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We provide numerical evidence that a finite-dimensional inertial manifold on which the dynamics
of a chaotic dissipative dynamical system lives can be constructed solely from the knowledge of a set
of unstable periodic orbits. In particular, we determine the dimension of the inertial manifold for the
Kuramoto-Sivashinsky system and find it to be equal to the “physical dimension” computed previously via
the hyperbolicity properties of covariant Lyapunov vectors.
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Dynamics in chaotic dissipative systems is expected to
land, after a transient period of evolution, on a finite-
dimensional object in state space called the inertial mani-
fold [1–5]. This is true even for infinite-dimensional
systems described by partial differential equations and
offers hope that their asymptotic dynamics may be repre-
sented by a finite set of ordinary differential equations, a
drastically simplified description. The existence of a finite-
dimensional inertial manifold has been established for
systems such as the Kuramoto-Sivashinsky, the complex
Ginzburg-Landau, and some reaction-diffusion systems
[2]. For the Navier-Stokes flows, its existence remains
an open problem [3], but dynamical studies, such as the
determination of sets of periodic orbits embedded in a
turbulent flow [6,7], strengthen the case for a geometrical
description of turbulence. However, while mathematical
approaches may provide rigorous bounds on the dimen-
sions of inertial manifolds, their constructive description
remains a challenge.
Recent progress towards this aim came from numerical

investigations of the covariant Lyapunov vectors of spa-
tiotemporally chaotic flows [8,9], made possible by the
algorithms developed in Refs. [10–12]. These works have
revealed that the tangent space of a generic spatially
extended dissipative system is split into two hyperbolically
decoupled subspaces: a finite-dimensional subspace of
“entangled” or “physical” Lyapunov modes (referred to
in what follows as the “physical manifold”), which is
presumed to capture all long-time dynamics, and the
remaining infinity of transient (“isolated,” “spurious”)
Lyapunov modes. Covariant Lyapunov vectors span the
Oseledec subspaces [13,14] and thus indicate the intrinsic
directions of growth or contraction at every point on the
physical manifold. The dynamics of the vectors that span
the physical manifold is entangled, with frequent tangen-
cies between them. The transient modes, on the other hand,
are damped so strongly that they are isolated—at no time

do they couple by tangencies to the entangled modes. It was
conjectured in Refs. [8,9] that the physical manifold
provides a local linear approximation to the inertial mani-
fold at any point on the attractor and that the dimension of
the inertial manifold is given by the number of entangled
Lyapunov modes. Further support for this conjecture was
provided by Ref. [15], which verified that the vectors
connecting pairs of recurrent points—points on the chaotic
trajectory far apart in time but nearby each other in state
space—are confined within the local tangent space of the
physical manifold.
While these works showed that the physical manifold

captures the finite dimensionality of the inertial manifold,
they do not tell us much about how this inertial manifold is
actually laid out in state space.
In this Letter, we go one important step further and show

that the finite-dimensional physical manifold can be pre-
cisely embedded in its infinite-dimensional state space,
thus opening a path towards its explicit construction. The
key idea [16] is to populate the inertial manifold by an
infinite hierarchy of unstable time-invariant solutions, such
as periodic orbits, an invariant skeleton which, together
with the local “tiles” obtained by linearization of the
dynamics, fleshes out the physical manifold. Chaos can
then be viewed as a walk on the inertial manifold,
chaperoned by the nearby unstable solutions embedded
in the physical manifold. Unstable periodic orbits have
already been used to compute global averages of spatio-
temporally chaotic flows [6,17–19].
There are infinitely many unstable orbits, and each of

them possesses infinitely many Floquet modes. While in
the example that we study here we do not have a detailed
understanding of the organization of periodic orbits (their
symbolic dynamics), we show that one needs to consider
only a finite number of them to tile the physical manifold to
a reasonable accuracy. We also show, for the first time, that
each local tangent tile spanned by the Floquet vectors of an
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unstable periodic orbit splits into a set of entangled
Floquet modes and the remaining set of transient modes.
Furthermore, we verify numerically that the entangled
Floquet manifold coincides locally with the physical
manifold determined by the covariant Lyapunov vector
approach.
Throughout this Letter, we focus on the one-dimensional

