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Universality in survivor distributions:

Characterising the winners of competitive dynamics
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We investigate the survivor distributions of a spatially extended model of competitive dynamics
in different geometries. The model consists of a deterministic dynamical system of individual agents
at specified nodes, which might or might not survive the predatory dynamics: all stochasticity is
brought in by the initial state. Every such initial state leads to a unique and extended pattern of
survivors and non-survivors, which is known as an attractor of the dynamics. We show that the
number of such attractors grows exponentially with system size, so that their exact characterisation
is limited to only very small systems. Given this, we construct an analytical approach based on
inhomogeneous mean-field theory to calculate survival probabilities for arbitrary networks. This
powerful (albeit approximate) approach shows how universality arises in survivor distributions via a
key concept – the dynamical fugacity. Remarkably, in the large-mass limit, the survival probability
of a node becomes independent of network geometry, and assumes a simple form which depends
only on its mass and degree.

I. INTRODUCTION

The fate of agents in any situation where death is a
possibility attracts enormous interest: here, death does
not have to be literal, but could also refer to bankrupt-
cies in a financial context or oblivion in the context of
ideas. This panorama of situations is usually captured
by agent-based models including predator-prey models,
the best known being the Lotka-Volterra model [1–3] or
indeed, winner-takes-all models, which embody the sur-
vival of the largest, or the fittest. The model we study
here belongs to the second category; the most massive
agents grow at the cost of their smaller neighbors, which
eventually disappear. Motivated by the physics of in-
teracting black holes in brane-world cosmology [4, 5], its
behavior in mean-field and on different lattices was inves-
tigated at length in [6], followed by simulations on more
complex geometries [7, 8]. The essence of the model in
its original context [4, 5] involved the competition be-
tween black holes of different masses, in the presence of
a universal dissipative ‘fluid’. The model also turned out
to have a ‘rich-get-richer’ interpretation in the context of
economics, where it was related to the survival dynamics
of competing traders in a marketplace in the presence of
taxation (dissipation) [9, 10].
One of the most important questions to be asked of

such models concerns the distribution of survivors, i.e.,
those agents who survive the predatory dynamics. In
spatially extended models, the presence of multiple in-
teractions makes this a difficult question to answer in
full generality. The seemingly universal distributions of
survivor patterns put forward in [7] motivated us to ask:
can one provide a theoretical framework for the appear-
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ance of some universal features in survivor distributions?
The answer is yes, as we will demonstrate in this paper.
We first introduce a much simpler version of the model

investigated earlier [6–9], which, however, preserves fea-
tures such as the exponential multiplicity of attractors
(Section II) essential to its complexity. We characterize
exactly the attractors reached by the dynamics on chains
and rings of increasing sizes (Section III), an exercise
which illustrates how a very intrinsic complexity makes
such computations rapidly impossible. This leads us to
formulate an approximate analytical treatment of the
problem on random graphs and networks (Section IV),
based on inhomogeneous mean-field theory, which yields
rather accurate predictions for the survival probability of
a node, given its degree and/or its initial mass.

II. THE MODEL

The degrees of freedom of the present model consist
of a time-dependent positive mass yi(t) at each node i
of a graph. These masses are subject to the following
first-order dynamics:

dyi
dt

=



1− g
∑

j(i)

yj



 yi. (1)

Each node i is symmetrically (i.e., non-directionally) cou-
pled to its neighbors, which are all nodes j connected to i
by a bond; g is a positive coupling constant.
The dynamics are deterministic, so that all stochastic-

ity comes from the distribution of initial masses yi(0).
This model is a much simpler version of the one investi-
gated in [6] which was inspired by black-hole physics [4,
5]. In particular the explicit time dependence and ini-
tial big-bang singularity of that model are here dispensed
with; only a simple nonlinearity, quadratic in the masses,
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is retained. Despite these simplifications, the present
model keeps the most interesting features of its predeces-
sor, such as those to do with its multiplicity of attractors.
The coupling constant g can be scaled out by means

of a linear rescaling of the masses:

zi(t) = gyi(t). (2)

The new dynamical variables indeed obey

dzi
dt

=


1−

∑

j(i)

zj


 zi. (3)

As a matter of fact, the model has a deeper dynamical
symmetry. Setting

yi(t) = ai(τ) e
t, (4)

where τ is a global proper time, so that dτ = g et dt, i.e.,

τ = g(et − 1), (5)

the dynamical equations (1) can be recast as

dai
dτ

= −



∑

j(i)

aj


 ai. (6)

Remarkably, the dynamics so defined are entirely para-
meter-free. Quadratic differential systems such as the
above have attracted much attention in the mathemat-
ical literature, such as in discussions of Hilbert’s 16th
problem (see e.g. [11, 12]).
Equations (6) can be formally integrated as

ai(τ) = ai(0) exp



−

∫ τ

0

∑

j(i)

aj(τ
′) dτ ′



 . (7)

The amplitudes ai(τ) are therefore decreasing functions
of τ . For each node i, either of two things might happen:

• Node i survives asymptotically. This occurs when
the integral in (7) converges in the τ → ∞
limit. The amplitude ai(τ) reaches a non-zero
limit ai(∞), so that the mass yi(t) grows exponen-
tially as

yi(t) ≈ ai(∞)et. (8)

• Node i does not survive asymptotically. This oc-
curs when the integral in (7) diverges in the τ → ∞
limit. This divergence is generically linear, so that
the amplitude ai(τ) falls off to zero exponentially
fast in τ , while the mass yi(t) falls off as a double
exponential in time t.

