4]. Directional solidifi-

cation at the eutectic compositions resulted in in situ

composites made of a regular array of diboride fibers

in a LaB6 matrix. An improvement in the fracture

toughness compared to LaB6 was measured in these

eutectics [5, 6], beneficial for their resistance to ther-

mal cycling. Local investigation of their mechanical

behavior showed crack deflection around the fibers

[7, 8]. Differences in thermal expansion of the two

constituents induce thermal residual stresses on

cooling responsible for the interface driven composite

effect. In addition, an increase in the emission current

density and a decrease in the work function com-

pared to LaB6 and to off-eutectic compositions could

be measured [9], as illustrated in Fig. 1a, b. The

highest emissive properties were obtained for

Me = Zr at the eutectic composition of 21% wt ZrB2

and 79% wt LaB6. The physical mechanisms leading

to the specific emissive behavior of the composite are

not fully established. The hypothesis of an easier

diffusion of lanthanum to the external surface

through the LaB6/ZrB2 interfaces and fiber surfaces

has been proposed [10]. An increased emissivity of

the LaB6/ZrB2 interfaces due their distinct electronic

structure, and the surrounding stress field has also

been discussed. Hence, ab initio calculations applied

to Cu(100) surfaces under different strain states

revealed a clear dependence of the work functions to

the strain [11]. The aim of this paper is to provide a

local mapping of the emissive properties of the

Figure 1 a Emission density at 1800 K of LaB6–MeB2 compos-

ites as a function of weight % addition of MeB2 (Me = Zr, Ti,

Hf). The maxima of emissivity are obtained at the eutectic

compositions [9]. b Variation in temperature of the work function

of LaB6 and of the three eutectics LaB6–MeB2 [9]. c Optical

micrograph of the LaB6–ZrB2 composite at eutectic composition

showing a regular distribution of ZrB2 fibers in a LaB6 matrix.
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eutectic to identify the emissive areas and compare

their work functions. These investigations have been

achieved using low-energy and thermal emission

electron microscopies (LEEM, ThEEM) that provide

the spatial resolution required to discriminate the

matrix, interface, and fiber behaviors.

Materials and methods

The LaB6–ZrB2 eutectics and their parent single

phases were solidified at the Frantsevitch Institute for

Problems of Materials Sciences in Kiev using induc-

tion heating and a crucible-free zone melting process

in argon atmosphere [3]. Disks of cross sections were

mechanically polished to mirror finish. A typical

optical image of the regular array of fibers obtained at

the eutectic composition is shown in Fig. 1c. The

samples were then introduced in the preparation

chamber of the PEEM/LEEM (PEEM/LEEM III

Elmitec GmbH at CEA-IRAMIS, Saclay) and

annealed at 10-7 mbar and 1250 �C for 10 min to

clean the surface and remove surface oxides. The as-

prepared eutectics were directly transferred into the

ultra-high vacuum (10-10 mbar) of the PEEM/LEEM

chamber.

Results

Structure of the surfaces—LEED and Auger
analyses

Low-energy electron diffraction patterns were first

recorded on the matrix to check the surface quality. If

a thin amorphous oxide layer were covering the

sample, no periodic pattern would be obtained. The

pattern displayed in Fig. 2a shows the crystallinity of

the (001) surface (LaB6: cubic Pm3m, a = 0.4157 nm).

LEED patterns recorded on the fibers display

hexagonal array of spots (red larger circles) typical of

(0001) ZrB2 surface (ZrB2: hexagonal, P6/mmm,

01 10

00

(a) (b)

(c)

Figure 2 LEED patterns of a

the hexaboride matrix (001)

surface and b the fiber (0001)

surface. In addition to the

hexagonal array of spots of

ZrB2 (red circles), a square

array is observed (yellow

circles). c Calibration of the

pattern with the 1�100 of ZrB2

(2.74 Å) is used to determine

the inverse distance between

two yellow spots (217

pixels 9 2.74 Å/224

pixels = 2.65 Å). Within the

precision of the diagram, the

spots correspond to 200 of b-
La (fcc, a = 5.30 Å,

d200 = 2.65 Å).
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a = 0.3169 nm c = 0.3530 nm) (Fig. 2b). These

diffraction patterns obtained on transverse cross

sections of the eutectic show that the c~axes of the two

phases are almost parallel and close to the solidified

rod axis. This is consistent with previous TEM and

XRD analyses [8, 12]. An additional set of spots is

observed (yellow circles forming a deformed square)

that cannot be assigned to LaB6 matrix but could

result from (001) plane of the b-La (cubic Fm �3 m

a = 0.5304 nm). b-La is a high-temperature allotropic

form seen from *300 �C that can be stabilized down

to room temperature by impurities [13]). This is well

supported by Auger data. Figure 3 shows before and

after results of thermal anneal cycle. It can clearly be

seen that after annealing the La/B ratio has increased.

These results suggest that an excess of La is present

on the surface.

