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The anisotropic magnetic properties of Sr2IrO4 are investigated, using longitudinal and torque
magnetometry. The critical scaling across Tc of the longitudinal magnetization is the one expected
for the 2D XY universality class. Modeling the torque for a magnetic field in the basal-plane, and
taking into account all in-plane and out-of-plane magnetic couplings, we derive the effective 4-fold
anisotropy K4 ≈ 1 105 erg mole−1. Although larger than for the cuprates, it is found too small
to account for a significant departure from the isotropic 2D XY model. The in-plane torque also
allows us to put an upper bound for the anisotropy of a field-induced shift of the antiferromagnetic
ordering temperature.

PACS numbers: 71.70.Ej,75.30.Kz,75.47.Lx,75.30.Gw

Introduction

The Ruddlesden-Popper series, Rn+1IrnO3n+1 where
R= Sr, Ba and n = 1,2,∞, has emerged as a new play-
ground for the study of electron correlation effects. In
these compounds, while extended 5d orbitals tend to re-
duce the electron-electron interaction, as compared to the
3d transition metal compounds as cuprates, the strong
spin orbit coupling (SOC) associated to the heavy Ir and
the on-site Coulomb interaction compete with electronic
bandwidth to restore such correlations[1]. Sr2IrO4, a per-
ovskite where a IrO2 layer alternates with two SrO layer,
is structurally similar to the first discovered cuprate su-
perconductor, (La,Ba)2CuO4. It was early proposed that
the strong SOC allows for an effective localized state, en-
tangling spin and orbital degrees of freedom, with total
angular momentum Jeff = 1/2. This spin-orbital insu-
lating state was proposed to be the analog of the Mott
insulating state found in cuprates[1].

Sr2IrO4 orders antiferromagnetically below Tc ≃
240 K[2, 3]: the moments lay in the IrO2 plane and,
as the loss of the inversion symmetry in the non cubic
structure – due to a rotation of the oxygen octahedra –
allows for a Dzyaloshinskii-Moriya interaction, a canting
of the spins (≈ 9 deg.) and a ferromagnetic component
occur[4, 5] (Fig. 5). The in-plane net moments are cou-
pled in an ’up-up-down-down’ way from plane to plane in
zero field, and align ferromagnetically with an in-plane
field H ≈ 0.2 T [6]. The initial proposition in Ref. [5]
that the pseudospin Hamiltonian may be mapped onto a
simple Heisenberg Hamiltonian for a square lattice anti-
ferromagnet received several supports [7–10]. Recently,
however, critical magnetic fluctuations were investigated
using X-ray resonant magnetic scattering above Tc, and
were found consistent with the 2D XY model rather than
with the isotropic model. Moreover, it was proposed that
the basal-plane anisotropy accounts for the deviation of
the critical exponent of the coherence length from the
one of this model[11].

The magnetic ordering of a layered compound as
Sr2IrO4 relies, however, on the finite transverse coupling

between 2D fluctuating spins, and one cannot disregard
the 3D nature of this coupling, when the ordered state
is considered. So, it is necessary to also investigate the
dimensionality of the fluctuations as the ordering tem-
perature is crossed. The critical scaling of the magneti-
zation allows to do so, as shown in section I. Besides these
conventional magnetization studies, the transverse mag-
netization provided by torque measurements is a direct
way to evaluate the additional anisotropy in the basal-
plane. Section II presents such measurements, and mod-
els the system in an in-plane magnetic field to obtain an
estimate of the four-fold magneto-crystalline anisotropy.
It is discussed whether the measured anisotropy is able
to reduce the dimensionality of the magnetic system, as
proposed in Ref. 11.

