
HAL Id: cea-01481524
https://cea.hal.science/cea-01481524

Submitted on 2 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nuclear response functions with finite-range Gogny
force: Tensor terms and instabilities

A. de Pace, M. Martini

To cite this version:
A. de Pace, M. Martini. Nuclear response functions with finite-range Gogny force: Tensor terms
and instabilities. Physical Review C, 2016, 94 (2), pp.024342. �10.1103/PhysRevC.94.024342�. �cea-
01481524�

https://cea.hal.science/cea-01481524
https://hal.archives-ouvertes.fr


PHYSICAL REVIEW C 94, 024342 (2016)

Nuclear response functions with finite-range Gogny force: Tensor terms and instabilities

A. De Pace
Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

M. Martini
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A fully antisymmetrized random phase approximation calculation employing the continued fraction technique
is performed to study nuclear matter response functions with the finite-range Gogny force. The most commonly
used parameter sets of this force, as well as some recent generalizations that include the tensor terms, are
considered and the corresponding response functions are shown. The calculations are performed at first and second
order in the continued fraction expansion and the explicit expressions for the second-order tensor contributions
are given. Comparisons between first- and second-order continued fraction expansion results are provided. The
differences between the responses obtained at the two orders turn out to be more pronounced for the forces
including tensor terms than for the standard Gogny ones. In the vector channels the responses calculated with
Gogny forces including tensor terms are characterized by a large heterogeneity, reflecting the different choices
for the tensor part of the interaction. For the sake of comparison the response functions obtained considering
a G-matrix-based nuclear interaction are also shown. As a first application of the present calculation, the
possible existence of spurious finite-size instabilities of the Gogny forces with or without tensor terms has been
investigated. The positive conclusion is that all the Gogny forces but the GT2 one are free of spurious finite-size
instabilities. In perspective, the tool developed in the present paper can be inserted in the fitting procedure to
construct new Gogny-type forces.

DOI: 10.1103/PhysRevC.94.024342

I. INTRODUCTION

The past years have been characterized by a regain of
interest in nuclear matter response functions in connection with
the nuclear structure. The power of this tool to study electron,
neutrino, meson, and nucleon scattering on nuclei in the
quasielastic peak and beyond (see, for example, Refs. [1–7]) is
well known. Recently the formalism of the response functions
has been largely employed to investigate the properties of ef-
fective nuclear forces. After the seminal work of Ref. [8], a lot
of efforts have been made in connection with the Skyrme forces
in order to generalize the fully antisymmetrized random phase
approximation (RPA) results obtained in that paper, since
those calculations were limited to consider the central and the
density-dependent terms of the Skyrme interaction. The first
generalization was the inclusion in the RPA calculations of the
spin-orbit term [9] and after that several papers were devoted
to the inclusion of the tensor term [10] and to the investigation
of its role [11,12], up to the generalization of the formalism
to asymmetric nuclear matter [13]. The effects of other
density-dependent terms [14] and of the three-body forces
[15] have also been treated. A review on this topic recently
appeared [16]. The two main applications of this kind of
calculations have been, up to now, the study of the unphysical
finite-size instabilities in nuclear energy density functionals
[11,12,14,17–19] and the calculation of the neutrino mean
free path in nuclear and neutron matter [9,12,14,20–22].

At variance with the case of the Skyrme forces, less
attention has been paid to the case of finite-range Gogny forces.
The reason is probably twofold. First, in spite of the successes
of this kind of force (with which pairing correlations can
be automatically taken into account in the mean-field-based

calculation, without the introduction of further parameters),
the number of mean-field-based calculations using the Gogny
force is enormously inferior to the number of corresponding
calculations with zero-range Skyrme forces. The second rea-
son is that, due to the finite range of the force, fully analytical
calculations of the antisymmetrized RPA nuclear matter re-
sponse are no longer possible because of the role played by the
exchange terms. With finite-range forces analytical results can
be achieved only in the so-called ring approximation, which
takes into account only the direct contributions, or by consider-
ing the Landau-Migdal (LM) limit. The first paper devoted to
the RPA response function in infinite nuclear matter employing
the Gogny force was the one of Gogny and Padjen [23], which
followed the LM approach. An approximation beyond the
standard LM one, based on keeping the full momentum depen-
dence in the direct term and making the LM approximation for
the exchange term (LAFET), was studied for the Gogny force
in Ref. [24] and compared with the results of a method, devel-
oped in the same paper, based on an expansion of the Bethe-
Salpeter equation onto a spherical harmonic basis, a method
that in principle can be carried out up to any degree of accuracy.

Another approach for the treatment of the fully antisym-
metrized RPA response with finite-range nuclear forces is
the one based on the continued fraction (CF) technique.
Calculations employing this method, for meson-exchange-
type potentials, were done in Refs. [25–28] by truncating
the CF expansion at first order. The calculation was then
pushed up to second order in Ref. [29]. The CF technique
up to second order was employed also in Ref. [30], using a
Gogny force. Their results support the ones of Ref. [29] on the
rapid convergence of the CF expansion founding, among other
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outcomes, that up to the saturation density the convergence is
already achieved at first order.

