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We report a study on the complete spin-wave spectrum inside a vortex state nano-disk. Transfor-
mation of this spectrum is continuously monitored as the nano-disk becomes gradually magnetized
by a perpendicular magnetic field and encouters a second order phase transition to the uniformly
magnetized state. This reveals the bijective relationship that exists between the eigen-modes in the
vortex state with the ones in the saturated state. It is found that the gyrotropic mode can be con-
tinuously viewed as a uniform phase precession, which uniquely softens (its frequency vanishes) at
the saturation field to transform above into the Kittel mode. By contrast the other spin-wave modes
remain finite as a function of the applied field while their character is altered by level anti-crossing.

Magnetic equilibrium configurations adopting a sin-
gular topological texture such as a vortex [1], bubble
[2, 3], or skyrmion [4, 5] are currently attracting a lot
of attention as they allow engineering of the spin-wave
(SW) spectrum with potentially improved performances
for spintronic devices [6, 7]. An important feature is here
the energy density of states, which oversights inter-mode
coupling. It has been found that this coupling limits the
performance of spin transfer devices as it was shown in
spin-orbit torque experiments [8–11]. So far the most ef-
fective topology that splits apart the bottom part of the
energy spectrum is the vortex ground state. It introduces
a large gap between the fundamental mode (the so-called
gyrotropic mode) [12, 13] and the rest of the spectrum
[14, 15]. The gyrotopic mode corresponds to a rotation of
the vortex core around its equilibrium position at the disk
center (the core being the small region where the mag-
netization points out-of-plane). Because of near transla-
tional invariance for small aspect ratio disks, it leads to a
large renormalization of the associated eigen-frequency,
typically found to lie below 1 GHz [12]. Never the less, it
remains coupled to the higher part of the SW spectrum
through an effective mass [16, 17]. Despite numerous ex-
perimental [15, 18–21] and numerical [22–25] works on
the dynamics of the vortex state, a complete mapping
of the SW spectrum above the gyrotropic mode has not
yet been proposed. Of particular concern is the existence
of hidden modes, whose odd symmetry shows no overlap
with a spatially uniform averaging [26]. In parallel recent
works on the sum rule invariance of the magnetic suscep-
tibility have underlined the continuity of the spectrum
independently of the magnetization texture [27]. Still,
this argument of invariance has never been fully trans-
lated to a spectral point of view due to the difficulty of
establishing continuity between different regions of the
phase diagram.

In order to address this fundamental question, we pro-

FIG. 1. (Color online) a) Micromagnetic simulations per-
formed on a vortex-state FeV nano-disk with R = 100 nm
radius, t = 10 nm thickness, meshed adaptively around its
center. b) Variation of its reduced longitudinal (black) and
azimuthal (green) magnetization along an upward perpendic-
ular magnetization cycle (the dashed line is the behavior of
the order parameter for a critical exponent = 0.5). The above
schematics show the equilibrium configurations simulated for
three increasing values of the perpendicular field Hz.

pose to calculate the SW spectra of a magnetic nano-disk
along an upward perpendicular magnetization cycle. The
perpendicular configuration allows to monitor the trans-
formation of the SW spectrum as the magnetization tex-
ture evolves continuously from the vortex state to the
uniform state, by thus avoiding any abrupt change of
the equilibrium configuration [22, 28, 29]. To fully ac-
count for the spectral bijectivity, it is also important to
calculate all possible eigen-vectors, including the hidden
modes aforementioned. This can only be achieved by
using an eigen-solver, which directly diagonalizes the lin-
earized Landau-Lifshitz equation.

In this work, we have used the SpinFlow3D micromag-
netic simulation package, a finite element simulation plat-
form for spintronics, which has been previously validated
extensively for accurate computation of eigen-modes in
nano-objects [26, 30]. All micromagnetic simulations pre-
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TABLE I. Parameters used in the simulation: magnetization,
gyromagnetic ratio, exchange length, radius, thickness.

