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a b s t r a c t

To understand the oscillations in the real, multi-branch pulsating heat pipe (PHP), the start-up conditions
of the single branch PHP with no adiabatic section are studied theoretically and numerically. The single
branch PHP is a capillary open from one end, which is connected to a reservoir at constant pressure. A gas
bubble is confined between the sealed end of the capillary and the liquid. The gas is the vapor of the
liquid. The gas end of the capillary is maintained at a constant temperature larger than that of the liquid
end. Under certain conditions, self-sustained oscillations of the meniscus may exist in such a system. The
conditions of oscillation development (i.e. of the PHP startup) are obtained via the stability analysis of an
earlier proposed theoretical model. The linear instability is absent in such a system. The instability of a
marginal state described by piece-wise linear equations is analyzed with the analytical averaging
method. The instability boundary is presented in terms of dimensionless groups, the physical significance
of which is discussed. It is found that the model describes correctly the known experimental facts. Some
predictions concerning the instability threshold are formulated.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cooling of devices like microprocessors or engines of transpor-
tation vehicles is extremely important for their functioning. In
most cases it is vital for their reliability and energy efficiency. A
growth of their power during the last decades stimulates research
of new heat transfer solutions. The passive heat transfer devices
called heat pipes are used more and more widely as thermal links
connecting the heat sources to colder radiators. The conventional
heat pipe is a sealed tube partially filled with a fluid. The fluid is
vaporized in the portion (or section) of the tube called evaporator
and recondensed back in the condenser (i.e. cold) section. The en-
ergy is thus stored in the evaporator as the latent heat and released
in the condenser. There are several kinds of heat pipes that differ
mainly by the mechanism of liquid transport (gravitational convec-
tion, capillary suction, etc.) from the condenser to evaporator.

The pulsating (or oscillating) heat pipe (PHP) is a long capillary
tube bent into many branches and partially filled with a two-
phase, usually single component, working fluid [1]. The tube is of
simple circular cross-section. The branches meander between the
hot and cold areas thus forming multiple evaporator and con-
denser sections. During PHP functioning, a pattern of multiple va-
por bubbles separated by liquid plugs forms spontaneously inside
the tube. Unlike the other types of the heat pipes, the functioning
of PHP is intrinsically non-stationary. The evaporation/condensa-
tion triggers self-sustained oscillations of the bubble-plug struc-
ture. These oscillations are very important because they lead to a
generally substantially lower thermal resistance in comparison
with other types of heat pipes. In addition to the latent heat mech-
anism, the heat is transferred in PHP via the sensible heat transfer
when the colder liquid plugs come in contact with the condenser
or hotter liquid plugs sweep the evaporator.

Because of their simplicity and high performance, PHPs are of-
ten considered as highly promising. Their industrial application is
however limited because the functioning of PHPs is not completely
understood. The reliability of heat pipes is however a critical issue
because a sudden halt of functioning (halt of oscillations in case of
PHP) can lead to the meltdown of the cooled industrial device.

During the last decade, researchers have extensively studied
PHPs [2,3]. A large number of hydrodynamic and microscopic phe-
nomena are involved in their functioning [4]. The main flow pat-
tern inside the PHP is the slug flow, i.e. the flow of the ‘‘Taylor
bubbles’’ where the gas is surrounded by the thin liquid film de-
posed on the internal tube walls by the receding menisci. For iso-
thermal systems (with no heating or cooling), the film is
continuous within a bubble. Its thickness depends on the meniscus
velocity and is usually micrometric [5,6]. The physics of the
film formation (and its thickness scaling) is similar to the
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Nomenclature

C variable defined by Eq. (A.5)
c specific heat [J/(kg � K)]
Ca capillary number
D variable defined by Eq. (A.4)
d tube diameter [m]
F force [N]
hlv latent heat [J/kg]
k heat conductivity [W/(m � K)]
L length [m]
m mass [kg]
p pressure [Pa]
qsens sensible heat power [W]
R vapor gas constant [J/(kg � K)]
r dimensionless velocity amplitude
S tube cross-section area [m2]
T temperature [K]
t time [s]
U heat transfer coefficient [W/(K �m2)]
v meniscus velocity [m/s]
x meniscus position [m]