In the present paper we use the CF technique, following the
approach of Ref. [29], and we make use of the Gogny force.
Our aim is the study of the nuclear matter response function by
employing the most commonly used parametrizations of the
Gogny force (D1 [31], D1S [32], D1N [33], and D1M [34]),
as well as the recent generalizations that include the tensor
terms [35–38]. Several recent papers have shown the crucial
role played by the tensor term in the behavior of the nuclear
matter response functions [10–13] and, as a consequence, in
the finite-size spurious instabilities, but all these studies have
only considered Skyrme energy density functionals. Very few
works cope with the role of the tensor in the Gogny force. To
our knowledge, the only two papers related to this subject are
Ref. [39], which performs RPA calculations of the response
functions, but in the LM approximation, showing results for the
D1MT force, and Ref. [40], which considers, for the D1ST and
D1MT interactions, the spin susceptibilities, i.e., the q → 0,
ω → 0 limit of the nuclear responses.

II. FORMALISM

In the evaluation of response functions, we employ Green’s
functions techniques, as described, e.g., in Refs. [41,42].
We consider an infinite system of nucleons at a density
corresponding to a Fermi momentum kF , interacting through
a nonrelativistic potential, whose general form, in momentum
space, reads

V (k) = V0(k) + Vτ (k)τ 1 · τ 2 + Vσ (k)σ 1 · σ 2

+Vστ (k)σ 1 · σ 2 τ 1 · τ 2 + Vt (k)S12(k̂)

+Vtτ (k)S12(k̂)τ 1 · τ 2, (1)

where S12 is the standard tensor operator and Vα(k) represents
the momentum space potential in channel α (here we neglect,
for the sake of simplicity, the spin-orbit terms).

The response of the system to an external probe can
be obtained from the particle-hole (ph) four-point Green’s
function Gph, which is the outcome of a Galitskii-Migdal
integral equation:

Gph(K + Q,K; P + Q,P )

= −G(P + Q) G(P ) (2π )4δ(K − P )

+ iG(K + Q) G(K)
∫

d4T

(2π )4
�ph(K + Q,K; T + Q,T )

×Gph(T + Q,T ; P + Q,P ), (2)

G being the exact one-body Green’s function and �ph the
irreducible vertex function in the ph channel (capital letters
here refer to four-vectors; lower case letters refer to three-
vectors). For brevity, in Eq. (2) we have dropped the spin-
isospin indices.

Out of Gph one can define the polarization propagator in a
given spin-isospin channel X ≡ (S,M,T ):

	X(Q) ≡ 	X(q,ω)

= i

∫
d4P

(2π )4

d4K

(2π )4
G

ph
X (K + Q,K; P + Q,P ). (3)

Finally, the system response functions are simply proportional
to the imaginary part of 	X:

RX(q,ω) = −V

π
Im	X(q,ω)

= −3πA

2k3
F

Im	X(q,ω), (4)

V being the volume and A the mass number of the system.
Depending on the approximations done on G and �ph,

one can get different approximations for 	X. By neglecting
�ph and dressing the nucleon propagators with the first-order
self-energy 
(1)(k) one obtains the Hartree-Fock (HF) or
mean-field approximation, 	HF. Here we follow the usual
approximation of including the mean-field effects through the
HF effective mass:

m∗

m
=

(
1 + m

kF

∂
(1)(k)

∂k

∣∣∣∣
k=kF

)−1

, (5)

m being the bare nucleon mass. By replacing in Eq. (2)
the irreducible vertex function �ph with the matrix elements
of the bare potential, one gets the RPA equation for Gph.
However, one still has a closed equation only for the full
four-point Green’s function and not for the simpler polarization
propagator.

In order to get the RPA response functions we follow
the approach based on the CF expansion of the polarization
propagator [29,43–46]. An alternative approach, based on the
CF expansion of the effective interaction, was developed in
Refs. [30,47]. Up to second order in the CF expansion (the
highest order so far reached in actual calculations) the two
approaches are equivalent. Details of the derivation can be
found in Ref. [29]. Here we summarize the relevant formulas.

In the CF expansion the RPA polarization propagator reads

	RPA
X = 	HF

1 − 	
(1)d
X

/
	HF − 	

(1)ex
X

/
	HF − 	

(2)ex
X

/
	HF−

[
	

(1)ex
X

/
	HF

]2

1−···

, (6)

where the expansion has been explicitly shown up to
second order. 	

(1)d
X , 	

(1)ex
X , and 	

(2)ex
X correspond to

the Feynman diagrams in Figs. 1(a), 1(b), and 1(c),
respectively.

The nth − order exchange propagator in the spin-isospin
channel X reads

	
(n)ex
X (q,ω) =

∑
αi

C
α1
X . . . C

αn

X 	(n)ex
α1...αn

(q,ω), (7)
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(a) (b) (c)

FIG. 1. Feynman diagrams that enter the second-order CF ex-
pansion of the RPA propagator: (a) first-order direct, (b) first-order
exchange, and (c) second-order exchange.

where the indices αi run over all the spin-isospin channels
of the interaction and all the spin-isospin factors depending
on the probed channel are condensed in the coefficients C

αi

X
(see Table I). Thus, the calculation of the RPA response at
order n in the CF expansion is reduced to the calculation
of the exchange contributions 	(n)ex

α1...αn
up to order n. Details

about the latter in the case of a Gogny interaction are given
in the Appendix. Analogous expressions for the case of a
meson-exchange potential can be found in the Appendix of
Ref. [29].