Kuramoto-Sivashinsky equation [20,21], chosen here as a
prototypical dissipative partial differential equation that
exhibits spatiotemporal chaos [22,23]:

ut þ uxuþ uxx þ uxxxx ¼ 0; x ∈ ½0; L�; ð1Þ

with a real-valued “velocity” field uðx; tÞ and the periodic
boundary condition uðx; tÞ ¼ uðxþ L; tÞ. Following
Ref. [19], we fix the size at L ¼ 22, which is small enough
so that unstable orbits are still relatively easy to determine
numerically and large enough for the Kuramoto-
Sivashinsky equation to exhibit essential features of spa-
tiotemporal chaos [24]. Dynamical evolution traces out a
trajectory in the ∞-dimensional state space, xðtÞ ¼
ft(xð0Þ), with xðtÞ≡ uðx; tÞ, where the time-forward
map ft is obtained by integrating _x ¼ vðxÞ up to time t.
The linear stability of the trajectory is described by the
Jacobian matrix Jt(xð0Þ) ¼ ∂xðtÞ=∂xð0Þ, obtained by
integrating _J ¼ AJ, where A is the stability matrix
AðxÞ ¼ ∂vðxÞ=∂x. We integrate the system (1) numeri-
cally, by a pseudospectral truncation [25,26] of uðx; tÞ ¼Pþ∞

k¼−∞ akðtÞeiqkx, qk ¼ 2πk=L to a finite number of
Fourier modes. For the numerical accuracy required
here, we found 31 Fourier modes (62-dimensional state
space) sufficient. The system is invariant under the
Galilean transformations uðx;tÞ→uðx−ct;tÞþc, reflection
uðx; tÞ → −uð−x; tÞ≡ σuðx; tÞ, and spatial translations
uðx; tÞ → uðxþ l; tÞ≡ gðθÞuðx; tÞ, where θ ¼ 2πl=L.
The Galilean symmetry is reduced by setting the mean
velocity

R
dxuðx; tÞ, a conserved quantity, to zero. Because

of the Oð2Þ equivariance of Eq. (1), this system can
have two types of relative recurrent orbits (referred to
collectively as “orbits” in what follows): preperiodic
orbits uðx; 0Þ ¼ σuðx; TpÞ and relative periodic orbits
uðx; 0Þ ¼ gðθpÞuðx; TpÞ, where gðθpÞ is the spatial trans-
lation by distance lp ¼ Lθp=2π. All orbits used here are
found by a multiple shooting method together with the
Levenberg-Marquardt algorithm (see Ref. [19] for details).
In our analysis, we use 200 preperiodic orbits ppoTp

and
200 relative periodic orbits rpoTp

, labeled by their periods
Tp. These are the shortest period orbits taken from the set
of over 60 000 determined in Ref. [19] by near-recurrence
searches. The method preferentially finds orbits embedded
in the long-time attracting set but offers no guarantee
that all orbits up to a given period have been found.
Floquet multipliersΛj and vectors ejðxÞ are the eigenvalues
and eigenvectors of Jacobian matrix Jp ¼ σJTp or

Jp ¼ gðθpÞJTp for preperiodic or relative periodic orbits,
respectively. The Floquet exponents λj (if complex, we
shall consider only their real parts, with multiplicity 2) are
related to multipliers by λj ¼ ln jΛjj=Tp. A high-accuracy
computation of all Floquet exponents and vectors for this
finite-dimensional state space (the key to all numerics
presented here) has been made possible by the algorithm
recently developed in Ref. [27]. For an orbit, ðλj; ejÞ
denotes the jth Floquet (exponent or vector); for a chaotic
trajectory, it denotes the jth Lyapunov (exponent or vector).
Figure 1(a) shows the Floquet exponent spectra for the

two shortest orbits, ppo10.25 and rpo16.31, overlaid on the
Lyapunov exponents computed from a chaotic trajectory.
The basic structure of this spectrum is shared by all 400
orbits used in our study [28]. For chaotic trajectories,
hyperbolicity between an arbitrary pair of Lyapunov modes
can be characterized by a property called the domination of
Oseledec splitting (DOS) [29,30]. Consider a set of finite-
time Lyapunov exponents