I. LONGITUDINAL MAGNETIZATION

The longitudinal magnetization of a single crystal with
dimensions 1200 x 400 x c = 120 µm3 was measured
in magnetic fields up to 7 T. It was grown using a self-
flux technique in platinum crucibles, similar to the one in
Ref. [2]. In a mean-field approach, the Weiss-molecular
theory allows to predict an asymptotic linear relation-
ship between the squared magnetization, M(T,H)2 and
the inverse susceptibility, H/M , in the vicinity of Tc,
which is the basis for the determination of Tc from the
so-called Arrott plot, which displays M2 vs (H/M)[12].
Below Tc, such a plot may be linearly extrapolated to
the positive saturation magnetization, Ms, while, above
Tc, the isotherms extrapolate to negative values and in-
tercept the (H/M) axis at the inverse susceptibility χ−1

0 ;
the isotherm at T = Tc is the one extrapolating to the
origin.
In the general case where the mean-field approach fails,

a modified Arrott plot must be built, which incorporates
the general scaling relations for the magnetization and
susceptibility at Tc:

(M(T,H)/M0)
1/β = (χ0H/M)1/γ + (T − Tc) (1)

http://arxiv.org/abs/1512.04448v1
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FIG. 1: (a) Modified Arrott plot for magnetic field applied
along a/b axis. The inset displays the distance between the
seed (β,γ) of the procedure and its output. (b) Asymptotic
spontaneaous magnetization (MS) and initial inverse suscep-
tibility (χ−1

0 ) as obtained from (a). Lines are best linear fits
of Mβ
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FIG. 2: A scaling plot for M(H), using β as found in Fig. 1b.

The mean-field result is retrieved, taking β = 1/2 and
γ = 1. In practice, the appropriate exponents are rarely
easily obtained in this way, as the isotherms may be only
asymptotically linear, and several sets of β and γ val-
ues may provide equally satisfying plots (see for instance
Ref. 13). So, an unbiased procedure is desirable, and we
achieved this in the following way.

From magnetization isotherms obtained in the interval
216 K < T < 246 K and 0.5 T < H < 7 T, we have built
the modified Arrott plot for a grid of β and γ values. For
each of these plots, we have first determined the critical
isotherm (as the one closest to a line crossing the origin);
obtained the extrapolated values for Ms and χ−1

0 (as the
isotherms are not completely saturated at the maximum
field in Fig. 1, we have assumed that they exponentially
reach the critical isotherm slope), and finally computed
the β and γ values from power law fits of these quantities
(as in Fig. 1b). The self-consistent plot, for which the
computed β and γ values were closest to the initial seed
(the distance between the seed of the procedure and its
output is shown in the inset of Fig. 1a), is obtained for
β = 0.24 ± 0.02, γ = 0.92 ± 0.1, and Tc = 228 ± 1 K.

Another way to obtain the scaling exponents is to use
the reduced equation of states:

M/ |ǫ|
β
= f±(H/Mβδ) (2)

where f± refer to data for T > Tc and T < Tc re-
spectively, and ǫ is the reduced temperature. Using the
previous values for β and Tc, the best scaling is obtained
for δ ≃ 6 (Fig. 2). This is compatible with the Widom
scaling relation, δ = 1 + γ/β = 5.2 ± 0.9.
Away from the critical region, the data is well de-

scribed by the conventional Curie-Weiss law, using TCW

= 252 ± 2 K. As seen in Fig. 3, the Curie-Weiss law
breakdowns at a temperature T ∗ ≃ 275 K. This is
the temperature at which an atomistic description fails.
We may estimate the Levanyuk-Ginzburg criterion from
the temperature range of these critical fluctuations as
tG ≃ (Tc − T ∗)/Tc ≃ 0.2. Using the expression in 2D,
tG = ∆C−1

p χ−2
0 , and Cp ≃ 4mJ/mole K (Ref. 14), yields

ξ0/a ≃ 102 for the zero-temperature coherence length.
Remarkably, the applied magnetic field does not seem to
change the dimensionality of the critical fluctuations to-
wards a 1D behavior, as is often observed (see Ref. [15]
for a review). This is also evidenced by low field mag-
netization as in Fig. 4, for which a power-law fit yields
β = 0.25± 0.01, in agreement with the high-field scaling
analysis. Surprisingly, the scaling for T → 0 indicates
neither a spin 1/2, 2D (T 3/2), nor a 2D anisotropic or
1D universal behavior (T 5/2), but clearly a 3D one (T 2 -
Fig. 4). This could be an indication that the transverse
coupling cannot be neglected in the weakly fluctuating
regime.
These results indicate clearly that the magnetic transi-

tion is dominated by critical fluctuations, which are not
in the mean-field universality class. The value found for β
is compatible with the 2D XY model (β = 0.23), but are
hardly compatible with a strong in-plane anisotropy, for
which the exponent is pushed toward the one of the 2D
Ising model (β = 0.125), as discussed in Ref. 11. In the
following, we investigate the in-plane anisotropic proper-
ties, using torque magnetometry.