III. RESPONSE FUNCTIONS RESULTS

A. Standard parametrizations of the Gogny force

The general expression of the Gogny interaction in the
coordinate space is

V (r) =
2∑

j=1

(Wj + BjPσ − HjPτ − MjPσ Pτ )e
− r2

μ2
j

+ t0(1 + x0Pσ )ρα0δ(r), (8)

where r is the distance between two nucleons. The first term of
Eq. (8) is given by a sum of two Gaussians with effective range
μ1 and μ2 simulating the short- and long-range components of
a realistic interaction in the nuclear medium. This finite-range
term includes all possible mixtures of spin and isospin opera-
tors, being Pσ = (1 + σ 1 · σ 2)/2 and Pτ = (1 + τ 1 · τ 2)/2 the
spin and isospin exchange operators, respectively. The second
term is the zero-range density-dependent contribution. Usually
the Gogny force also contains a zero-range spin-orbit term. We
omit it, as is generally done in the nuclear matter calculations

TABLE I. The spin-isospin coefficients Cα
X (see text), in the

various spin-isospin channels, for the interaction of Eq. (1).

X ≡ (S,M,T ) C0
X Cτ

X Cσ
X Cστ

X Ct
X Ctτ

X

(0,0,0) 1 3 3 9 0 0
(0,0,1) 1 −1 3 −3 0 0
(1,1,0) 1 3 −1 −3 −1 −3
(1,1,1) 1 −1 −1 1 −1 1
(1,0,0) 1 3 −1 −3 2 6
(1,0,1) 1 −1 −1 1 2 −2

0

0.002

0.004

0.006
(0,0)
(0,1)
(1,0)
(1,1)

0 2 4 6 8 10 12
0

0.002

0.004

0 2 4 6 8 10 12

D1 D1S

D1N D1M

R
 (

M
eV

-1
)

ω  (MeV)

q=27 MeV/c

FIG. 2. RPA response function in symmetric nuclear matter at
kF = 270 MeV/c and q = 27 MeV/c calculated with the continued
fraction technique at first order (dashed line) and at second order (solid
line) in the CF expansion by considering different parametrizations of
the Gogny interaction. The different spin and isospin channels (S,T )
are plotted in different colors. The black dotted lines represent the HF
response. The collective modes above the continuum are represented
by vertical lines.

[24,30,48–50]. Indeed, in Ref. [9] it was shown that the effects
of the spin-orbit interaction on the calculations of the nuclear
response functions are small, even at momentum transfer larger
than the Fermi momentum. This conclusion obtained by using
Skyrme-type forces is expected to remain valid also for the
Gogny forces, due to the similarity of the spin-orbit term in
the two cases. The expression of the Gogny interaction given
in Eq. (8) is the one corresponding to the most commonly used
parametrizations, such as D1, D1S, D1N, and D1M. For the
values of the parameters μj , Wj , Bj , Hj , Mj , t0, x0, and α0

corresponding to these four forces see, for example, Ref. [51].
Let us consider now the RPA response functions RX(q,ω) in

the four spin and isospin channels calculated at first and second
order in the CF expansion using the four parametrizations
of the Gogny interaction mentioned above. For the sake of
illustration we show these responses in Figs. 2 and 3 for
the fixed value of kF = 270 MeV/c and for two values of
the momentum transfer, q = 27 and q = 270 MeV/c. We
consider these values in order to compare our results with the
ones obtained in Ref. [30] where only the D1 parametrization
was considered. Starting with this interaction one can observe
that our results are similar to the ones obtained in Ref. [30]
(we remind that there is a global multiplicative factor 4ρ0�c
between our results and the ones of Ref. [30]). In analogy with
Ref. [30] we can conclude that for the D1 parametrization the
first order in the CF expansion gives a reliable description
of the response functions for the (S,T ) spin and isospin
channels (1,0) and (1,1), but not for the (0,0) channel, where
it is necessary to include the second order. For the (0,1)
channel, while at q = 270 MeV/c the results of our work
are once again similar to the ones of Ref. [30] (and are
characterized by a small effect between the two orders of the
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FIG. 3. As in Fig. 2, but for q = 270 MeV/c.

CF expansion), some differences between the two calculations
appear at q = 27 MeV/c. In our case, the collective mode
above the particle-hole continuum region remains outside the
continuum even at second order in the CF expansion. It does
not seem to be the case in the calculations of Ref. [30].

Turning to the other three interactions, whose results for
the different response functions are presented here for the first
time, we can make two general comments:

(1) In the (0,0) channel the responses calculated with the
different parametrizations show a similar qualitative
behavior, not only when compared to each other but
also with respect to the HF results; moreover, the
difference between the first- and second-order CF
expansion results is similar for the four forces.

(2) In the other (S,T ) channels, the various parametriza-
tions can show important differences in the transferred-
energy dependence; the convergence of the CF
expansion as well strongly depends on the force
parameters in the different (S,T ) channels.

Considering now specific parametrizations, we can affirm,
qualitatively speaking, that the results obtained with D1S
are not so different from the ones obtained with D1. For
these two parametrizations, some difference can be observed
in the (1,1) channel. Indeed, at q = 27 MeV/c the collective
mode is above the ph continuum for D1S, but not for D1. At
q = 270 MeV/c the response is quenched with respect to the
HF one in the case of D1, while there is a small enhancement
for the D1S case. In this (1,1) channel, the difference between
first and second order in the CF expansion is more pronounced
for D1S than for D1.

Remaining on this (1,1) channel, the enhancement of the
responses at q = 270 MeV/c with respect to the HF case, as
well as the discrepancy between first and second order in the
CF expansion, are largely evident for D1M and D1N.

Without entering into the details of the behavior of the
responses in the different channels for each parametrization,
we just mention that at q = 27 MeV/c the response in the (1,0)

channel calculated with D1M is quite different with respect to
the other parameterizations.