µ0Ms γ Λex R t
(T) (rad·s−1·T−1) (nm) (nm) (nm)

1.7 1.873 × 1011 4.3 100 10

sented below are performed on the same R = 100 nm
radius and 10 nm thickness disk, whose volume has been
meshed adaptively around the core singularity (see mesh
in Fig. 1a). The mesh-size is 1.6 nm in the central area of
the disk (r < 25 nm) and is increased homothetically to
reach 6 nm at the periphery. The simulation is fully 3D
thanks to three discretization layers along the thickness
to account for the potential texture in the perpendicu-
lar direction (for a total of 8883 nodes). The magnetic
parameters used in the solver are the ones of FeV listed
in Table I [30]. A first numerical solver is used to calcu-
late the equilibrium state for different values of the per-
pendicular magnetic field. It uses a Galerkin type finite
element implementation of the very efficient projection
scheme introduced in Ref. [31]. Fig. 1b shows the normal
magnetization cycle produced by an upward perpendic-
ular magnetic field swept between 0 and 2 T along +z.
The initial state introduced in the simulation is a vortex
configuration, with the vortex core pointing towards +z.
The magnetization cycle shows an almost linear increase
of the spatially averaged normal component, 〈Mz〉, up to
the saturation field, which happens at µ0Hs = 1.525 T.
The growth of Mz occurs mainly through the canting of
the peripheral spins which gradually tilt in the perpen-
dicular direction to form the so-called cone state [22] (see
above schematic in Fig. 1b). By contrast, the averaged
azimuthal component, 〈Mφ〉, which can be viewed as the
order parameter (see green curve in Fig. 1b), vanishes
continuously at Hs indicating a second order phase tran-
sition [29].

Once the equilibrium magnetization is established at
fixed values of the applied field, a second numerical
solver calculates the eigen-states of the lossless linearized
Landau-Lifshitz equation. It solves the corresponding
generalized eigen-value problem in the vicinity of the pre-
computed equilibrium state. It is solved with an iterative
Arnoldi method [32] using the ARPACK library [33]. In
this calculation the full complexity of the 3D micromag-
netic dynamics is preserved. The solver outputs in a few
minutes both the eigen-values by increasing order of en-
ergy and the associated eigen-vectors. In this work, we
have restricted the output to the first 24 lowest energy
modes. The results are displayed in Fig. 2. We have sep-
arated the results in two panels depending on the sense
of gyration of the SW determined in reference to the core
polarity.

Three remarkable features are observed in Fig. 2. The

FIG. 2. (Color online) Simulated spin-wave spectra of the
nano-disk as a function of the perpendicular field Hz. Modes
are labeled (`m), respectively the azimutal and radial indices.
The two panels differentiate SW depending on their sense
of gyration: a) ` > 0 and b) ` ≤ 0. Snapshot images of the
eigen-vectors in the vortex (µ0Hz = 0 T) and saturated states
(2 T) are shown on the left and right sides respectively (bi-
variate color code, where amplitude/phase = luminance/hue).
c) Zoom view of the softening of the gyrotropic mode at Hs

(the dashed line shows the dependence for a critical exponent
= 0.3).

first one is the apparent one-to-one mapping between the
eigen-modes in the vortex state and the saturated state
(the discontinuities observed at the edge of the shaded
area are just an artifact of the calculation constraints,
where only a finite number of modes are followed). The
second remarkable feature is the behavior of the low-
est energy mode shown by the continuous black line in
Fig. 2b. This mode is the gyrotropic mode below Hs and
the Kittel mode above. Its frequency uniquely vanishes
at Hs, while the eigen-modes above the gyrotropic mode
always resonate at finite frequency. Such behavior seems
generic to resonance modes in the presence of domain
walls (see chap. 8 of [34]). The third one is that, con-
trary to the saturated state, where the modes evolve in
parallel as a function of the applied magnetic field, in the
vortex state the higher order energy levels intercept each
other. It suggests that a careful analysis of the continu-
ity of the mode character is required in the open range
]0, Hs[. In the following, we shall analyze in more depths
these three features.

We start with the identification of the SW spectrum.
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Several works have studied the higher order modes in
a vortex state nano-disks [15, 22, 24]. In particular the
spatially averaged dynamic susceptibility tensor has been
calculated [23]. In a recent review, we have performed
such a calculation for a downward perpendicular field
sweep and a positive field branch (see Fig. 4 in Ref.[29]).
It was found that the in-plane component of the dynamic
susceptibility varies in strength along the cycle and al-
most disappears close to the saturation field, leaving a
blank window near Hs, which prevented the establish-
ment of the continuity between the two phases. While
this hurdle does not affect the output of SpinFlow3D
shown in Fig. 2 and the continuity could be established
by refining the field sweep (small dots in Fig. 2 indicate
the different field values at which a spectrum has been
calculated), the character of each SW mode in the vortex
state remains to be assigned.