II. TORQUE MEASUREMENTS

A. Experimental results

Torque magnetometry essentially measures the magne-
tization component transverse to the applied field, being
Γ = M × B. Thus, for a magnetic field applied in the
easy a-b plane, it senses the deviation of the magneti-
zation direction from the applied field one, as a result
of the basal-plane magnetocrystalline anisotropy, which
tends to align the spins with specific directions.
Torque was measured using a home-made setup, built

from AFM piezolevers[17]. This very sensitive device
cannot accommodate large samples, and a smaller crys-
tal was used, selected from the same batch as for the
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FIG. 3: Curie-Weiss law, defining TCW and T ∗ (H = 0.2 T).
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FIG. 4: Low field magnetization data (H = 0.4 T). The line
is the best fit to a power-law (Tc − T )β for T > 162K. The
inset shows that M(T → 0) is best described by the 3D spin
1/2 scaling, T 2 (a small Curie term is present – ≈ 0.4% at 1
K – which was not removed).

crystal used for conventional magnetometry. This par-
allepipedic sample (240 x 240 x c = 100 µm3) had a Tc

identical to the one of the larger crystal, and we could
also check that its anisotropic magnetic properties (char-
acterized by the characteristic field H2 – see below) were
also identical. Torque measurement were performed by
rotating the magnetic field in the a-b plane, in magnetic
fields up to 9 T. Torque signals showed a small two-fold
component – typically 10% of the four-fold component
– which we assign to a small misalignment of the rota-
tion plane from the a-b one, so that torque also picks
up part of the axial strong anisotropy. This component
was systematically subtracted from the torque data as a
function of the magnetic field angle, as was done for the
one displayed in Fig. 6. The torque per unit volume due
to the demagnetizing field may be estimated as:

Γdemag ≈ 2M2∆N sin(4θ) (3)

where M is the magnetization and ∆N is the demag-
netizing factor variation when the magnetic field is ro-

FIG. 5: Left: conventions used for torque measurements.
Right: two adjacent IrO2 layers, antiferromagnetically cou-
pled (torque is positive for the upper layer - open arrow is the
net magnetization in each layer).

0 45 90

-10

-5

0

5

10

a)

H = 800 Oe

 

Γ
 (

 N
 m

 -
2

 )

θ ( deg. ) 
0 45 90

-10

-5

0

5

10

 Γ
 (

 N
 m

 -
2

 )

b)

H = 1000 Oe

θ ( deg. ) 

 

0 45 90

-4

-2

0

2

4

 Γ
 (

 N
 m

 -
2

 )

c)

H = 1500 Oe

θ ( deg. ) 
 

 

0 45 90

-10

0

10

 Γ
 (

 N
 m

 -
2

 )

d)

H = 2.5 10
 4
 Oe

θ ( deg. ) 

 

 

FIG. 6: Torque for T = 215 K. Circles are for increasing θ;
crosses, for decreasing ones. Note the difference in the torque
scale. Conventions for θ and Γ are displayed in Fig. 5.

tated in the plane. Using either the approximation of
an ellipsoid, or the demagnetizing factor computed for
a square-shaped sample[18], we obtain ∆N ≃ 6 10−2.
Using typical value for the magnetization (e.g. M ≃ 8
emu cm−3 in the ordered state or χ ≃ 1 emu cm−3 in
the paramagnetic state at 280 K), we obtain Γdemag ≃
10−2 - 10−1 Nm−2, which is negligible, compared to the
torque signal discussed in the rest.