Greek symbols
a, b, e coefficients defined by Eq. (22)
d thickness [m]

c adiabatic index
j, n, u, w dimensionless phases
l liquid shear viscosity [Pa � s]
m liquid kinematic viscosity [m2/s]
q liquid density [kg/m3]
r surface tension [N/m]
s characteristic time scale [s]

Subscripts and superscripts
c condenser
d dry part of evaporator
e evaporator
f friction, film
g gas
i either e or c
l liquid
m meniscus
r reservoir
sat saturation
t total
V at constant volume
0 at t = 0

x

evaporator                      condenser 

f
eL pr=const

f
cLd

eL

Le                  Lc                 Lr

gas (p,T)  f mL liquidδ

Fig. 1. Single branch PHP within the lumped meniscus approximation. The total
tube length Lt = Le + Lc + Lr includes an effective length Lr representing an amount of
the liquid in the reservoir that takes part in the oscillating motion; Le and Lc are the
lengths of the respective tube sections.
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Landau–Levich phenomenon [7]. While the Taylor bubbles are
being extensively investigated in the isothermal situation, their
experimental studies for the cases where the phase change is in-
volved are rare. In the single known to me experimental study,
Lagubeau [8] observed the successive events of the film deposition
by the receding meniscus and the film dryout in such a way that
the film length varied during the meniscus oscillations.

There are several modeling approaches available in the literature.
Shafii et al. [9] pioneered the modeling approaches for multi-branch
PHPs with a one-dimensional (1D) model. The gas–liquid menisci
were flat and the evaporation–condensation mass exchange was ac-
counted for by the temperature difference terms /(Twall � T) where
T is the vapor temperature and Twall was either Te or Tc depending on
the bubble location. The temperatures of the evaporator Te and con-
denser Tc were fixed. The film existence was neglected. The vapor
was assumed to obey the ideal gas equation of state. Periodical
(nearly sinusoidal) oscillations appeared after a transient. Contrary
to experimental observations, their amplitude was small with re-
spect to the sizes of the condenser or the evaporator.

It is well known from the analysis of conventional heat pipes
that most of evaporation in the evaporator occurs through the
liquid films. To account for this effect, the above model was ex-
tended later by the same group to the 3D axisymmetric case with
the static liquid films with spatially varying thickness [10]. The
mass exchange was however modeled similarly to the previous
case and the model showed a similar behavior. Dobson [11] intro-
duced a lumped meniscus geometry (Fig. 1) which allowed him the
variable film account within a 1D model. The liquid film was as-
sumed to always cover the inner walls of the tube (i.e. to be contin-
uous) in the condenser when a part of the bubble was located
inside it. The film was allowed to dry out partially or completely
in the evaporator. Apart from the film introduction, the model
was similar to its predecessors. Single branch PHP (Fig. 1) was con-
sidered. It is a straight capillary with a sealed end, which is heated
(evaporator). The gas bubble is confined between the sealed end
and a liquid plug. The condenser end of the capillary is connected
to a large reservoir filled partially with the liquid at constant pres-
sure pr.
Das et al. [12] performed the instability analysis with the model
of Shafii et al. [9] applied to the single branch PHP and have con-
cluded that the model was not adequate. The regime of self-sus-
tained oscillations during which the meniscus penetrated into
both the condenser and evaporator have not been found. The insta-
bility (i.e the oscillatory growth of a small initial perturbation) oc-
curred only when the meniscus was located in the condenser,
without its penetration into the evaporator. To provide an ade-
quate description, Das et al. [12] have introduced the ‘‘film evapo-
ration–condensation’’(FEC) model. It is a 1D model using the
lumped meniscus geometry. The heat/mass exchange is described
by the terms /(Twall � Tsat), where Tsat is calculated for the current
gas pressure p. The FEC model describes large amplitude oscilla-
tions during which the meniscus sweeps both the condenser and
the evaporator. The FEC model agrees quantitatively with the
experimental results [12] on the single branch PHP. Recently, the
FEC model has been validated against the data obtained with an-
other experimental set-up [13]. It described most features ob-
served experimentally (like the intermittency of oscillations
observed by both Das et al. [12] and Rao et al. [13]). The FEC model
was applied with success to the single branch PHP functioning
with cryogenic fluids [14] and was shown to reproduce correctly
the dependence on the PHP inclination angle. It was applied also
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to simulate the multi-branch PHP [15,16]. These simulations were
shown to reproduce at least qualitatively the main experimentally
observed features of the multi-branch PHP functioning.