λτjðxÞ≡ 1

τ
ln ∥JτðxÞejðxÞ∥; ð2Þ

with L2 normalization ∥ejðxÞ∥ ¼ 1. A pair of modes j < l
is said to fulfill “DOS strict ordering” if λτjðxÞ > λτlðxÞ
along the entire chaotic trajectory, for τ larger than some
lower bound τ0. Then this pair is guaranteed not to have

(a)

(b) (c)

FIG. 1. (a) Floquet exponents for ppo10.25 (circles), rpo16.31
(squares), and Lyapunov exponents of a chaotic trajectory
(crosses). The inset shows a close-up of the eight leading
exponents. ppo10.25 and rpo16.31 have, respectively, two and one
positive Floquet exponents: λ1;2 ¼ 0.033 and λ1 ¼ 0.328. Only
one Lyapunov exponent is positive: λ1 ¼ 0.048. The number of
vanishing exponents is always two. The fourth Lyapunov exponent
is small but strictly negative: λ4 ¼ −0.003. (b) Time series of
local Floquet exponents λj(xðtÞ) for ppo10.25. (c) Close-up of
(b) showing the eight leading exponents. Dashed lines indicate
degenerate exponent pairs corresponding to complex Floquet
multipliers.
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tangencies [29,30]. For chaotic trajectories, DOS turned out
to be a useful tool to distinguish entangled modes from
hyperbolically decoupled transient modes [8,9]. Periodic
orbits are by definition the infinite-time orbits (τ can be any
repeat of Tp), so generically all nondegenerate pairs of
modes fulfill DOS. Instead, we find it useful to define, by
analogy to the “local Lyapunov exponent” [31], the “local
Floquet exponent” as the action of the strain rate tensor [32]
2DðxÞ ¼ AðxÞ⊤ þ AðxÞ (where A is the stability matrix)
on the normalized jth Floquet eigenvector:

λjðxÞ ¼ ejðxÞ⊤DðxÞejðxÞ ¼ lim
τ→0

λτjðxÞ: ð3Þ

We find that time series of local Floquet exponents λj(xðtÞ)
indicate a decoupling of the leading “entangled” modes
from the rest of the strictly ordered, strongly negative
exponents [Figs. 1(b) and 1(c)]. Perhaps surprisingly, for
every one of the 400 orbits we analyzed, the number of
entangled Floquet modes was always eight, equal to the
previously reported number of the entangled Lyapunov
modes for this system [15,28]. This leads to our first
surmise: (i) Each individual orbit embedded in the attract-
ing set carries enough information to determine the
dimension of the physical manifold.
For an infinite-time chaotic trajectory, hyperbolicity

can be assessed by measuring the distribution of minimal
principal angles [33,34] between any pair of subspaces
spanned by Lyapunov vectors [8–10]. Numerical work
indicates that, as the entangled and transient modes are
hyperbolically decoupled, the distribution of the angles
between these subspaces is bounded away from zero and
that observation yields a sharp entangled-transient thresh-
old. This strategy cannot be used for individual orbits, as
each one is of a finite period, and the minimal principal
angle reached by a pair of Floquet subspaces remains
strictly positive. Instead, we measure the angle distribution
for a collection of orbits and find that the entangled-
transient threshold is as sharp as for a long chaotic
trajectory: Fig. 2 shows the principal angle distribution
between two subspaces Sn and S̄n, with Sn spanned by
the leading n Floquet vectors and S̄n by the rest. As in the
Lyapunov analysis of long chaotic trajectories [8], the
distributions for small n indicate strictly positive density as
ϕ → 0. In contrast, the distribution is strictly bounded away
from zero angles for n ≥ 8, the number determined above
by the local Floquet exponent analysis. This leads to our
second surmise: (ii) The distribution of principal angles for
collections of periodic orbits enables us to identify a finite
set of entangled Floquet modes, the analog of the chaotic
trajectories’ entangled covariant Lyapunov vector modes.
It is known, at least for low-dimensional chaotic systems,

that a dense set of periodic orbits constitutes the skeleton
of a strange attractor [16]. Chaotic trajectories meander
around these orbits, approaching them along their stable
manifolds and leaving them along their unstable manifolds.