Finding the label of each eigen-state displayed in Fig. 2
requires to analyze the associated eigen-vectors. Such
an analysis exists for the saturated state, where a label-
ing scheme has already been proposed [35]. Above Hs,
the eigen-vectors form the complete set of Bessel func-
tions [26, 36] and each eigen-state is fully described by
two numbers (`m), respectively the azimutal and radial
indices indicating the winding numbers in these two di-
rections. [Note that a third label indicating the mode
index along the thickness is not necessary here [37]. For
our 10 nm thin disk, one can safely consider that all
modes are uniform along the thickness. Higher order
perpendicular standing SW modes indeed occur outside
the spectral range discussed here.] Snapshot images of
the precession profiles for the normally magnetized disk
are shown on the right side of Fig. 2 using a bi-variate
coloring scheme: the hue codes the phase and the lumi-
nance codes the amplitude. The winding numbers are
inferred from the images by counting respectively the
number of times a color is complementary/repeated in
the radial/azimuthal directions.

Below Hs a local magnetic texture emerges and the
unit vector û pointing in the direction of the equilibrium
magnetization becomes dependent on the spatial coordi-
nates (see Fig. 3). The norm of the magnetization being
a constant of the motion, the possible eigen-vectors sat-
isfy the local orthogonality condition to û. Possible di-
rections for the dynamical magnetization component are
represented in Fig. 3a by a small torus attached to the
magnetization vector, whose phase reference still needs
to be properly defined. In the saturated state, the phase
reference is naturally a fixed cartesian direction. Hence
the transformation of the local frames between two posi-
tions separated by the azimuthal angle φ occurs through
a rotation of the reference frame by an angle +φ around
the disk center followed by a rotation around û by an an-
gle −φ. Such transformation can be generalized to any
arbitrary texture conserving the axial symmetry. For a
vortex, the reference direction is shown by the small ar-

FIG. 3. (Color online) a) Dynamical magnetization vector
(short arrow) in the local frame of the magnetization texture
(long arrow) for the mode with a uniform phase (phase ϕ
coded with the hue color wheel). b) Top view of the (−00)
eigen-vector at Hz =0.0, 0.6, and 2.0 T using either the ampli-
tude/phase representation or c) the cartesian directions (red-
blue indicates region of opposite polarity). Radial profile of
the normalized rms amplitude (continous line) compared with
the analytical prediction (dashed line); the local value of the
static magnetization Mz is shown for comparison using a dot-
ted line.

row in Fig. 3a. At µ0Hz = 0 T the dynamical vector for
a mode with a uniform phase operates a full rotation in
the clockwise direction as one follows the curling magne-
tization anti-clockwise along the periphery. We have put
on the left side of Fig. 2 the zero field snapshot images
associated with each eigen-value output by the solver.
The winding numbers of each image can now be inferred
from the color pattern. The eigen-values are colored in
Figs. 2a and 2b according to the indexation found (either
a different color to dissociate SW having different |`| < 9
index or a different line thickness to dissociate SW hav-
ing different m < 4 index). Extrapolating a straight line
between the different points underlines the existing rela-
tionship that exists between the SW modes in the vortex
and in the saturated states.

We concentrate now on the relationship that exists be-
tween the gyrotropic mode and the Kittel mode (con-
tinuous black line at the bottom of Fig. 2b). In our
representation, both modes are different manifestation
of the same uniform phase albeit defined over a back-
ground having different spatial texture. We have dis-
played in Fig. 3b a top view of the (−00) eigen-vector
at three values of the applied field: µ0Hz =0, 0.6, and
2 T. We stress that the phase of the mode (−00), as
represented in Fig. 3b, is uniform throughout the vol-
ume, including in the core region, where û points towards
the normal direction. It is interesting to note on the
representations that the spatial average of the in-plane
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component of the eigen-vector is always finite, while by
contrast, the averaged out-of-plane component vanishes.
This even/odd symmetry can be better observed by dis-
playing the same eigen-vectors along the cartesian direc-
tions (Fig. 3c). Thus this mode only couples to a uniform
rf excitation oriented perpendicular to the core magne-
tization. Another important feature to notice in Fig. 2b
is that, while the mode (−00) remains the lowest energy
mode along the whole cycle, it is also the only mode that
softens at Hs. The softening of SW modes at the criti-
cal fields between micromagnetic states has been investi-
gated for the cases of elliptical elements [38, 39] and cylin-
drical nanodots with a large perpendicular anisotropy [3].
These critical fields correspond either to a first-order or
a second-order transition. In the former case, a discon-
tinuity in the magnetization curve occurs at the critical
field and the soft mode frequency goes to zero only on
one side of the transition (jump in the ω(H) curve at
the critical field). In the latter case, the magnetization
curve is continuous at the critical field and the soft mode
frequency goes to zero continuously on both sides of the
transition. In both cases, the field dependence of the soft
mode angular frequency can be described by a power law
in the vicinity of the transition, ω∝ |H−Hs|α, where α is
the critical exponent. For elliptical elements magnetized
by a dc magnetic field applied along the minor axis, a
critical exponent α = 0.5 has already been reported [39].
As noted above, in our case the transition between the
vortex state and the saturated state is of second order.
This can be evidenced by the behavior of the order pa-
rameter which vanishes continuously at Hs with a critical
exponent 0.5 (see green dashed line in Fig. 1a). In our
case the soft mode frequency vanishes like a power law
with α = 0.3 (see black dashed curve in Fig. 2c). This is
the same exponent as the one found for cylindrical nan-
odots with a perpendicular anisotropy in the presence of
a dc magnetic field along the symmetry axis, for the soft
mode existing at the transition between the bubble state
and the saturated state [3].