As expected from the quadratic symmetry of the crys-
tal, the torque signal has a four-fold periodicity. Above
some critical field H2 ≃ 103 Oe, the signal is to a very
good approximation sinusoidal (Fig. 6c,d), while, below
this field, it shows a typical metastable behavior at θ
= π/4 (Fig. 6a, b). Remarkably, the amplitude of the
signal is not monotonous with the applied field, and a
drop by about 50% is observed at the crossing of H2.
A systematic study of the torque signal at a fixed angle
confirms this feature, and allows to uncover some others.
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Figure 7 shows the torque signal obtained for θ = π/8 for
several temperatures, as well as the longitudinal magne-
tization at a selected temperature T = 220 K. A sharp
drop of the signal is observed at H2(T ), also displayed in
Fig. 8b. This coincides with the maximum slope of the
longitudinal magnetization, m(H) (Fig. 7, upper panel).
A much weaker feature is also present at a smaller field,
H1(T ). Upon crossing this field, the longitudinal mag-
netization shows a small step (as evidenced by dm/dH
in the upper panel in Fig. 7), and so does the transverse
magnetization (Fig. 7, inset in the lower panel). Both
characteristic fields H1(T ) and H2(T ) sharply drop to
zero at Tc (Fig. 8).
For fields larger than H2(T ), the torque signal shows

a plateau where it is roughly independent of the applied
field (this is most evident a few K from Tc, where the
plateau is visible over a magnetic field decade). At still
larger magnetic field, a noticeable increase of the torque
signal occurs. It could be well fitted using a simple power
law, Hα, which we found could be valid over one field
decade (the limitation being the maximum torque which
our device could stand). Fitting the torque signal with
such a power law, superimposed to a constant offset,
yields the value of the plateau, as well as the exponent
and the magnitude of the high field signal. It is found
that the field-independent signal decreases to zero at Tc,
in a quasi-linear way (Fig. 8c), while the high field expo-
nent varies between α ≃ 1 at low temperature and α ≃ 3
at 260 K (Fig. 8d).

B. Zero temperature model

Clearly, the interpretation of the anisotropic magnetic
properties of Sr2IrO4 is made difficult by the complex
magnetic interactions hosted by this material. In the
following, we introduce these interactions one after the
other, in order to gauge the importance of the different
contributions, and finally elaborate a model accounting
for the observations.
First, we neglect the interlayer coupling and thus con-

sider each layer separately. In this case, the magnetic
configuration is essentially the one of a 2D antiferromag-
net, with a four-fold anisotropy reflecting the quadratic
symmetry of the crystal, with the additional feature of an
in-plane ferromagnetic component (Fig. 5). The torque
for an anisotropic 2D antiferromagnet in an in-plane mag-
netic field was computed in ref. 19 and applied to the
case of the cuprate Bi2CuO4. Essentially, the torque
signal reflects the occurrence of a critical field, above
which the AF domains flop to a configuration almost per-
pendicular to the applied field, which is well known as
the spin-flop transition. Above this field, the AF do-
mains nearly rigidly follow the applied magnetic field
and the torque signal Γ(θ) is sinusoidal, with an am-
plitude independent of the applied field, 4K4, where K4

is the in-plane anisotropy constant in a phenomenologi-
cal representation[19]. Identifying the intermediate-field
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and it derivative, dM/dH . Lower: torque (curves have been
shifted for clarity). The inset in the lower panel displays the
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are for T = 230 K.

torque plateau in Fig. 7 with this regime, the torque
value in Fig. 8c is then simply 4K4 sin(4θ). This al-
lows to estimate K4 = 8 103 erg mol−1 at T = 180 K.
It is then possible to estimate the spin-flop critical field,
Hflop = (16K/χ⊥)

1/2, where χ⊥ is the magnetic sus-
ceptibility for a magnetic field perpendicular to the spin-
axis, and where we have neglected the susceptibility in
the spin direction. Using the measured linear part of the
magnetization m(H) at H = 7 T, we estimate χ⊥ = 6.5
10−4 emu mole−1 and, neglecting χ‖, Hflop = 2 T at T =
180 K. This is well above any of the characteristic fields
evidenced by torque or longitudinal magnetization.