The dynamics therefore drive the system to a non-
trivial attractor, i.e., an extended pattern of survivors
and non-survivors. This attractor depends on the whole
initial mass profile (although it is independent of the
overall mass scale). The formula (7) generically implies
the following local constraints:

1. each survivor is isolated (all its neighbors are non-
survivors),

2. each non-survivor has at least one survivor among
its neighbors.

Conversely, every pattern obeying the above con-
straints is realized as an attractor of the dynamics, for
some domain of initial data. This situation is therefore
similar to that met in a variety of statistical-mechanical
models ranging from glasses to systems with kinetic con-
straints. Attractors play the role of metastable states,
which have been given various names, such as valleys,
pure states, quasi-states or inherent structures [13–17].
In all these situations the number M of metastable states
grows exponentially with system size N as

M ∼ eNΣ, (9)

where Σ is the configurational entropy or complexity.
This quantity is not known exactly in general, except in
the one-dimensional case where it can be determined by
means of a transfer-matrix approach (see Appendix A).
It is relevant to mention the Edwards ensemble here,
which is constructed by assigning a thermodynamical sig-
nificance to the configurational entropy [18]. According
to the Edwards hypothesis, all the attractors of a given
ensemble (e.g. at fixed survivor density) are equally prob-
able. This hypothesis holds generically for mean-field
models, while it is weakly violated for finite-dimensional
systems [17, 19–23].

III. EXACT RESULTS FOR SMALL SYSTEMS

In this section we consider the model on small one-
dimensional graphs, i.e., closed rings and open chains
of N nodes. In one dimension, (1) and (6) read

dyn
dt

= (1− g(yn−1 + yn+1)) yn, (10)

dan
dτ

= −(an−1 + an+1)an, (11)

for n = 1, . . . , N , with appropriate boundary conditions:
periodic (a0 = aN , aN+1 = a1) for rings and Dirichlet
(a0 = aN+1 = 0) for chains.
Equations (11) are very reminiscent of those defining

the integrable Volterra chain. The coupling term involves
the sum an−1 + an+1 in the present model, whereas it
involves the difference an−1−an+1 in the Volterra system.
The appearance of a difference is however essential for
integrability [24, 25]. The present model is therefore not
integrable, even in one dimension.
Our goal is to characterize the attractor reached by the

dynamics on small systems of increasing sizes, as a func-
tion of the initial mass profile. This task soon becomes
intractable, except on very small systems, due to the in-

trinsic complexity of the model. The numbers M
(r)
N and
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M
(c)
N of these attractors on rings and chains of N nodes

are given in Table II of Appendix A. These numbers
grow exponentially fast with N , according to (9), with Σ
given by (A5).

Ring with N = 2

The system consists of two nodes connected by two
bonds. Both attractors consist of a single survivor. The
dynamical equations (11) read

da1
dτ

=
da2
dτ

= −2a1a2. (12)

The difference D = a1 − a2 is a conserved quantity. If
a1(0) > a2(0), the attractor is 〈1〉 (meaning that only
node 1 survives) and its final amplitude is

a1(∞) = D = a1(0)− a2(0), (13)

and vice versa. The survivor is always the node with the
larger initial mass.
In the borderline case of equal initial masses, the inte-

grals in (7) are marginally (logarithmically) divergent.
Both masses saturate to the universal limit y1(∞) =
y2(∞) = 1/(2g), irrespective of their initial value.

Chain with N = 2

The two nodes are now connected by a single bond.
The dynamical equations are identical to (12), up to an
overall factor of two. Here too, the more massive node is
the survivor.

Ring with N = 3

The attractors again consist of a single survivor. Al-
though there is no obviously conserved quantity, the at-
tractor can be predicted by noticing that

d

dτ
(a2 − a1) = −(a2 − a1)a3. (14)

The sign of any difference ai − aj is therefore conserved
by the dynamics. In other words, the order of the masses
is conserved. In particular the survivor is the node with
the largest initial mass.

Chain with N = 3

The central node 2 plays a special role, so that the
two attractors are 〈2〉 and 〈13〉. There are two conserved
quantities, D = a1 − a2 + a3 and R = a1/a3. If D > 0,
the attractor is 〈13〉 and the final amplitudes read

a1(∞)

a1(0)
=

a3(∞)

a3(0)
=

D

a1(0) + a3(0)
. (15)

If D < 0, the attractor is 〈2〉 and a2(∞) = |D|.

Ring with N = 4

The two attractors are the ‘diameters’ 〈13〉 and 〈24〉.
The alternating sum D = a1 − a2 + a3 − a4 is a con-
served quantity. If D > 0, the attractor is 〈13〉 and
a1(∞) + a3(∞) = D. If D < 0, the attractor is 〈24〉
and a2(∞) + a4(∞) = |D|. The attractor is therefore al-
ways the diameter with the larger total initial mass. The
individual asymptotic amplitudes cannot however be de-
termined in general.