Since the phase pattern of the (−00) mode is a con-
served quantity throughout the magnetization cycle, the
only quantity that is field dependent is the spatial dis-
tribution of the amplitude. It is interesting to note
that top views of the precession profiles below Hs have
a bow-tie shape. This feature is a direct consequence
of having a finite in-plane component, Mφ. Indeed in
Fig. 3a, one can see that spins in orthogonal azimuthal
direction are orthogonal to each other. Since for small
aspect ratio, pointing out-of-plane is energetically defa-
vorable compared to the in-plane direction due to de-
polarization effects, the precession is elliptical with the
small axis in the normal direction. This ellipticity is re-
sponsible for the observed amplitude modulation in the
azimuthal direction. We recall that the displayed im-
ages are snapshots: time-wise the bow-tie rotates around
the disk center at the gyrotropic frequency. To account

FIG. 4. (Color online) Zoom view of the level anti-crossing
between SW modes of different character in the vortex state.

for this time dependence of the amplitude, we have dis-
played in Fig. 3d the root mean square (rms) amplitude
averaged over one period. At zero field, one can notice
that the precession profile ρ00 (black) extends well out-
side the core region (shown by the dotted profile). An
analytical expression for the precession profile as been de-
rived [40] by Guslienko et al. using the two vortex ansatz
m00 ∝ (1/max(rc, ρ)− ρ), where rc is the core radius
and all quantitites are expressed in reduced units of R.
It is displayed by a dashed line in Fig. 3d; the predicted
behavior agrees well with the simulation. Its influence
zone increases with the perpendicular field. It reaches
a maximum in the saturated state, where it adopts a
Bessel-function shape (J0 dashed line) [41] with a node
at the periphery because of dipolar pinning [42].

Although the character of the fundamental mode re-
mains unchanged, this is not the case for the higher order
SW modes, whose ranking changes along the magnetiza-
tion cycle due to crossing of energy levels. As mentioned
above, these crossings are responsible for the apparent
discontinuities in the upper part of the spectrum. We
can note that modes that bear the same `-index but dif-
ferent m-index never cross each other. The opposite is
not true, in particular between pairs of opposite `-index.
This is best seen by putting on the same plot the results
shown in Fig. 2a and b. Fig. 4 is a zoom view of these
combined spectra between 0.2 and 0.57 T. The zoom al-
lows us to observe that the levels anti-cross due to inter-
mode coupling. It implies that the SW character can
hybridize in the vicinity of the near-degeneracy points
and the SW character can be modified by performing
adiabatic minor cycles around them. It implies also that
at these anti-crossing the ` and m-indices are not any-
more good quantum numbers. Furthermore the strength
of this coupling depends obviously on the character of
the pair considered and the analysis of this underlying
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selection rule remains to be done.
In summary, calculation of the eigen-states of a per-

pendicularly magnetized disk has allowed us to establish
the spectral relationship that exists between eigen-modes
in the vortex state and in the uniformly magnetized state.
This provides a complete mapping of the SW spectrum
above the gyrotropic mode, a particularly relevant result
for the understanding of the high energy regime of vortex-
state nano-objects, whose dynamics is governed by sec-
ond order interaction with these new possible modes.

V. V. N. acknowledges support from the program
CMIRA’Pro of the region Rhône-Alpes and from the
Competitive Growth of KFU.
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