While the FEC model is successful in the numerical description
of the PHP, the simulations cannot give an understanding of the
startup criteria for the oscillations or explain the origin of the
instability that causes them. The aim of this work is to analyze
the instability for the simplest case of the single branch PHP with
no adiabatic section (Fig. 1). Due to simplicity of the FEC model, an
analytical approach is possible.

The article is structured as follows. The model [12] is summa-
rized in Section 2. The equilibrium state for such a system is iden-
tified in Section 3. The dimensionless groups of parameters that
rule out the oscillation startup are discussed in Section 5. The sta-
bility of the equilibrium state with respect to small perturbations is
studied in Section 6. The equilibrium state turns out to be mar-
ginal, and the conventional linear analysis of its stability is thus
impossible. The latter is performed with the time averaging meth-
od (called sometimes Krylov–Bogoliubov method). The results are
summarized in Section 7.

2. Film evaporation–condensation model

The lumped meniscus geometry (Fig. 1) is an approximation of
the curved meniscus to reduce the dimensionality of the model.
The film thickness is assumed to be constant while the film length
in the evaporator may vary in the agreement with the above cited
experiments. Such a choice can also be justified by the strong rate
of evaporation in the vicinity of the triple vapor–liquid–solid con-
tact line [17] and the capillary forces that both tend to reduce the
film length and lead to the partial drying of the evaporator [18]. As
a film thickness guess, one may use a the data fit [6] obtained for
the isothermal case. According to it, the film thickness is

df ¼ d
0:67Ca2=3

1þ 3:35Ca2=3 ð1Þ

where d is the tube diameter. The numerator of Eq. (1) coincides
with the Bretherton [5] formula. The capillary number Ca = lvRMS/
r may be based on the root mean square meniscus velocity vRMS.
In what follows, df will be considered a parameter.

It is assumed that in the absence of the evaporation/condensa-
tion, the film edge is pinned and does not move. The length of the
dry part of evaporator Ld

e (Fig. 1) thus obeys the equation

_Ld
e ¼

v if Ld
e P x; v < 0;

_mf
e=ðqpddf Þ otherwise;

(
ð2Þ

where _mf
e is the film evaporation rate in the evaporator and

v ¼ _x: ð3Þ

The first line of Eq. (2) corresponds to the meniscus advancing over
the dry evaporator (where Ld

e ¼ x) and the second corresponds to
the effect of evaporation. In principle, Ld

e 6 x so that the condition
Ld

e > x may seem to be unnecessary. It is however useful when the
solution of Eq. (2) becomes slightly larger than x in a numerical cal-
culation (because of the finiteness of the time step) or in the
approximate analytical approach considered below.

The vapor mass exchange is assumed to be limited by the heat
conduction in the film [10]. This leads to the following heat balance
equations at the film-gas interface in evaporator (i = e) or con-
denser (i = c):

hlv _mf
i ¼ UpdLf

i ½Ti � TsatðpÞ�: ð4Þ

Within a factor [1 accounting for the spatial variation of the film
thickness, U � kl/df. Eq. (4) means that the heat flux that comes from
the liquid side of the film is spent to vaporize the liquid. The
residual heat flux to the vapor is neglected with respect to the liquid
heat flux.

The liquid film is continuous in the condenser. The film length is
thus equal to the length of the bubble in it (Fig. 1),

Lf
c ¼

0; if x 6 Le;

x� Le; if Le < x 6 Le þ Lc;

Lc; otherwise:

8><>: ð5Þ

The film length in the evaporator is defined with Ld
e

Lf
e ¼

x� Ld
e ; if Ld

e < x < Le;

0; if x 6 Ld
e ;

Le � Ld
e ; if x P Le:

8>><>>: ð6Þ

Note that the governing differential equation is written for Ld
e ; Lf

e is
defined through Ld

e . This is different from the original model [12],
where the equation was written for Lf

e; Ld
e was defined with Lf

e. While
both approaches are equivalent, such a change is necessary to make
the amplitude of oscillations of main variable smaller than its aver-
age value (which is necessary for the averaging method used be-
low). The latter criterion usually holds for Ld

e and breaks down for Lf
e.