Chain with N = 4

The three attractors are 〈13〉, 〈14〉 and 〈24〉. The alter-
nating sum D = a1−a2+a3−a4 is a conserved quantity.
This is the first case where the attractor cannot be pre-
dicted analytically in general.
Figure 1 shows the attractors reached as a function of

a2(0) and a3(0), for fixed a1(0) = a4(0) = 0.3. It is clear
that 〈13〉 can only be reached for D > 0, i.e., above the
diagonal, whereas 〈24〉 can only be reached for D < 0,
i.e., below the diagonal. The intermediate pattern 〈14〉
is observed in a central region near the diagonal. The
form of this region can be predicted to some extent. On
the horizontal axis, the transition from 〈14〉 to 〈24〉 takes
place for a2(0) = a1(0) = 0.3. Similarly, on the verti-
cal axis, the transition from 〈14〉 to 〈13〉 takes place for
a3(0) = a4(0) = 0.3. The central region where 〈14〉 is the
attractor shrinks rapidly with increasing distance from
the origin. This can be explained by considering the dy-
namics on the diagonal, i.e., in the symmetric situation
where a1(0) = a4(0) and a2(0) = a3(0). These symme-
tries are preserved by the reduced dynamics

da1
dτ

= −a1a2,
da2
dτ

= −(a1 + a2)a2. (16)

The reduced attractor is 〈1〉, the full attractor is 〈14〉,
and D vanishes identically. The reduced dynamics have
another conserved quantity, C = a1 exp(−a2/a1). The
asymptotic amplitude a1(∞) = C becomes exponentially
small as a2(0) increases. The width of the central green
region is expected to follow the same scaling law, i.e.,
to become exponentially narrow with distance from the
origin, in agreement with our observation.

Ring with N = 5

There are five attractors consisting of two survivors,
obtained from each other by rotation: 〈13〉, 〈24〉, 〈35〉,
〈14〉 and 〈25〉. There is no obviously conserved quan-
tity, and the attractor cannot be predicted analytically
in general.
Figure 2 shows the attractors as a function of a4(0)

and a5(0), for fixed a1(0) = 0.5, a2(0) = 0.7 and
a3(0) = 0.6. The five attractors meet at point P (a4(0) =
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FIG. 1: (Color online) Attractor on the chain with N = 4 in
the a2(0)–a3(0) plane, for fixed a1(0) = a4(0) = 0.3.

0.363094, a5(0) = 0.313748). If launched at P, the sys-
tem is driven to the unique symmetric solution where
all masses converge to the universal limit 1/(2g). A lin-
ear stability analysis around the latter solution reveals
that its stable manifold is three-dimensional, in agree-
ment with the observation that its intersection with the
plane of the figure is the single point P.
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FIG. 2: (Color online) Attractor on the ring with N = 5 in
the a4(0)–a5(0) plane, for fixed a1(0) = 0.5, a2(0) = 0.7 and
a3(0) = 0.6. The five attractors meet at point P.

This is the first case which manifests one of the most
interesting features of the model, that of ‘winning against
the odds’ [7–9]. Numerical simulations with two struc-
tureless distributions of initial masses, uniform (uni) and
exponential (exp), yield the following observations:

• The probability that the node with largest initial
mass is a survivor is 0.849 (uni) or 0.937 (exp);

• The probability that the attractor corresponds to

the largest initial mass sum among the possible at-
tractors is 0.791 (uni) or 0.891 (exp);

• The probability that the node with smallest initial
mass is a survivor is 0.018 (uni) or 0.019 (exp).

This small but non-zero probability for the smallest
initial mass to survive is the beginning of the complex-
ity associated with the phenomenon of winning against
the odds. It happens essentially because more distant
nodes can destroy massive intermediaries between them-
selves and the small masses concerned, thereby letting
the latter survive ‘against the odds’. For larger sizes, the
problem soon becomes intractable. First, the number
of attractors grows exponentially fast with N ; second,
larger system sizes make for increased interaction ranges
for a given node. This makes it increasingly probable to
have winners against the odds, making it more and more
difficult to predict attractors based only on initial mass
distributions.

The above algorithmic complexity goes hand in hand
with the violation of the Edwards hypothesis as well as
other specific out-of-equilibrium features of the attrac-
tors, including a superexponential spatial decay of var-
ious correlations [6]. This phenomenon, put forward in
zero-temperature dynamics of spin chains [22], is rem-
iniscent of the behaviour of a larger class of fully irre-
versible models, exemplified by random sequential ad-
sorption (RSA) [26].

IV. APPROXIMATE ANALYTICAL

TREATMENT

Despite the complexity referred to above, we show here
that some ‘one-body observables’ can be predicted by
an approximate analytical approach. Our techniques are
based on the inhomogeneous mean-field theory and rely
on the assumption that the statistical properties of a
node only depend on its degree k [27]. Such ideas have
been successfully applied to a wide class of problems on
complex networks (see [28, 29] for reviews). The ther-
modynamic limit is implicitly taken; also, the embed-
ding graph is replaced by an uncorrelated random graph
whose nodes have probabilities pk to be connected to k
neighbors, i.e, to have degree k. In this section, we use
this framework to evaluate the survival probability of a
node, given its degree and/or initial mass.

A. Survival probability of a typical node

We consider first the simplest observable – the survival
probability of a typical node, irrespective of initial mass
or degree.