Actually, the ferromagnetic component must be con-
sidered, as the driving torque on this component is larger
than the one originating from the anisotropy of the sus-
ceptibility. Neglecting the anisotropic susceptibility con-
tribution, it is easy to show that the critical field now is:
Hflop ≃ 4.3K4/ms, where ms is the in-plane magnetiza-
tion. Using the measured value ms = 470 emu mole−1,
one obtains Hflop = 160 Oe at T = 180 K. While this
value can account for the lower field H1, the model can-
not account for the second field, H2, as, for fields larger
thanH1, one merely expects a rigid rotation of the layers.

To account for this second field, one needs to introduce
the AF coupling between layers. The simplest model to
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do so is to introduce the ferromagnetic components in
two adjacent layers, and a phenomenological expression
for the magnetic total energy as the sum of two terms:

Fs =
∑

l=1,2

−K4 cos(4 arccos(ml · a))−ml ·B

Fi = J⊥m1 ·m2 (4)

where the sum is for two adjacent layers, l = 1 and l =
2; ml is the ferromagnetic component in layer l, Fs con-
tains the magnetocrystalline and Zeeman energies, and
Fi is for the antiferromagnetic coupling of the two lay-
ers. Although this model applies to two distinct layers,
it is essentially the same as the one in Ref. 19 (using
χ⊥ ∼ 1/J), with the difference that – as the magnetic
field may now reach values corresponding to the flip of
the AF-coupled magnetizations – one cannot longer treat
these within the anisotropic susceptibility approximation
. As a result, one expects from Eq. 4 a critical field for the
flop of the ferromagnetic domains similar to the one esti-
mated above, which accounts for H1, and a critical field
for the flip of the AF-coupled magnetizations towards the
parallel configuration, which accounts for H2. Thus, this
model offers a possibility to estimate two credible criti-
cal fields, but it still cannot account completely for the
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FIG. 9: Torque and longitudinal magnetization, as obtained
from the model of Eqs. 5. The inset displays the angle of the
magnetization in the two layers, from the a-axis. Parameters
for the simulation are J = 1, S = 1, K4 = 6 10−5, J⊥ = 6
10−4 and D = 0.1. The magnetic field is applied at θ = π/8.

observed torque signal. In particular, it only predicts a
saturation of the torque at H2, in place of the observed
non-monotonic behavior.
We found that a realistic model may only be obtained

by taking into account both the spin in-plane degrees
of freedom, as for the first model, and the out-of-plane
coupling, as for the second one. The total energy is then
the sum of three terms:

Fs =
∑

l=1,2 i=1,2

−K4 cos(4 arccos(S
i
l · a))− S

i
l ·B

Fa =
∑

l=1,2

J S
1
l · S

2
l −DS

1
l ∧ S

2
l

Fi = J⊥ (S1
1 + S

2
l ) · (S

1
2 + S

2
2) (5)

where l = 1, 2 is for the two coupled layers; i = 1, 2
is for the two spins of one pair; J is the antiferromag-
netic coupling of two spins belonging to the same plane;
D is the Dzyalochinskii-Morya coefficient (which drives
the tilt of the spins, and so generates the ferromagnetic
in-plane component ml as in Eqs. 4), and J⊥ antifer-
romagnetically couples m1 and m2. Strictly, the first
term should be −K4 cos(4(arccos(S

i
l · a)) − α), where

α ≃ D/2J , to account for the octahedra rotation, but
this is irrelevant for the present simulations.
As may be seen in Fig. 9, the model reproduces the

essential experimental features for both the longitudinal
magnetization and the torque. It is seen that, below
H1, two domain orientations coexist while, aboveH2, the
magnetizations in the two adjacent layers are ordered fer-
romagnetically and progressively rotate towards the mag-
netic field orientation, as the field is increased. The peak
in the torque magnitude does not mark a transition de-
limiting two distinct spin configurations, but a crossover
where the spin canting is found to vary by about 10%.
While the only true transition at H1 produces a well
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marked jump in the torque and magnetization simula-
tion, we have seen (Fig. 7) that the experimental mani-
festation is actually weak. This may be explained both
by a spatial distribution of the material properties, and
by the fact that the simulation postulates identical pop-
ulations of the two domain orientation below H1, and a
single stable domain above this field, while pinning and
inhmogenities may well smear out the singularity.