A thermal boundary layer is allowed to exist in the vapor, so
that the temperature T of its bulk may be different from Tsat(p). This
is possible due to the smallness of heat diffusion in the gas. The gas
obeys the ideal gas equation

p ¼ mRT
Sx

: ð7Þ

Although much weaker than at the film interface, evaporation and
condensation might occur at the remaining meniscus part (other
than the film) and may be of some importance if the film is evapo-
rated completely. The heat balance on the meniscus depends on
whether the meniscus situates inside the evaporator (i = e) or the
condenser (i = c):

hlv _mm
i ¼ UmpdLm

i ½Ti � TsatðpÞ�: ð8Þ

The lengths that enter the above equations are defined so as to ac-
count for the exact location of the meniscus,

Lm
e ¼

Lm; if x < Le;

0; otherwise;

�

Lm
c ¼

Lm; if Le < x 6 Le þ Lc;

0; otherwise;

�
where Lm is a length of the portion of the meniscus on which the
mass exchange occurs (cf. Fig. 1) and Um is the corresponding heat
exchange coefficient. The vapor mass variation includes several
contributions described above,

_m ¼ _mf
e þ _mf

c þ _mm
e þ _mm

c : ð9Þ

Since the terms _mm
i are generally much smaller than the corre-

sponding film-related quantities, their influence on the instability
criterion will be neglected; the meniscus evaporation is however
important for the determination of equilibrium states.

The vapor heat balance [19] reads

mcV
_T ¼ _mRT þ qsens � pSv : ð10Þ

The sensible heat exchange of the tube with the vapor in the evap-
orator is accounted for by the term

qsens ¼ UgpdLd
eðTe � TÞ: ð11Þ

The heat exchange coefficient Ug is proportional to the vapor
heat conductivity kg. Because of its smallness, the sensible heat
exchange with the gas is much weaker than the exchange by
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evaporation/condensation. Its impact on the oscillations will be dis-
cussed below. The momentum equation for the liquid plug reads

dðvmlÞ
dt

¼ ðp� prÞS� Ff ; ð12Þ

where

ml ¼ qðLt � xÞS ð13Þ

is the liquid mass. The friction force Ff accounts for the liquid single
phase contribution and is proportional to v2 [12]. For this reason it
does not influence the linear stability conditions and will be omit-
ted hereafter. It is likely that the viscous friction appearing because
of the presence of the liquid films is proportional to v. Since the film
contribution to Ff is not yet identified (to my best knowledge), it
will be neglected.

It is important to note that the parameters need to be chosen in
such a way that

Tc < TsatðprÞ < Te ð14Þ

to allow for the mass exchange both in condenser and evaporator.
Five governing ordinary differential Eqs. 2, 3, 9, 10 and 12 of the

model are now defined. They need to be solved to find the tempo-
ral evolution of the PHP.

3. Equilibrium states

First one needs to identify the equilibrium states, the stability of
which will be analyzed next. They can be found by putting to zero
the time derivatives. One deduces from Eqs. 3, 4, 11 and 12 the
respective conditions

�v ¼ 0; Lf
e ¼ 0; T ¼ Te; �p ¼ pr ð15Þ

that should hold for any equilibrium state. The equilibrium values
are denoted here by the bar.

The occurrence of equilibrium states depends on the tube sec-
tion to which the meniscus belongs. It is evident that two cases
where the meniscus belongs to the condenser and the evaporator
are not symmetrical: in either case there is a part of the bubble that
belongs to the evaporator. One mentions that under the conditions
(14) and (15), no equilibrium is possible when the meniscus is lo-
cated in the condenser, i.e. at �x > Le. Indeed, according to Eqs. (4)
and (5), the condensation always takes place in this case. The gas
volume decreases and the meniscus displaces toward the evapora-
tor. Similarly, when the meniscus is located in the evaporator, the
equilibrium is impossible because of the (weak) evaporation from
the meniscus, cf. Eq. (8). The evaporation causes a displacement of
the meniscus toward the condenser. It appears that a unique equi-
librium state corresponds to the meniscus location exactly at the
boundary between the evaporator and the condenser
�x ¼ Ld

e ¼ Le
� �

. This feature is in the complete coherence with the
experiment and the common sense. However, it is completely ig-
nored in the ‘‘superheated vapor model’’ [9]. Indeed, Das et al.
[12] have shown that the equilibrium is achieved within this mod-
el when the meniscus situates anywhere inside condenser or
evaporator.