From the reduced dynamical equations (6), the initial
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decay rate of the amplitude ai(τ) of node i is seen to be:

ωi =
∑

j(i)

aj(0) =
∑

j(i)

yj(0). (17)

If node i has degree k, the above expression is the sum
of the k initial masses of the neighboring nodes.
From a modelling point of view, this suggests a deci-

mation process in continuous time, where nodes are re-
moved at a rate given by their degree k at time t. The
initial graph is entirely defined by the probabilities pk for
a node to have degree k. Its subsequent evolution dur-
ing the decimation process is characterized by its time-
dependent degree distribution, i.e., by the fractions qk(t)
of initial nodes which still survive at time t and have
degree k. The latter quantities start from

qk(0) = pk (18)

at the beginning of the process (t = 0) and converge to

qk(∞) = S δk0 (19)

at the end of the process (t → ∞). Indeed, as in the
original model, survivors are isolated, so that their final
degree is zero. The amplitude S is the quantity of inter-
est, as it represents the survival probability of a typical
node. Our goal is to determine it as a function of the
probabilities pk.
The qk(t) obey the dynamical equations

dqk(t)

dt
= −kqk(t)

+ λ(t) ((k + 1)qk+1(t)− kqk(t)) . (20)

The first line corresponds to the removal of a node of
degree k at constant rate k, while the second line de-
scribes the dynamics of its neighbors. The removal of
one neighboring node adds to the fraction qk(t) at a rate
proportional to (k + 1)qk+1(t) while it depletes it at a
rate proportional to kqk(t).
The time-dependent quantity λ(t) is the rate at which

a random neighbor of a given node is removed at time t,
which is, consistent with the above, given by the aver-
age degree of a random neighbor of the node at time t.
This rate can be evaluated as follows (see e.g. [29]). The
probability that a node of degree k has a neighbor of
degree ℓ at time t is, for an uncorrelated network, inde-
pendent of k, and given by q̃ℓ(t) = ℓqℓ(t)/〈ℓ(t)〉. (The
shift from qℓ(t) to q̃ℓ(t) is related to the ‘inspection para-
dox’ in probability theory (see e.g. [30]).) The average
degree of a random neighbor of the node at time t is then
given by

∑
ℓ ℓq̃ℓ(t), i.e.,

λ(t) =
〈k(t)2〉

〈k(t)〉
. (21)

Introducing the generating series

P (z) =
∑

k≥0

pkz
k, Q(z, t) =

∑

k≥0

qk(t)z
k, (22)

we see that Q(z, t) obeys the partial differential equation

∂Q

∂t
+ (z + (z − 1)λ(t))

∂Q

∂z
= 0, (23)

with initial condition

Q(z, 0) = P (z). (24)

Hence it is invariant along the characteristic curves de-
fined by

dz

dt
= z + (z − 1)λ(t). (25)

This differential equation can be integrated as

z0 = 1 + (zt − 1)e−t−Λ(t) −

∫ t

0

e−s−Λ(s) ds, (26)

with

Λ(t) =

∫ t

0

λ(s) ds. (27)

We have therefore

Q(zt, t) = P (z0). (28)

For infinitely long times, irrespective of zt, the parame-
ter z0 which labels the characteristic curves converges to
the limit

ζ = 1−

∫ ∞

0

e−t−Λ(t) dt, (29)

which we call the dynamical fugacity of the model.
We are left with the following simple expression for the

survival probability of a typical node (see (19))

S = P (ζ). (30)

Furthermore, the fugacity ζ can be shown to be implicitly
given by

2〈k〉

∫ 1

ζ

dz

P ′(z)
= 1, (31)

where the accent denotes a derivative.
We list a few quantitative predictions for important

graphs/networks below:

• Erdös-Rényi (ER) graph. This historical example
of a random graph [31, 32] has a Poissonian degree
distribution of the form

pk = e−a ak

k!
(k ≥ 0), (32)

so that 〈k〉 = a and P (z) = ea(z−1). We obtain

ζ = 1−
1

a
ln

a+ 2

2
, (33)

S =
2

a+ 2
. (34)
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• K-regular graph. In the case of a K-regular graph,
where all nodes have the same degree K ≥ 2, we
have P (z) = zK . We obtain

ζ =

(
2

K

)1/(K−2)

, (35)

S =

(
2

K

)K/(K−2)

(K ≥ 3). (36)

For K = 2 the above results become

ζ = e−1/2 = 0.606530, (37)

S = e−1 = 0.367879. (38)

• Geometric graph. In the case of a geometric degree
distribution with parameter y, i.e.,

pk = (1− y)yk (k ≥ 0), (39)

we have 〈k〉 = y/(1−y) and P (z) = (1−y)/(1−yz).
We obtain

ζ =
1

y
−

(
(1− y)2(2 + y)

2y3

)1/3

= 1 +
1

〈k〉
−

(
3〈k〉+ 2

2〈k〉
3

)1/3

, (40)

S =

(
2(1− y)

2 + y

)1/3

=

(
2

3〈k〉+ 2

)1/3

. (41)

• Barabási-Albert (BA) network. The BA network,
grown with a linear law of preferential attachment,
has a degree distribution [33, 34]

pk =
4

k(k + 1)(k + 2)
(k ≥ 1) (42)

with a power-law tail with exponent γ = 3. We
have 〈k〉 = 2 and

P (z) = 3−
2

z
−

2(1− z)2

z2
ln(1− z). (43)

Solving (31) numerically, we obtain

ζ = 0.67016, S = 0.55300. (44)

• Generalized preferential attachment (GPA) net-
work. This is a generalization of the BA network,
where the attachment probability to an existing
node with degree k is proportional to k+ c [35–37],
with the offset c representing the initial attractive-
ness of a node. The degree distribution

pk =
(c+ 2)Γ(2c+ 3)Γ(k + c)

Γ(c+ 1)Γ(k + 2c+ 3)
(k ≥ 1) (45)

has a power-law tail with a continuously varying
exponent γ = c + 3. We have, as expected for a
tree, 〈k〉 = 2, irrespective of c, and

P (z) =
c+ 2

2c+ 3
z(1− z)c+2

× 2F1(c+ 3, 2c+ 3; 2c+ 4; z), (46)

where 2F1 is the Gauss hypergeometric function.