If trajectories are indeed confined to a finite-dimensional
physical manifold, such shadowing events should take
place within the subspace of entangled Floquet modes of
the shadowed orbit. To analyze such shadowing, we need to
measure the distances between the chaotic trajectories and
the invariant orbits. We use symmetry reduction, i.e.,
replacement of a group orbit of states identical up to a
symmetry transformation by a single state. Since the
translation uðx; tÞ → uðxþ l; tÞ on a periodic domain
implies a rotation akðtÞ → eiqklakðtÞ in Fourier space,
we choose to send both trajectories and orbits to the
hyperplane Imða1Þ ¼ 0;Reða1Þ > 0, called the first
Fourier-mode slice [35], and measure distances therein.
This transformation reads

ûðx; tÞ ¼ g( − θðtÞ)uðx; tÞ ð4Þ

with θðtÞ ¼ arga1ðtÞ. In the slice, both relative periodic
orbits and preperiodic orbits are reduced to periodic orbits.
From Eq. (4), one easily finds how infinitesimal perturba-
tions δuðx; tÞ are transformed [36]. This allows us to define
the symmetry-reduced tangent space, with the in-slice
perturbations δûðx; tÞ, Jacobian matrix ĴtðâÞ, Floquet
matrix ĴpðâÞ, and Floquet vectors êjðâÞ. The dimension
of the slice subspace is one less than the full state space:
The slice eliminates the marginal translational direction,
while the remaining Floquet multipliers Λj are unchanged.
Therefore, for the system studied here, there are only
seven entangled modes, with one marginal mode (time
invariance) in the in-slice description, instead of eight
and two, respectively, in the full state space description.
A shadowing of an orbit upðx; t0Þ by a nearby chaotic

FIG. 2. A histogram of the principal angles ϕ between Sn
(the subspace spanned by the n leading Floquet vectors) and S̄n
(the subspace spanned by the remaining d − n Floquet vectors),
accumulated over the 400 orbits used in our analysis. (Top panel)
For n ¼ 1; 2;…; 7 (Sn within the entangled manifold), the angles
can be arbitrarily small. (Bottom panel) For n ¼ 8; 10; 12;…; 28
(in the order of the arrow), for which all entangled modes are
contained in Sn, the angles are bounded away from unity.
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trajectory uðx; tÞ is then characterized by the in-slice
separation vector

Δûðx; tÞ≡ ûðx; tÞ − ûpðx; tpÞ; ð5Þ

where tp is chosen to minimize the in-slice distance ∥Δû∥.
Now we test whether the Δûðx; tÞ is confined to the

tangent space spanned by the entangled in-slice Floquet
vectors. To evaluate this confinement, one needs to take
into account the nonlinearity of the stable and unstable
manifolds for a finite amplitude ofΔûðx; tÞ. We decompose
the separation vector as

Δûðx; tÞ ¼ v̂nðx; tÞ þ ŵnðx; tÞ; ð6Þ
where v̂nðx; tÞ is a vector in the subspace Ŝn spanned by the
leading n in-slice Floquet vectors and ŵnðx; tÞ is in the
orthogonal complement of Ŝn. If n is large enough so that
Ŝn contains the local approximation of the inertial mani-
fold, we expect ∥ŵn∥ ∼ ∥v̂n∥2 ∼ ∥Δû∥2 because of the
smoothness of the inertial manifold; otherwise, ∥ŵn∥ does
not vanish as ∥Δû∥ → 0. In terms of the angle φn between
Ŝn and Δû, sinφn ∼ ∥ŵn∥=∥v̂n∥ ∼ ∥Δû∥ for n above the
threshold, while sinφn remains nonvanishing otherwise.
Following this strategy, we collected segments of a long