In the (0,1) channel the results strongly depend on the
appearance (like in the case of D1, D1S, and D1M) or not
(like in the case of D1N) of the collective mode above the
ph continuum. This collective mode in the S = 0, T = 1
channel is the counterpart of the giant dipole resonance (GDR)
in finite nuclei. A large-scale theoretical quasiparticle RPA
calculation of dipole excitations in the whole nuclear chart
was performed in Ref. [52] where the D1S and D1M Gogny
forces are used. A systematic shift toward lower energies is
found for the GDR mode calculated with D1M with respect to
D1S. An equivalent shift appears in the present infinite nuclear
matter results. Lower energy collective modes for D1M when
compared to D1S are also found in the (1,1) channel, here for
infinite nuclear matter, and in Ref. [53] for the Gamow-Teller
resonances of finite nuclei.

Beyond the discussed differences related to the use of differ-
ent parameter sets of the Gogny force, an important and general
comment is in order: independently of q, of the choice for
the parametrization of the interaction, and of the spin-isospin
channel of excitation, one can observe that at low ω the differ-
ence between the results obtained at first order in the CF ex-
pansion and the ones obtained at second order is always small.
This is particularly important for studies of the finite-size
instabilities of the nuclear matter, that are discussed in Sec. IV,
which involve calculations of the response functions at ω = 0.

B. Gogny force with tensor terms

Some Gogny-type forces, less used up to now in the liter-
ature, are characterized by the presence of additional tensor
terms. This is the case of the GT2 force [35] in which a tensor-
isovector contribution of Gaussian form is added to the central
channels of Eq. (8). Tensor terms of Gaussian form appear
also in D1ST2a and D1ST2b [37] as well as in D1ST2c and
D1MT2c [38], where beyond a tensor-isovector component a
tensor-isoscalar one is included. Another important difference
between the GT2 force and these last four parametrizations is
that in the GT2 case the inclusion of a tensor term involved
a refitting of all the parameters, whereas for the other cases
the tensor terms have been added to the D1S or D1M without
changing the values of the central parameters. In the same spirit
also the D1ST and D1MT interactions were introduced [36].
In this case the radial part of the additional tensor-isospin term
was based on the analogous one in the microscopic Argonne
V18 interaction; hence, it was not characterized by a Gaussian
behavior. To include also these D1ST and D1MT interactions
in our analysis, which is based on Gaussian interactions, we
have fitted the tensor component of the D1MT and D1ST
interactions with a sum of three Gaussians.

Turning to the nuclear responses, we show in Figs. 4
and 5 the results obtained at first and second order in the
CF expansion by employing the D1ST, D1ST2(a,b,c), D1MT,
D1MT2c, and GT2 Gogny interactions. For the sake of
comparison we also display the response functions calculated
at first order employing a G-matrix-based nuclear interaction.
This interaction is based on the G-matrix calculation of
Ref. [54] and it has been employed in RPA calculations of
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FIG. 4. RPA response function in symmetric nuclear matter at kF = 270 MeV/c and q = 27 MeV/c calculated with the continued fraction
technique at first order (dashed line) and at second order (solid line) in the CF expansion by considering different parametrizations of the Gogny
interaction with tensor terms. The different spin and isospin channels (S,M,T ) are plotted in different colors. The black dotted lines represent
the HF response. The collective modes above the continuum are represented by vertical lines. For comparison, we also display the response
functions calculated with a G-matrix nuclear interaction.

quasielastic response functions both in finite nuclei [5,55,56]
and in nuclear matter [29]. For kF and q we choose the same
values (kF = 270 MeV/c; q = 27 and q = 270 MeV/c) as
the ones considered for Figs. 2 and 3.

The responses shown in Figs. 4 and 5 have never been
calculated before by considering the CF expansion approx-
imation. However, in the case of the D1MT interaction we
can compare our results with the ones published in Ref. [39],
where the responses for the D1MT interaction were calculated
in the Landau framework by truncating the residual interaction
at lmax = 3. Our results for q � 0.1kF are plotted in the
left lower panel of Fig. 4 and should be compared with the
results of Fig. 3 of Ref. [39]. The agreement is fairly good in
all the (S,M,T ) channels. The agreement between the two
approaches no longer holds at q � kF , as one can notice
by comparing our results in the left lower panel of Fig. 5
with the results of Fig. 4 of Ref. [39]. The only channels
where the two calculations seem to be in agreement are the
(S,M,T ) = (0,0,1) and, perhaps, (1,1,1) ones. In all the other
channels there are differences, more or less pronounced, in the
shape of the responses, in the position of the peak, and in the
behavior with respect to the HF results. The good agreement
between the calculations at q � 0.1kF , but not at q � kF ,
seems to suggest that truncating the expansion of the residual
interaction at lmax = 3 is not enough at large q. This conclusion

is independent of the presence of the tensor terms, since the
disagreement appears also in the S = 0 channel and since the
discrepancy survives also in the comparison with the D1M
parametrization (which does not contain tensor terms), as seen
from the results presented in the bottom right panel of our
Fig. 3 and in Fig. 5 of Ref. [39]. One should mention that there
are small differences in the choice of the effective mass and
of the momentum transfer between our figures and the ones
of Ref. [39], as one can notice for example by the different
end point (ω = q2

2m + qkF

m ) of the response functions. We have
repeated the calculations by choosing the same values of q and
m as Ref. [39]. The behavior of our curves and, hence, our
conclusions remain the same.