The GPA network can be simulated efficiently by
means of a redirection algorithm [38, 39]. Every
new node is attached either to a uniformly chosen
earlier node with probability 1 − ν, or to the an-
cestor of the latter node with the redirection prob-
ability

ν =
1

c+ 2
. (47)

For ν → 0 (i.e., c → +∞), we have a uniform
attachment rule, yielding pk = 2−k and P (z) =
z/(2− z), so that

ζ = 2− (5/2)1/3 = 0.642791, (48)

S = 2(2/5)1/3 − 1 = 0.473612. (49)

For ν → 1 (i.e., c → −1), the model becomes sin-
gular. The pk converge to δk,1, while we still have
〈k〉 = 2, formally. In this singular limit we have

ζ = S =
3

4
(50)

Finally, the BA network is recovered for ν = 1/2
(i.e., c = 0).

Figure 3 provides a summary of the above results. The
survival probability S of a typical node is plotted against
the mean degree 〈k〉, for all the above. Turning to the
specific example of the GPA networks, we note that (48)
and (49) provide lower bounds for the dynamical fugac-
ity ζ and the survival probability S respectively, which
both increase to their upper bounds (50) as functions of
the redirection probability ν. This trend is reflected in
the blue arrowheads in Figure 3, where the blue square
corresponds to the value for the BA network.
In order to test the above for a few simple cases,

we have measured the survival probability S of a typ-
ical node in three different geometries: the 1D chain,
the 2D square lattice and the BA network. We solved
the dynamical equations (6) numerically, with initial
masses drawn either from a uniform (uni) or an expo-
nential (exp) distribution. The measured values of S are
listed in Table I, together with our approximate predic-
tions (36), (38) and (44).
Our numerical results suggest that the survival prob-

ability depends only weakly on the mass distribution,
as long as the latter is rather structureless. While our
predictions are systematically lower than the numerical
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FIG. 3: (Color online) Survival probability S of a typical
node, as predicted by our approximate analysis, against mean
degree 〈k〉 for several examples of graphs and networks. For
the ER and geometric graphs, the predictions for continuously
varying 〈k〉 are shown as the black (lower) and red (upper)
curves. Green filled circles correspond to K-regular graphs
for integer K. The blue square shows the prediction (44)
for the BA network, while the vertical bar with arrowheads
shows the range of values of S for GPA networks, given by
the bounds (49) and (50).

Geometry 1D 2D BA

Suni 0.4393 0.3851 0.6891

Sexp 0.4360 0.3755 0.6767

Spred 0.3679 0.2500 0.5530

TABLE I: Survival probability of a typical node of the 1D
chain, the 2D square lattice and the BA network. Comparison
of numerical results for uniform (uni) and exponential (exp)
mass distributions and approximate analytical results (pred).

observations, they do indeed reproduce the global trends
rather well.

It is worth recalling here that our analysis relies on
a degree-based mean-field approach. Such approximate
techniques are expected to give poor results in one di-
mension, and to perform much better on more disordered
and/or more highly connected structures. A systematic
investigation of the accuracy of the present approach,
including the comparison of various lattices with identi-
cal coordination numbers but different symmetries, and
of various random trees or networks with the same de-
gree distribution but different geometrical correlations,
would certainly be of great interest. While such exten-
sive numerical investigations are beyond the scope of the
present, largely analytical work, we hope they will be
taken up in future.

B. Degree-resolved survival probability

The above degree-based mean-field analysis can be ex-
tended to quantities with a richer structure. In this sec-
tion we consider the degree-resolved survival probability
S[ℓ] of a node whose initial degree ℓ is given. The degree
distribution rk(t) of this special node obeys the same dy-
namical equations (20) as those of a typical node:

drk(t)

dt
= −krk(t)

+ λ(t) ((k + 1)rk+1(t)− krk(t)) , (51)

with the specific initial condition rk(0) = δkℓ. The
above dynamical equations along the same lines as in
Section IVA. The generating series

R(z, t) =
∑

k≥0

rk(t)z
k (52)

obeys the partial differential equation (23), with initial
condition

R(z, 0) = zℓ. (53)

Using again the method of characteristics, we get, instead
of (30), the following simple behavior for the degree-
resolved survival probability:

S[ℓ] = ζℓ, (54)

where the dynamical fugacity ζ is given by (31). The
form of this suggests a simple physical interpretation:
the fugacity ζ measures the tendency of a given node to
‘escape’ annihilation. More quantitatively, ζ is the price
per initial neighbor which a node has to pay in order to
survive forever. By averaging the expression (54) over the
initial degree distribution pk, we recover the result (30)
for the survival probability S of a typical node.
We now introduce the survival scale

ξ =
1

| ln ζ|
, (55)

so that our key result (54) reads

S[ℓ] = exp(−ℓ/ξ). (56)

This representation makes it clear that the survival
scale ξ corresponds to the degree of the most connected
survivors.
We use this to probe the survival statistics of highly

connected graphs. Here, the survival scale ξ is large as a
consequence of a large mean degree 〈k〉; correspondingly,
there is a decay in the survival probability S of a typical
node, as shown in the two examples below:

• ER graph. Here, 〈k〉 = a, and so (33) and (34) yield

ξ ≈
〈k〉

ln
〈k〉

2

, S ≈
2

〈k〉
. (57)

The survival scale ξ grows almost linearly with 〈k〉,
while the survival probability S falls off as 1/〈k〉.
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• Geometric graph. Equations (40) and (41) yield

ξ ≈

(
2〈k〉2

3

)1/3

, S ≈

(
2

3〈k〉

)1/3

. (58)

Both the growth of the survival scale and the decay
of the survival probability are slower than in the
ER case. The survival scale diverges sublinearly
with 〈k〉, with an exponent 2/3, while the survival
probability decays with an exponent 1/3.