chaotic trajectory during which it stayed sufficiently close
to a specific orbit for at least one period of the orbit.
Figure 3(a) illustrates such a shadowing event for ppo33.39.
A parametric plot of sinφnðtÞ vs ∥Δûðx; tÞ∥ during this
event is shown in Fig. 3(b) for n ¼ 6, 7, 8 (blue circles, red
squares, and orange triangles, respectively). We can already
speculate from such a single shadowing event that sinφn
does not necessarily decrease with ∥Δû∥ for n < 7, while it
decreases linearly with ∥Δû∥ for n ≥ 7. This threshold is
clearly identified by accumulating data for all the recorded
shadowing events with ppo33.39 [Fig. 3(c)]: sinφn is
confined below a line that depends linearly on ∥Δû∥ if
and only if n ≥ 7. Similarly, there is a clear separation in
the average of sinφn taken within each bin of the abscissa
[Fig. 3(d)]. This indicates that for n < 7 (empty symbols)
typical shadowing events manifest a significant deviation
of Δû from the subspace Ŝn, whereas for n ≥ 7 (solid
symbols) Δû is always confined to Ŝn. We therefore
conclude that shadowing events are confined to the sub-
space spanned by the leading seven in-slice Floquet
vectors, or equivalently, by all eight entangled Floquet
vectors in the full state space. The same conclusion was
drawn for rpo34.64 [Figs. 3(e) and 3(f)] and five other orbits
(not shown). We also verified that, when a chaotic trajectory
approaches an orbit, the subspace spanned by all entangled
Floquet modes of the orbit coincides with that spanned by
all entangled Lyapunov modes of the chaotic trajectory.
This implies our third surmise: (iii) The entangled Floquet
manifold coincides locally with the entangled Lyapunov
manifold, with either capturing the local structure of the
inertial manifold.

In summary, we used the Kuramoto-Sivashinsky system
to demonstrate by six independent calculations that the
tangent space of a dissipative flow splits into entangled vs
transient subspaces and to determine the dimension of its
inertial manifold. The Lyapunov mode approach of
Refs. [8–10,15,28] identifies (i) the entangled Lyapunov
exponents, by the dynamics of finite-time Lyapunov expo-
nents [Eq. (2)], and (ii) the entangled tangent manifold, or
physical manifold, by measuring the distributions of angles
between covariant Lyapunov vectors. The Floquet mode
approach [27] developed here shows that (iii) Floquet
exponents of each individual orbit separate into entangled
vs transient (Fig. 1), (iv) for ensembles of orbits, the
principal angles between hyperplanes spanned by Floquet
vectors separate the tangent space into entangled vs transient
(Fig. 2), (v) for a chaotic trajectory shadowing a given orbit,
the separation vector lies within the orbit’s Floquet entangled
manifold (Fig. 3), and (vi) for a chaotic trajectory shadowing
a given orbit, the separation vector lies within the covariant
Lyapunov vectors’ entangled manifold.
All six approaches yield the same inertial manifold

dimension, reported in earlier work [15,28]. The approach

(a) (b)

(c) (d)

(e) (f)

FIG. 3. (a) Shadowing event between a chaotic trajectory and
ppo33.39, drawn over 2Tp. (b) Parametric plot of sinφnðtÞ vs
∥Δûðx; tÞ∥ during the single shadowing event shown in (a), for
n ¼ 6, 7, 8. (c) The same as (b), but a total of 230 shadowing
events of ppo33.39 are used. (d) Average of sinφn in (c), taken
within each bin of the abscissa, for n ¼ 4, 5, 6, 7, 9, 11, 17, 21, 25
from top to bottom. (e),(f) The same as (c),(d), respectively, but
for 217 shadowing events with rpo34.64. The dashed lines show
sinφn ∝ ∥Δû∥ in all panels.
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with Floquet modes and unstable periodic orbits is con-
structive, in the sense that periodic points should enable us,
in principle (but not attempted in this Letter), to tile the
global inertial manifold by local tangent spaces of an
ensemble of such points. Moreover, and somewhat surpris-
ingly, our results on individual orbits’ Floquet exponents
[Figs. 1(b) and 1(c)] and on shadowing of chaotic trajec-
tories (Fig. 3) suggest that each individual orbit embedded
in the attracting set contains sufficient information to
determine the entangled-transient threshold. However,
the computation and organization of unstable periodic
orbits is still a major undertaking and can currently be
carried out only for rather small computational domains
[7,19]. The good news is that the approach with entangled
Lyapunov modes [8] suffices to determine the inertial
manifold dimension, as Lyapunov mode calculations
require only averaging over long chaotic trajectories, are
much easier to implement, and can be scaled up to much
larger domain sizes than L ¼ 22 considered here.
We hope the computational tools introduced in this

Letter will eventually contribute to solving outstanding
issues of the dynamical system theory, such as the existence
of an inertial manifold in the transitional turbulence regime
of the Navier-Stokes equations.
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