Quantitative differences in their work
functions—MEM/LEEM transition

A series of images were recorded at room tempera-

ture to determine the mirror electron microscopy

(MEM) mode/LEEM mode transition [14], [15]. The

sample is biased to a negative potential close to that

of the LEEM electron gun (-20 kV). The potential

difference between the sample and the gun is termed

start voltage (SV) and was varied from -5 to 5 V by

increments of 0.1 V. Representative images are dis-

played in Fig. 4. At the lowest negative values of SV,

the primary electrons cannot penetrate the sample,

which is known as mirror mode. In mirror mode,

electrons are reflected on an equipotential surface just

above the sample surface. The image intensity is high

and shows a plateau or increases slightly when SV is

gradually increased, up to a threshold value at which

the intensity drops abruptly. At this voltage SV0, the

vacuum energy levels of the gun equals that of the

sample and electrons can be injected into the sample

and a weak back scattered electron signal is obtained.

When SV is increased above SV0, the image intensity

increases as more electrons are back scattered, see

Fig. 5. SV0 represents the difference in work function

between the sample and the electron source. As the

work function of the source is constant, larger SV0

indicates higher work function of the probed phase.

Moreover, if the two phases do not have the same

work functions, the drops of intensity are not seen at

the same start voltages.

The mean intensities in the matrix and in the fibers

have been calculated for each start voltage using a

series of masks applied separately on the two phases.

The variations of the obtained intensities as a func-

tion of the start voltage are shown in Fig. 5 for ZrB2

Figure 3 Auger electron

spectroscopy of LaB6/ZrB2

surface before and after

annealing. After annealing

shows an increase in La

relative to B, which supports

La diffusion model previously

proposed.
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and LaB6 in the eutectic. Figure 5 shows a drop of

intensity at *0.9 V for the fibers and *1.1 V for the

matrix. The same methodology has been followed for

the pure parent phases, LaB6 and ZrB2, and the cor-

responding curves are also shown in Fig. 5 to com-

pare the threshold values given by these four curves.

The main information is that the work functions of

the two phases are significantly lower (*-0.4 eV)

when embedded in the composite than as single

phases. In addition, if the work function of ZrB2 is

higher than that of LaB6 in the single phases, it seems

slightly lower in the composite.

Thermal emissivity—ThEEM maps

To map the variation of thermal emissivity across the

section of the composite, the sample was heated to

750 �C, the electron gun of the LEEM switched off

and an electronic image was built from the electrons

thermally emitted. The corresponding ThEEM ima-

ges are shown in Fig. 6. In this imaging mode, no

electron or photon source is used. Only thermally

emitted electrons are used for imaging. Conse-

quently, the brightest areas in the image will repre-

sent areas with the lowest work function. It is clearly

Figure 4 Representative MEM/LEEM images recorded at room

temperature for increasing start voltages from -5 volts to 5 volts.

For an easier visualization, the mean contrasts have been

normalized. Starting from -5 V (MEM mode), the absolute

intensity is increasing slightly up to 0.9 V where it starts to

decrease (to LEEM mode). At 0.9 V, the fibers become darker than

matrix. The contrast is reversed at 1.1 V. This earlier drop of the

fibers intensity than the matrix intensity could be explained by a

lower work function for the diboride.
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seen that the brightest areas are located on/around

the ZrB2 phase compared to the LaB6 matrix phase.

(0001) ZrB2 has a work function of *4.7 eV [16] and

should not emit before the (001) LaB6 matrix phase

with a work function *2.7 eV [17]. Two possible

explanations exist that could result in the lowering of

the work function on the ZrB2 phase. The first

explanation for this is the strain state in the material.

It was previously shown that the ZrB2 in the LaB6/

ZrB2 DSE exists in a state tension due differences in

coefficients of thermal expansion [5] [18]. Tensile

stress has been shown to decrease the work function

of Cu (100) surface [11]. It is possible that a similar

effect is occurring with the eutectic. The second

explanation could be surface diffusion of La metal on

the diboride phase creating the optimal dipole

arrangement for lowering the work function barrier.

Although neither mechanism can be ruled out, a La

diffusion mechanism is well supported by LEED and

Auger data.

Discussion

A decrease of *0.4 eV of the work function of the

composite compared to hexaboride single crystal is

measured in these room temperature MEM/LEEM

transition experiments. This confirms the better

emissive behavior of the eutectic announced by the Pr

Paderno’s group. The local investigations by LEEM

and ThEEM of this work have elucidated the role of

the fibers in the composite behavior. The diboride

work function is significantly reduced when incor-

porated in the LaB6 matrix (MEM/LEEM transition).

The LEED patterns of the fibers suggest their partial

coverage by La. Lanthanum vapor pressure at

1050 �C of La is about 3 10-8 mbar which is more

than 5 orders of magnitude higher than that of B and

Zr [19]. The annealing step carried out before the

LEEM characterization at 1250 �C to remove surface

oxides might have induced an evaporation or diffu-

sion of La, partially covering the fiber surfaces. The

La richer surface layers explain the brightest contrast

observed on the fibers in ThEEM. The scenario

Figure 5 Variation of the mean intensity in LaB6 and ZrB2 phases

in the MEM/LEEM images as function of the start voltage around

the MEM/LEEM transition. As the constant reference work

function of the source is not precisely known, the curves indicate

the relative values of the work functions of the phases. The start

voltage is increased by 0.5 V between two x axis ticks.

Figure 6 Thermal emission images of the composite at a 770 �C and b 740 �C, showing a brighter contrast for the fibers.

5542 J Mater Sci (2017) 52:5537–5543



proposed by Pr Paderno’s group is validated. An

additional effect of the tensile strain field on the fibers

is expected.
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