Turning to a global discussion of the responses obtained
with the different Gogny forces containing tensor terms, the
following comments are in order:

(i) One observes in general homogeneity of results in
the S = 0 channels and some heterogeneity in the
S = 1 ones.

(ii) The (S,M,T ) = (0,0,0) responses obtained with the
different Gogny forces are in qualitative agreement
among them, for q = 27 MeV/c as well as for
q = 270 MeV/c, but differ from the ones obtained
with the G-matrix interaction which were shown [5]
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FIG. 5. As in Fig. 4, but for q = 270 MeV/c.

to successfully reproduce the K+-nucleus quasielas-
tic cross section, largely dominated by the scalar-
isoscalar channel, at q = 290, 390, and 480 MeV/c.

(iii) The (S,M,T ) = (0,0,1) responses as well present
always similar features: they are characterized by
a strong quenching of the continuum and the ap-
pearance of a collective mode at q = 27 MeV/c
and by some quenching and hardening (except for
the GT2 case) at q = 270 MeV/c. Similar features
characterize also the G-matrix results, even if in this
case at q = 27 MeV/c the collective mode enters in
the continuum.

(iv) Concerning the S = 1 channels, a first remark is
about the unphysical result of negative responses in
some cases with the GT2 force, when calculated at
first order in CF, which reflects a lack of convergence
of the CF method when one considers this interaction.
Furthermore, always for GT2, at second order in
the CF expansion all the S = 1 responses are totally
quenched and characterized by a collective mode at
q = 27 MeV/c. This total quenching remains also at
q = 270 MeV/c.

(v) For the other interactions one can observe that at
q = 27 MeV/c the differences in the (S,M,T ) =
(1,1,0) and (S,M,T ) = (1,0,0) channels, for re-
sponses calculated with the D1ST* and D1MT*
forces, essentially reflect the differences already
present in the (S,T ) = (1,0) channel between D1S
and D1M. At q = 270 MeV/c the split between the

(S,M,T ) = (1,1,0) and (S,M,T ) = (1,0,0) results
is more or less pronounced depending on the inter-
action. The two forces giving the results closer to the
G-matrix calculations are, for these channels, D1ST
and D1MT.

(vi) The responses in the (S,M,T ) = (1,0,1) channel
always present at q = 27 MeV/c a collective mode
above the continuum, also in the G-matrix case,
while they can be very different from each other at
q = 270 MeV/c.

(vii) In the (S,M,T ) = (1,1,1) channel at q = 27 MeV/c
the collective mode can be above or inside the
continuum, depending on the interaction; at q =
270 MeV/c, however, the qualitative behavior of all
the responses is always very similar (except, as usual,
for the GT2 case) and in agreement with the G-matrix
results. This agreement opens the perspective of
using these Gogny-type forces in the calculation
of the neutrino-nucleus cross sections (and of the
neutrino mean-free path in nuclear matter), which are
dominated by the spin-isospin transverse response
[7,12,57].

(viii) The differences between the results obtained at
first and second order in the CF expansion are in
general more pronounced for these forces including
tensor terms with respect to the case of the stan-
dard parametrizations of the Gogny forces. These
differences are often very pronounced, in particular
in the (S,M,T ) = (1,0,1) case, for q = 27 MeV/c
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as well as for q = 270 MeV/c and remain also in the
ω → 0 limit, important for the calculations of the
instabilities.

IV. FINITE-SIZE INSTABILITIES

The study of the unphysical finite-size instabilities through
the nuclear matter response function formalism has attracted
a lot of interest in the past years starting from the work of
Ref. [17]. Many recent investigations have been performed by
considering Skyrme-type nuclear energy density functionals
[11,12,14,17–19]. No studies of finite-size instabilities with
the Gogny forces have been published up to now.

In the case of Skyrme functionals, in Ref. [17] a qualitative
link was suggested between the appearance of finite-size
instabilities of nuclear matter near saturation density and
the impossibility to converge for self-consistent calculations
in finite nuclei using some parametrizations of the nuclear
energy density functionals. More precisely it has been shown
that, using the SkP and LNS parameter sets, the neutron and
proton densities were characterized by strong and opposing
oscillating behavior, which increased with the number of
iterations of the self-consistent procedure. As the one-body
equations of motion are solved iteratively, an instability in the
scalar isovector channel occurs when it becomes energetically
favorable to build oscillations of neutrons against protons of
unlimited amplitude. In Ref. [17] it was also shown that the
same SkP and LNS parametrizations lead to divergences of the
nuclear matter response functions at ω = 0 and finite q when
calculated in the S = 0, T = 1 channel for densities close to
the saturation one. These are the critical densities ρc, i.e., the
lowest densities at which the nuclear response calculated at
zero transferred energy exhibits a pole.

After the suggestion of the qualitative link between the finite
nuclei and the nuclear matter phenomena described above,
several papers have been devoted to the calculations of the
critical densities at finite q in nuclear and neutron matter of
many zero-range nuclear energy density functionals, including
or not the tensor components [11,12,14].

A systematic quantitative analysis of the connection be-
tween the finite nuclei and nuclear matter instabilities in the
S = 0, T = 1 channel was performed in Ref. [18], finding that
a functional is stable if the lowest critical density at which
a pole occurs in nuclear matter calculations is larger than
the central density of 40Ca, in practice around 1.2 times the
saturation density. In addition, one has also to verify that this
pole represents a distinct global minimum in the (ρc,q) plane.
This criterion can be incorporated into the fitting procedure of
the coupling constants of the energy density functionals and
has the advantage of being based on computationally friendly
nuclear matter calculations.