Figure 3 shows that these differing trends for the ER
and geometric graphs are already evident even for low
connectivity 〈k〉. This is because of the interesting cir-
cumstance that the behavior of the degree distribution pk
for relatively small degrees (1 ≪ k ≪ 〈k〉) determines
both the growth of the survival scale ξ as well as the
decay of the survival probability S in highly connected
graphs.
Assuming this regime is described by a scaling form

pk ≈
C kβ−1

〈k〉
β

(59)

governed by an exponent β > 0, we obtain after some
algebra

ξ ≈ A 〈k〉
(β+1)/(β+2)

, (60)

S ≈ B 〈k〉
−β/(β+2)

, (61)

with

A ≈

(
2

β(β + 2)C Γ(β)

)1/(β+2)

, (62)

B ≈

(
2β (C Γ(β))2

(β(β + 2))β

)1/(β+2)

. (63)

The exponents (β+1)/(β+2) and β/(β+2) which enter
the power laws (60), (61) are always smaller than one (the
value corresponding to β → ∞), when we find ξ ∼ 〈k〉
and S ∼ 1/〈k〉. This is e.g. the case for the ER graph
(see (57)).
In order to test our key prediction (54), the depen-

dence of the survival probability S[ℓ] of a node of the BA
network on its degree ℓ was computed numerically for
an exponential distribution of initial masses. Figure 4
shows a logarithmic plot of S[ℓ] against degree ℓ. We
find excellent qualitative agreement with our predictions
of exponential dependence, although the measured slope,
corresponding to 1/ξobs ≈ 0.59 is larger than our analyt-
ical prediction of 1/ξpred = | ln ζ| = 0.4002 (see (44)).

C. Mass-resolved survival probability

Here, we extend our analysis to the mass-resolved sur-
vival probability of a node whose initial mass y is given.

0 2 4 6 8 10 12 14
l

−8

−6

−4

−2

0

ln
 S

[l]

FIG. 4: (Color online) Logarithmic plot of the measured
degree-resolved survival probability S[ℓ] against degree ℓ for
the BA network. Straight line: least-squares fit of all the data
points with slope −0.588.

Since this will only enter through the reduced mass α,
defined as the dimensionless ratio

α =
y

〈y〉
, (64)

we denote the mass-resolved survival probability by Sα.
Along the lines of Section IVA, we derive the following

dynamical equations for the degree distribution rk(t) of
the special node:

drk(t)

dt
= −krk(t)

+ λα(t) ((k + 1)rk+1(t)− krk(t)) , (65)

with initial condition rk(0) = pk (see (18)). To compute
the rate λα(t) at which a random neighbor of the special
node is removed, we argue as follows. This rate is a
product of the probability of finding a random neighbor
of degree ℓ, given by q̃ℓ(t) = ℓqℓ(t)/〈ℓ(t)〉, and the rate
of removal of this node. The latter is nothing but its
effective degree: while the initial masses of its ℓ−1 typical
neighbors can be taken to be 〈y〉, the special node has an
initial mass of y = α〈y〉, so that the effective degree of
this node is ℓ − 1 + α. The average degree of a random
neighbor of the special node at time t is then clearly given
by
∑

ℓ(ℓ− 1 + α)q̃ℓ(t), i.e.,

λα(t) = λ(t) − 1 + α. (66)

After some algebra, the mass-resolved survival proba-
bility reduces to:

Sα = P (ζα), (67)

where the mass-dependent fugacity ζα is

ζα = 1−

∫ ∞

0

e−αt−Λ(t) dt. (68)
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This formula can be recast as

ζα = 1−

∫ 1

ζ

(
1− 2〈k〉

∫ 1

z

dy

P ′(y)

)(α−1)/2

dz, (69)

where ζ is the fugacity given by (31). We have, consis-
tently, ζα = ζ for α = 1.
The mass-resolved survival probability Sα is an in-

creasing function of the reduced mass α. We compute
this explicitly for the classes of random graphs and net-
works considered in Section IVA.

• ER graph. In this case, we have

Sα = ea(ζα−1), (70)

with

ζα = 1−
1

a

∫ a

0

(
a(x+ 2)

(a+ 2)x

)(1−α)/2
dx

x+ 2
. (71)

• K-regular graph. In this case, we have

Sα = ζKα , (72)

with

ζα = 1−
1

2

∫ 1

0

(2x2+K(1−x2))−(K−1)/(K−2)xαdx (73)

in the generic case (K ≥ 3), whereas

ζα = 1−

∫ 1

0

e(x
2−1)/2 xαdx (74)

for K = 2.

• Geometric graph. In this case, we have

Sα =
1− y

1− yζα
, (75)

with

ζα = 1−
1

2

∫ 1

0

(
2(1− y)

2 + (1 − 3x)y

)2/3

x(α−1)/2 dx. (76)

• BA and GPA networks. In these cases, numerical
values of ζ and of ζα can be extracted from (31)
and (69), using the expressions (43), (46) of the
generating series P (z).