C. Basal-plane anisotropy

Within the modelization made above, the observation,
below Tc, of a torque signal increasing with field at large
field should be interpreted as the manifestation of a field-
dependent parameter K4. Van Vleck first laid the basis
for a quantum theory for the computation of the magne-
tocrystalline anisotropy in ferromagnetic materials[20].
He showed that the anisotropy parameter may be eval-
uated using an effective anisotropic spin-Hamiltonian in
the local Weiss field approximation (as a result of crys-
tal field splitting and spin-orbit coupling), and the sta-
tistical computation of the spin orientation distribution
derived from this Hamiltonian. This distribution also
determines the magnetization, and, thus, the anisotropy
may be expressed as a function of this measurable quan-
tity (see Ref. [21] for a review). At low temperature,
when spin-waves do not destroy the two-spin correlation,
this yields the well-known power law dependence, κl ∝
M l(l+1)/2, where κl are the coefficients of the magnetic
energy in a spherical harmonics representation[22]. The
effective anisotropy is then proportional to one of these
coefficients, or a linear combination of them. This rela-
tionship does not depend on the details of the spin inter-
actions, but only on the symmetry of the crystal, and the
order of the anisotropy. It was shown that the mean-field
approximation is actually an example of a renormalized
collective excitation theory, to which also belongs the
spin-wave theory[23]. In this hypothesis that the spin
excitations are quasi-independent, the two limiting be-
haviors κl ∝ M l(l+1)/2 and κl ∝ M l, respectively in the
ordered and the paramagnetic states, are predicted. In
the case of the tetragonal symmetry, the correspondence
between these coefficients and the basal plane four-fold
anisotropy constant is straightforward, as K4 ∝ κ4.
The interpretation of the power law field dependence

for K4 then follows for each temperature regime. At low
temperature, M(H) is the sum of the field-independent
Ms and a small linear field term, so that any power law
of the magnetization yields α ≃ 1. Indeed, α decreases
steadily with decreasing temperature in Fig. 8d, reaching
α = 1.4 at T = 150 K. At Tc, the critical scaling gives
M ∝ Hβ/(β+γ)≃0.2 (Section I), so that K4 ∝ M10 ∝ H2,
as observed. Finally, in the paramagnetic regime, one
expects K4 ∝ M4 ∝ H4. While the measured expo-
nent grows up to α ≃ 3 at T = 260 K, it is however
seen to decrease for larger temperature, down to α ≃ 2.
This could be due to the fact that the contribution of

the anisotropy becomes quickly smaller for higher tem-
perature (as M(T )4), and the torque signal eventually
becomes dominated by some anisotropic contribution of
the form ∆χH2 (i.e. ∝ M2). It is found, however,
that M(T )10 at low magnetic field does not account for
the quasi-linear temperature dependence forK4(T ) when
T → Tc (Fig. 8c). This discrepancy could sign the break-
down of the two-spins correlations by thermal spin-waves,
when kBT becomes larger than the typical spin-wave en-
ergy for wave vector k ≃ a−1. Still, we evaluate the zero
temperature anisotropy from the extrapolation of K4 at
150 K to K4(0) = 1.2 105 erg mole−1, using the M10

scaling. This value is one order of magnitude larger than
the one of Bi2CuO4, which should be representative of
tetragonal cuprates[19].

In Ref. 11, it was proposed that the anisotropy is large
enough to influence the universality class of the fluctua-
tions. In a classical description, it is not expected to do
so, as long as the four-fold contribution to the free energy
is smaller than the spin coupling energy, J . More pre-
cisely, Ref. 24 determines K4/J ≃ 0.5. The anisotropy
energy, ≈ 0.13 µeV/spin, is only about 10−6 J . The ob-
servation was made, however, that 2D quantum confine-
ment yields a larger effective anisotropy for planar anti-
ferromagnets, as a small anisotropy term opens a large
magnon gap on the scale of J [11]. It was proposed that
the effective anisotropy is in this case (24K4 J)

1/2 ≃ 6
10−3J . This modified value is smaller than the upper
bound obtained from the magnon dispersion in Ref. 11,
8 10−2 J ; it is also too small to expect a noticeable devi-
ation from the isotropic 2D XY model.