In Ref. [19] the quantitative analysis was extended to the
S = 1 channel by studying not only ground-state properties,
but also vibrational excited states of finite nuclei. The stability
criterion mentioned above, derived in Ref. [18] for the S = 0,
T = 1 channel, was found to remain valid also in the S =
1 channel. We remind that the S = 0, T = 0 channel is
characterized by the physical spinodal instability; hence, it
is not considered in the studies of unphysical instabilities.

1
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(0,1) 2nd CF
(1,1) 1st CF
(1,1) 2nd CF
(1,0) 1st CF
(1,0) 2nd CF

(S,T)

D1 D1S
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q (fm
-1

)

ρ c/ρ
0

FIG. 6. Critical densities ρc divided by a constant value of the
saturation density ρ0 = 0.16 fm−3 as a function of the transferred
momentum q (in fm−1) for the most commonly used parametrizations
of the Gogny force. The calculations of R(S,T )(q,ω = 0), through
which the critical densities are deduced, are performed at first and
second order in the continued fraction expansion.

All the studies described above considered Skyrme func-
tionals. Turning to the Gogny interaction, the stability studies
involving nuclear matter calculations have considered up to
now only the q → 0 limit, corresponding to perturbation of
infinite wavelength, and have used the well-known stability
conditions established by Migdal [58], starting from the sem-
inal work of Gogny and Padjen [23]. In this context, beyond
the (S,T ) = (0,0) channel, where the stability condition is
not satisfied at low densities, reflecting the existence of the
well-known spinodal instability, in the other channels the
infinite wavelength (q = 0) instabilities of the most commonly
used Gogny interactions typically appears for densities larger
than two or three times the nuclear matter saturation density
ρ0. For example, in the D1N case the lowest density instability
appears in the (1,1) channel at ρC � 2.5ρ0, while for D1S it
appears in the (0,1) channel at ρC � 3.5ρ0.

Here we consider for the first time the evolution of the
critical densities with the momentum transfer q. Discarding
the (0,0) channel and its corresponding spinodal instability,
we start by showing in Fig. 6 the critical densities in the other
(S,T ) channels as a function of q for the four most commonly
used parametrizations of the Gogny force.

In the D1 case only the R(0,1)(q,ω = 0) exhibits a pole at
finite q. The corresponding critical density is never lower than
2ρ0. For the other three Gogny parametrizations (D1S, D1N,
and D1M) the poles appear at finite q not only in the (0,1)
channel, but also in the (1,1) one [and in the (1,0) for D1M].
This (1,1) channel, even if it presents critical densities lower
than 3ρ0 already for q = 0 in the case of D1N and D1M,
is characterized by a relatively smooth decrease of ρC with q
and in any case for the D1S, D1N, and D1M the corresponding
critical densities are never lower than 2ρ0, even at large q. On
the contrary, for the (0,1) channel the critical densities rapidly
decrease with q reaching values around ρC � 1.5ρ0 for D1S
and D1M and around ρC � 1.2ρ0 for D1N. All the curves
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FIG. 7. As in Fig. 6, but for the Gogny forces with tensor terms.

obtained are furthermore characterized by a global minimum
in the (ρc,q) plane. The two stability criteria established in
Ref. [18] are thus satisfied by the most commonly used Gogny
forces. Hence they are free from instability problems. The only
case to be treated with some caution is the one of the D1N
parametrization, which in any case is rarely used in the
finite nuclei calculations. The case of D1N, together with
D1M, presents also some small differences in the critical
densities between the results obtained by calculating the
nuclear response functions at first order in the CF expansion
and the results at second order, while for the D1 and D1S cases
the results at the two orders practically coincide. For all these
four interactions we can anyway conclude that the calculation
at first order in the CF expansion can be considered enough
for finite-size instabilities studies.

Turning to the parametrizations of the Gogny forces
including tensor terms, we show in Fig. 7 the results for
the critical densities as a function of the momentum transfer
calculated at first and second order in the CF expansions for the
D1ST, D1ST2(a,b,c) D1MT, D1MT2c, and GT2 interactions.

In the case of D1MT, in the q → 0 limit we find for
the critical density in the (1,1) channel a value close to
ρc = 0.45 fm−3, a result already obtained in Ref. [40] in the
context of spin susceptibilities calculations. This is the only
point with which we can compare our calculations including
tensor terms.

As in the case without tensor terms, finite-size instabilities
appear only in the T = 1 channels for the D1ST*-type
force, while they appear in the T = 1 channels and also for

(S,M,T ) = (1,1,0) for the D1MT*-type forces. The behavior
of the critical densities in the (S,M,T ) = (0,0,1) channel
for the D1ST*- and D1MT*-type forces reflects the one of
D1S and D1M. In the S = 1, T = 1 channel the presence of
tensor terms lowers (raises) the values of the critical densities
for the M = 0 (M = 1) component, when compared to the
corresponding cases without tensor.

In the S = 1 channels differences between the results
obtained at first and second order in the CF expansion appear.
In any case the two stability criteria established in Ref. [18] are
always satisfied by all the parametrizations of the D1ST*- and
D1MT*-type Gogny forces considered here in all the (S,M,T )
channels.

This reassuring result no longer holds for the GT2
force, which presents finite q instabilities at any density
in the (S,M,T ) = (1,1,0) and (S,M,T ) = (1,0,1) channels.
These results are the counterpart of the peculiar behavior
of the response functions calculated with this GT2 force: nega-
tive at first order in the CF expansion and with a ph continuum
totally quenched at second order in the CF expansion.