The dependence of the survival probability of a node
on its initial mass was computed numerically for the 1D
chain, the 2D square lattice and the BA network, with
an exponential mass distribution. Figure 5 shows plots of
the measured values of Sα against α. The dashed curves
show the prediction (67), rescaled so as to agree with
the numerics for α = 1. In the three geometries con-
sidered, the analytical prediction reproduces the overall
mass dependence of Sα reasonably well. The observed

0 1 2 3 4
α

0

0.2

0.4

0.6

0.8

1

S α 1D (obs)
2D (obs)
BA (obs)
1D (pred)
2D (pred)
BA (pred)

FIG. 5: (Color online) Mass-resolved survival probability Sα

against reduced mass α. Full curves: numerical results. Cor-
responding dashed curves: analytical predictions. Top to bot-
tom near α = 1: BA network, 1D chain, 2D square lattice.

dependence is slightly more pronounced than predicted
on the 1D and 2D lattices, while the opposite holds for
the BA network.
Last but by no means least, there is a striking man-

ifestation of (super-)universality in the regime of large
reduced masses, when (68) simplifies to

ζα ≈ 1−
1

α
. (77)

The mass-resolved survival probability then goes to unity
according to the simple universal law

Sα ≈ 1−
〈k〉

α
. (78)

This key result in the large-mass limit is one of the
strongest results in this paper: all details of the structure
and embeddings of networks disappear from the survival
probability of a node, leaving only a simple dependence
on its mass and the mean connectivity 〈k〉.

D. Degree and mass-resolved survival probability

Finally, our analysis can be generalized to the full de-
gree and mass-resolved survival probability Sα[ℓ] of a
node whose initial degree ℓ and reduced mass α are given.
The degree distribution of this special node obeys

drk(t)

dt
= −krk(t)

+ λα(t) ((k + 1)rk+1(t)− krk(t)) , (79)

where the rate λα(t) is given by (66), and with the specific
initial condition rk(0) = δkℓ. After some algebra along
the lines of the previous sections, we find:

Sα[ℓ] = ζℓα. (80)
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This last result encompasses all the previous ones, in-
cluding the expression (54) for the degree-resolved sur-
vival probability S[ℓ] and the expression (67) for the
mass-resolved survival probability Sα.
The detailed numerical evaluation of degree and mass-

resolved data on networks is deferred to future work, al-
though we expect the levels of agreement to to be similar
to those obtained in Sections IVB and IVC. Our point
of emphasis here is the simplicity of (80), which shows
that the dynamical fugacity is absolutely the right vari-
able to highlight an intrinsic universality in this problem.
In showing that the result (30) is resolvable into compo-
nents of degree and mass, it also points the way towards
a deeper understanding of the ‘independence’ of these
parameters in the survival of a node.
Finally, and no less importantly, the result (80) again

manifests (super-)universality in the regime of large re-
duced masses (α ≫ 1). As a consequence of (77), the de-
gree and mass-resolved survival probability goes to unity
according to the simple law

Sα[ℓ] ≈ 1−
ℓ

α
. (81)

The beauty of this result (as well as its analogue (78))
lies in the fact that it is exactly what one might expect
intuitively; it suggests that the probability (1 − Sα[ℓ])
that a node of mass α and degree ℓ might not survive,
is directly proportional to its degree and inversely pro-
portional to its mass. In everyday terms, the lighter the
node, and the more well-connected it is, the more it is
likely to disappear. The emergence of such startling, in-
tuitive simplicity in an extremely complex system is a
testament to an underlying elegance in this model.

V. DISCUSSION

The problem of finding even an approximate analyt-
ical solution to a model which contains multiple inter-
actions is very challenging. In the context of predator-
prey models, the (mean-field) Lotka-Volterra dynamical
system and the full Volterra chain are among the rare
examples which are integrable. Most other nonlinear dy-
namical models with competing interactions are not, and
are quite simply intractable analytically.
The model inspired by black holes [6], on which this pa-

per is based, shows how competition between local and
global interactions can give rise to non-trivial survivor
patterns, and to the phenomenon referred to as ‘win-
ning against the odds’. That is, a given mass can win
out against more massive competitors in its immediate
neighborhood provided that they in turn are ‘consumed’
by ever-more distant neighbors. When it was found nu-
merically [7–9] that such survivor distributions seemed
to exhibit somewhat surprising features of universality,
it was natural to ask the question: could one find the
reasons for such behaviour, in the sense of characterizing

these distributions at least approximately from an ana-
lytic point of view? An additional motivation was found
in the work of the Barabási group [40] on citation net-
works, where the authors put forward a universal scaling
form for the ‘survival’ of a paper in terms of its citation
history.

The black-hole model as defined in its original cosmo-
logical context [4, 5] had an explicit time dependence
due to the presence of a ubiquitous ‘fluid’, as well as
a threshold below which even isolated particles did not
survive. Neither of these attributes was necessary for
the behaviour of most interest to us, namely the multi-
plicity of attractors (which in our case involve survivor
distributions), and their non-trivial dependence on the
initial mass profile, as a result of multiple interactions.
One of our major achievements in this paper has been
the construction of a much simpler model (without the
unnecessary complications referred to above), which still
retains its most interesting features from the point of
view of statistical physics.

Once derived and established, this simple model was
the basis of our investigations of universality in survivor
distributions. The exact characterisation of attractors
as a function of the initial data becoming rapidly im-
possible, we were led to think of approximate analytical
techniques. Our choice of the inhomogeneous (or degree-
based) mean-field theory was motivated by our empha-
sis on random graphs and networks in earlier numerical
work [7–9]. This approach was embodied in an effective
decimation process. Some of the analytical results so ob-
tained were robustly universal, including the exponential
fall-off (54) of the survival probability of a node with its
degree, or the asymptotic behaviours (78) and (81) in the
large-mass regime.