Finally, we show that torque measurements also pro-
vide a way to bound possible anisotropic thermodynamic
effects. In a previous contribution, we proposed that
an increase of the ordering temperature with field could
be at the origin of the observation of magnetoresistance
effects above Tc[16]. In particular, we recalled that
the Dzyalochinskii-Morya term is the origin of a field-
induced, transverse, staggered magnetic field (H†), and,
so, of a transverse staggered magnetization. This stag-
gered field competes with the conventional suppression of
Tc with field and, at low field, may increase the ordering
temperature in a linear way[25]. The simplest hypothe-
sis to evaluate this effect above Tc is to assume a shift
of the Curie-Weiss temperature, as it should most di-
rectly reflect the change in the local spin-coupling with
the induced staggered field. The shift due to the stag-
gered field may be estimated as ∆TCW /TCW = H†µ/J ,
where H† = z 〈M〉D/µ2, z = 4 is the coordination of
the magnetic lattice, 〈M〉 the average magnetization per
spin at T ≈ TCW , and µ the moment of the Ir atom.
H−1∆TCW /TCW may be evaluated in this way as large
as 3 10−3 T−1. The anisotropic part of this shift is how-
ever not known (it was erroneously assumed that there
should be one in Ref. [16], but the absence of a pro-
jection of the Dzyalochinskii-Morya vector on the basal
plane does not allow for this direct source of anisotropy,
in the present case, unlike for La2CuO4). Assuming a



7

four-fold variation TCW = ∆4TCW sin(4θ), the associ-
ated contribution to torque is 4BM∆4TCW/(T − TCW ).
Using the torque amplitude measured at 260 K and 6 T
as the maximum contribution for this effect, we obtain
H−1∆4TCW /TCW < 10−5 T−1. So, the anisotropy of the
ordering temperature shift must be very small, if any.

Conclusion

To summarize, we have shown that the bulk magneti-
zation critical scaling across Tc is close to the one ex-
pected for 2D XY scaling, as was found earlier from
the temperature dependence of the magnetic coherence
length, above Tc. There is no observable effect of an in-
plane magnetic field on the fluctuations dimensionality,
and the scaling as T → 0 indicates the possible impor-

tance of three-dimensional fluctuations in this limit. We
have modeled the longitudinal and transverse magnetiza-
tions, taking into account the basal-plane couplings and
anisotropy, as well as the transverse coupling. We find
that the basal-plane anisotropy is too small to account for
large deviations from an isotropic 2D XY model, using a
simple estimate for the effective anisotropy enhancement
from quantum fluctuations effects.

L.F. performed the experiments and wrote the paper,
with inputs from co-authors, who also provided samples.
We acknowledge support from the Agence Nationale de
la Recherche grant SOCRATE.
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[15] U. Köbler and A. Hoser, Renormalization group theory,
Springer (2010).

[16] L. Fruchter, G. Collin, D. Colson and V. Brouet, Eur.
Phys. J. B 88, 141 (2015).

[17] D. Zech, J. Hofer, H. Keller, C. Rossel, P. Bauer and J.
Karpinski, Phys. Rev. B 53 R6026 (1996).

[18] D.-X. Chen, E. Pardo and A. Sanchez, IEEE Transac-
tions on Magnetics, 41, 2077 (2005).

[19] M. Herak, M. Miljak, G. Dhalenne and A. Revcolevschi,
J. Phys.: Condens. Matter 22, 026006 (2010).

[20] J. H. Van Vleck, Phys. Rev. 52, 1178 (1937).
[21] H.B. Callen and E. Callen, J. Phys. Chem. Solids,

27,1271 (1966).
[22] C. Zener, Phys. Rev. 96, 1335 (1954).
[23] H.B. Callen and S. Shtrikman, Solid State Com., 3, 5

(1965).
[24] A Taroni S T Bramwell and P C Wholdsworth, J. Phys.:

Condens. Matter 20, 275233 (2008).
[25] F. Kagawa, Y. Kurosaki, K. Miyagawa and K. Kanoda,

Phys. Rev. B 78, 184402 (2008).