V. CONCLUSION

We have studied RPA nuclear matter response functions
by considering the nucleons interacting via the finite-range
Gogny force. We have considered the most commonly used
parametrizations of this force, as well as some recent gener-
alizations that include the tensor terms. We have performed
a fully antisymmetrized RPA calculation, including, i.e., the

024342-8



NUCLEAR RESPONSE FUNCTIONS WITH FINITE- . . . PHYSICAL REVIEW C 94, 024342 (2016)

exchange contribution of the particle-hole interaction, by
employing the CF technique. The calculations were performed
by truncating the continued fraction expansion at first and
second order, the highest one so far reached in the context of
finite-range forces.

Concerning the most commonly used parameter sets of the
Gogny force, we obtained results similar to the ones presented
in Ref. [30] for the D1 interaction, the only interaction
considered in that paper. The response functions in the four
(S,T ) channels obtained with the other common parameter
sets, namely D1S, D1N, and D1M, are presented here for the
first time. Some differences in the transferred-energy behavior
appear, in particular at small momentum transfer, depending
on the chosen parametrization. The convergence of the CF
expansion as well strongly depends on the force parameters.

Concerning the Gogny forces including tensor terms, we
considered the D1ST, D1ST2(a,b,c), D1MT, D1MT2c, and
GT2 interactions. In the case of the D1MT interaction we
compared our results with the ones published in Ref. [39],
where the responses for the D1MT interaction were calculated
in the Landau framework by truncating the residual interaction
up to lmax = 3. For all the other interactions including the
tensor terms, the response functions appear here for the
first time. A general homogeneity characterizes the S = 0
channels, while in the S = 1 channel a heterogeneity of the
results appears, reflecting the very different choices for the
tensor terms. Furthermore, the differences between the results
obtained at first and second order in the CF expansion turn out
to be more pronounced for the forces including tensor terms
with respect to the case of the standard Gogny ones.

An interesting point is the behavior of the responses
calculated with the difference forces including the tensor terms
in the (S,M,T ) = (1,1,1) channel, which is similar for all the
parametrizations and in agreement with the G-matrix results.
This agreement opens the perspective of using these Gogny-
type forces in the calculation of the neutrino-nucleus cross
sections (and of the neutrino mean free path in nuclear matter),
which are dominated by the spin-isospin transverse response.
The correspondence between continuum RPA calculations in
finite nuclei and nuclear matter results in the quasielastic
electron and neutrino scattering is illustrated, for example,
in Refs. [59,60].

Continuum RPA calculations in finite nuclei using the
Gogny force were developed in Ref. [61] and recently general-
ized to the charge-exchange excitations in Ref. [62]. It would
be very interesting to compare the finding of that approach with
the one developed in the present paper (employing a same
Gogny interaction with or without tensor terms) in order to
investigate up to where one can push a nuclear matter approach
to study finite nuclei properties and reactions.

As a first instance of connection between nuclear matter
and finite nuclei, we have employed the present nuclear matter
approach to study the spurious finite-size instabilities. We have
shown for the first time that, at variance with some zero-range

Skyrme functionals, the most commonly used finite-range D1,
D1S, and D1M Gogny forces satisfy the stability criteria of
Ref. [18] in all the (S,T ) channels; hence, they are free of
spurious finite-size instabilities. The only case to be treated
with some caution is the one of the D1N parametrization,
which in any case is rarely used in the finite nuclei calculations.

The stability criteria of Ref. [18] are also satisfied in all the
(S,M,T ) channels by all the Gogny forces including tensor
terms of type D1MT* and D1ST*. On the contrary, at least at
first and second order in the CF expansion, the GT2 force is
unstable in all the S = 1 channels. However, this result might
just signal the poor convergence of the CF expansion for the
GT2 interaction, given the extremely strong tensor component
which is present in this force.

In perspective, the tool developed in the present paper could
be inserted in the fitting procedure to construct new Gogny-
type forces. It would be also interesting to repeat the study
of the present paper by considering the recently developed
D2 Gogny force [63], characterized by a finite-range density-
dependent term, as well as other finite-range forces [64–66]
employed for low-energy nuclear structure calculations.
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APPENDIX: CONTINUED FRACTIONS WITH THE
GOGNY INTERACTION

We give here the explicit expressions for the first- and
second-order exchange diagrams, based on the potential of
Eq. (1), where for Vα(k) we take the Gaussian expression
typical of the Gogny forces, the label α standing for the
spin-isospin channel.

After some manipulations, as explained in detail in
Ref. [29], the first-order polarization propagator can be cast
into the following form:

	(1)ex
α (q,ω) = −

(
m

q

)2
k4
F

(2π )4

[Q(1)
α (0,ψ) − Q(1)

α (q̄,ψ)

+Q(1)
α (0,ψ + q̄) − Q(1)

α (−q̄,ψ + q̄)
]
, (A1)

where

Q(1)
α (q̄,ψ) = 2

∫ 1

−1
dy

1

ψ − y + iηω

×
∫ 1

−1
dy ′ Wα

′′(y,y ′; q̄)
1

y − y ′ + q̄
, (A2)

whereas for the second-order polarization propagator one has

	
(2)ex
αα′ (q,ω) =

(
m

q

)3
k6
F

(2π )6

[Q(2)
αα′ (0,0; ψ) − Q(2)

αα′ (0,q̄; ψ) − Q(2)
αα′ (q̄,0; ψ) + Q(2)

αα′ (q̄,q̄; ψ)