Our approach led us to introduce the associated con-
cept of a dynamical fugacity, key to unlocking the reason
behind the manifestation of universality in diverse sur-
vivor distributions. Physically, this signifies the tendency
of a typical node in a network to escape annihilation,
which we illustrate via a simple argument. Every time
an agent encounters other, potentially predatory, agents
it pays a price in terms of its survival probability: as the
probability of each such encounter is independent of the
others, the ‘cost’ to the total probability is multiplicative
in terms of the number of predators encountered. The
dynamical fugacity is then nothing but the cost function
per encounter (i.e., per neighbor), so that the survival
probability of the original agent depends exponentially
on the number of its competitors. In a statistical sense,
this depends only on the degree distribution of the chosen
network, leading to the emergence of a universal survival
probability for a given class of networks. The asymp-
totic survival probability of very heavy nodes becomes
‘super-universal’, in the sense of losing all dependence on
different geometrical embeddings. Its form also has an
appealing simplicity, as the complement of the ratio (de-
gree/mass) of a given node; the heavier the node and the
more isolated it is, the longer it is likely to survive.



11

In conclusion, we have used inhomogeneous mean-field
theory to formulate and solve analytically an intractable
problem with multiple interactions. While our analytical
solutions are clearly not exact (due to the technical lim-
itations of mean-field theory) they are nevertheless the
only way to date of understanding the behaviour of the
exact system. In particular, and importantly, our present
analysis strongly reinforces the universality that has in-
deed been observed in earlier numerical simulations of
this problem [7–9]. That such universal features emerge
in a highly complex many-body problem with competing
predatory interactions, is nothing short of remarkable.

Acknowledgments

It is a pleasure to thank Olivier Babelon and Alfred
Ramani for interesting discussions.

Appendix A: Numbers of attractors and complexity

in one dimension

In this appendix we investigate the attractor statistics
of the one-dimensional problem by means of the transfer-
matrix formalism. We describe an attractor as a sequence
of binary variables or spins:

σn =

{
1 if i is a survivor,
0 if i is a non-survivor.

(A1)

From a static viewpoint, attractors are defined as pat-
terns obeying the constraints listed in Section II. They
can therefore be identified with sequences which avoid
the patterns 11 and 000. The last two symbols of such
a sequence may therefore be 00, 01 or 10. The numbers
M00

N , M01
N andM10

N of attractors of lengthN of each kind
obey the recursion




M00

N+1

M01
N+1

M10
N+1



 = T

(
M00

N

M01
N

M10
N

)
, (A2)

where the transfer matrix T reads

T =

(
0 0 1
1 0 1
0 1 0

)
. (A3)

Its characteristic polynomial is P (x) = x3 − x − 1, and
so the Cayley-Hamilton theorem implies the recursion

T
N = T

N−2 +T
N−3. (A4)

Hence all the numbers MN grow exponentially with N ,
in agreement with (9). The complexity reads

Σ = lnx0 = 0.281199, (A5)

with x0 = 1.324717 being the largest eigenvalue of T,
i.e., the largest root of P (x).

The total numbers of attractors M
(c)
N = M00

N +M01
N +

M10
N on chains and M

(r)
N on rings of N nodes obey recur-

sions derived from (A4), i.e.,

MN = MN−2 +MN−3, (A6)

with two different sets of initial conditions. The se-
quences M

(r)
N and M

(c)
N are listed in the OEIS [41], re-

spectively as entries A001608 and A000931, together with
many combinatorial interpretations and references. The
first few terms are listed in Table II.

N 1 2 3 4 5 6 7 8 9 10 11 12

M
(r)
N

0 2 3 2 5 5 7 10 12 17 22 29

M
(c)
N

1 2 2 3 4 5 7 9 12 16 21 28

TABLE II: Numbers of attractors M
(r)
N

on rings and M
(c)
N

on
chains of N nodes, for N up to 12.
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FIG. 6: (Color online) Density-dependent static complexity
Σ(ρ) against survivor density ρ in the allowed range (1/3 ≤
ρ ≤ 1/2).

The transfer-matrix approach can be generalized in or-
der to determine the density-dependent static complexity
Σ(ρ), characterizing the exponential growth of the num-
ber of attractors with a fixed density ρ of survivors. In-
troducing a static fugacity z conjugate to the number of
survivors, the transfer matrix becomes

T(z) =

(
0 0 1
z 0 z
0 1 0

)
, (A7)

whose characteristic polynomial is P (z, x) = x3− zx− z.
The reader is referred to [22, 23] for details. We obtain
after some algebra

Σ(ρ) = −(1− 2ρ) ln
1− 2ρ

ρ
− (3ρ− 1) ln

3ρ− 1

ρ
. (A8)

Figure 6 shows a plot of this quantity against survivor
density in the allowed range (1/3 ≤ ρ ≤ 1/2). The ex-
pression (A8) reaches a maximum equal to Σ (see (A5))
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when ρ equals the mean static density of survivors:

ρ0 =
x0 + 1

2x0 + 3
= 0.411495. (A9)
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[37] C. Godrèche, H. Grandclaude, and J. M. Luck, J. Stat.

Phys. 137, 1117 (2009).
[38] P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123

(2001).
[39] P. L. Krapivsky and S. Redner, J. Phys. A 35, 9517

(2002).
[40] D. Wang, C. Song, and A. L. Barabási, Science 342, 127

(2013).
[41] OEIS, The On-Line Encyclopedia of Integer Sequences,

URL http://oeis.org.