−Q(2)
αα′ (0,0; ψ + q̄) + Q(2)

αα′ (0,−q̄; ψ + q̄) + Q(2)
αα′ (−q̄,0; ψ + q̄) − Q(2)

αα′ (−q̄,−q̄; ψ + q̄)
]
, (A3)
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where1

Q(2)
αα′ (q̄1,q̄2; ψ) =

∫ 1

−1
dy

1

2

∫ 1−y2

0
dxGα(x,y + q̄1; ψ + q̄1)

× 1

ψ − y + iηω

Gα′ (x,y + q̄2; ψ + q̄2)

(A4)

and

Gα(x,y; ψ) =
∫ 1

−1
dy ′ 1

ψ − y ′ + iηω

W ′
α(x,y; y ′). (A5)

In the above expressions ηω ≡ sign(ω)η, q̄ ≡ q/kF is the
transferred momentum in units of kF , and ψ is the
Fermi gas scaling variable, which reads, for nonrelativistic
kinematics,

ψ = 1

kF

(
ωm

q
− q

2

)
. (A6)

The auxiliary functions W ′ and W ′′ are given in terms of the
integral over the azimuthal angle of the momentum-dependent
part of the interaction as

W ′
α(x,y; y ′) = 1

2

∫ 1−y ′2

0
dx ′Wα(x,y; x ′,y ′), (A7)

W ′′
α (y,y ′; q̄) = 1

2

∫ 1−y2

0
dx

1

2

∫ 1−y ′2

0
dx ′Wα(x,y + q̄; x ′,y ′),

(A8)

where

Wα(x,y; x ′,y ′) =
∫ 2π

0

dϕ

2π
Vα(k − k′), (A9)

Wα(x,y; x ′,y ′) =
∫ 2π

0

dϕ

2π
Vα(k − k′)Szz(k̂ − k′), (A10)

for the nontensor and tensor terms, respectively, and Szz(k̂) =
3k̂z k̂z − 1. The x and y variables are defined in terms of the
momentum k as y = k cos θ and x = k2 − y2.

Employing a Gaussian interaction, only Eq. (A9) can be
calculated analytically (in terms of a modified Bessel function
of the first kind), so that in general one has to cope with
multidimensional numerical integrations in the presence of
(integrable) singularities. We calculated these integrals using
a mix of deterministic and Monte Carlo [67] techniques:
reaching a good accuracy turns out to be quite time consuming.
A faster way of performing these calculations is provided by
fitting the Gogny potentials in terms of meson exchanges.
It turns out that a good fit of all the potentials employed
in this work, for momenta up to 1 GeV/c, can be obtained
through the exchange of the π , σ , ρ, and ω mesons, with
standard dipole form factors, using the four coupling constants

1This expression is valid for central-central and central-tensor terms.
About tensor-tensor contributions see below.

as fitting parameters. By using meson-exchange potentials,
Eqs. (A7)–(A10) can be calculated analytically (see Ref. [29]
for details), with a substantial improvement in computing time.
As a cross-check the calculations shown in the paper were
performed using both techniques.

Here, for completeness, we provide also the explicit
expressions for the second-order tensor-tensor contributions in
the CF expansion, which were not shown in Ref. [29]. When
both the interaction lines in Fig. 1(c) contain a tensor term,
the resulting contributions cannot be expressed in a factorized
form as in Eq. (A4), but rather as a sum of factorized terms:

Q(2)
αα′ (q̄1,q̄2; ψ)

= 2
∫ 1

−1
dy

1

2

∫ 1−y2

0
dx

1

ψ − y + iηω

× [G(a)
α (x,y + q̄1; ψ + q̄1)G(a)

α′ (x,y + q̄2; ψ + q̄2)

+G(b)
α (x,y + q̄1; ψ + q̄1)G(c)

α′ (x,y + q̄2; ψ + q̄2)

+G(c)
α (x,y + q̄1; ψ + q̄1)G(b)

α′ (x,y + q̄2; ψ + q̄2)

−G(d)
α (x,y + q̄1; ψ + q̄1)G(d)

α′ (x,y + q̄2; ψ + q̄2)
]
,

α,α′ = t,tτ, (A11)

with

G(l)
α (x,y; ψ) =

∫ 1

−1
dy ′ 1

ψ − y ′ + iηω

W ′(l)
α (x,y; y ′), (A12)

W ′(l)
α (x,y; y ′) = 1

2

∫ 1−y ′2

0
dx ′W (l)

α (x,y; x ′,y ′), (A13)

and

W (a)
α (x,y; x ′,y ′) =

∫ 2π

0

dϕ

2π
Vα(k − k′)

h() − 2(y ′ − y)2

h() + (y ′ − y)2
,

(A14)

W (b)
α (x,y; x ′,y ′) =

∫ 2π

0

dϕ

2π
Vα(k − k′), (A15)

W (c)
α (x,y; x ′,y ′) =

∫ 2π

0

dϕ

2π
Vα(k − k′)

2h() − (y ′ − y)2

h() + (y ′ − y)2
,

(A16)

W (d)
α (x,y; x ′,y ′) =

∫ 2π

0

dϕ

2π
Vα(k − k′)

h()(y ′ − y)

h() + (y ′ − y)2
,

(A17)

having defined

h() = h(x,x ′,ϕ) = x ′ + x − 2
√

x ′√x cos(ϕ). (A18)

Again, for Gaussian potentials all the integrations have to be
performed numerically, whereas for meson-exchange poten-
tials the expressions (A13)–(A17) can be obtained analytically.
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