4. Characteristic time scale

The characteristic time scale s is related to the eigenfrequency
of oscillations in the absence of mass transfer and energy dissipa-
tion. s can be found by considering small deviations (denoted by D)
from equilibrium, e.g. x ¼ �xþ Dx. By linearizing Eq. (7), one obtains

Dp
�p
¼ Dm

�m
þ DT

T
� Dx

�x
; ð16Þ
where Dm = 0 needs to be put because of the constraint of the ab-
sence of mass transfer. From (7) and (15) one gets

�m ¼ prSLe

RTe
: ð17Þ

From the set containing Eq. (3) and equations

�mcVD _T ¼ ��pSv; ð18Þ
�ml _v ¼ DpS; ð19Þ

one deduces the eigenfrequency x = 1/s,

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�xðLt � �xÞ

prc

s
; ð20Þ

where c = (cV + R)/cV > 1 is the adiabatic index. Its presence points
out to the effect of the adiabatic heating/cooling of the vapor during
its compression/expansion, respectively. If the gas was assumed
isothermal, only Eqs. (3) and (19)) would need to be solved to-
gether. The resulting expression [8] for s would differ from Eq.
(20) by the absence of the factor c.

5. Linearization

The scale s can now be used to make the time dimensionless. �x
is used to make the lengths dimensionless. The velocity scale is
thus �x=s. The equilibrium values (15) are used to make the remain-
ing deviations dimensionless. The tilde signifies the respective
dimensionless deviation, e.g. ~x ¼ Dx=�x. The indexes of eLd

e will be
dropped hereafter for simplicity. The reduced, dimensionless, and
linearized governing equations may be defined as follows. Eqs.
(3) and (10) read

_~x ¼ ~v; ð21aÞ

_eT ¼ ðc� 1Þð _~m� ~vÞ � eeT : ð21bÞ

By using Eq. (16) in Eq. (12), one obtains

c _~v ¼ eT � ~xþ ~m: ð21cÞ

Eqs. (2) and (9) read, respectively,

_eL ¼ ~v ; if eL P ~x; ~v < 0;
_~mjac!0=b; otherwise;

(
ð21dÞ

_~m ¼ b

0; if ~x 6 eL;
aeð~x� eLÞ; if eL < ~x < 0;

�ae
eL � ac~x; if ~x P 0;

8><>: ð21eÞ

where the negligibly small contributions of the meniscus evapora-
tion/condensation are dropped as discussed above. Apart from the
adiabatic index c, there are four dimensionless numbers that affect
the stability of the system. The first of them

e ¼ UgpdLes
�mcV

ð22aÞ

is the ratio of s and the time scale that corresponds to the heat ex-
change of the tube with the gas. Two following numbers character-
ize the film condensation in the condenser and film evaporation in
the evaporator, respectively:

ac ¼
Us½TsatðprÞ � Tc�

qdf hlv
; ð22bÞ

ae ¼
Us½Te � TsatðprÞ�

qdf hlv
: ð22cÞ
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They are the ratios of s and the respective time scales. The last
number

b ¼ pddf Leq
�m

: ð22dÞ

is the ratio of the film mass and the gas bubble mass provided they
are of the same length. Note that since �m / Le (cf. Eq. (16)), neither
of these parameters depends explicitly on Le. The Le dependence of
ai occurs only through s.

The stability of the set of Eq. (21) may be analyzed now.
6. Stability analysis

Eq. (21) are not linear (they are piecewise linear, PWL) and thus
the stability of the system cannot be obtained with the classical
linear stability analysis. The averaging method [20] applied usually
to the nonlinear systems can be used. It consists in the identifica-
tion of slowly varying (in comparison with the oscillation fre-
quency) variables and the averaging over the remaining ‘‘fast’’
variables.

The numerical solutions of the rigorous PWL Eq. (21) can now
be compared to the solutions given by the averaging method pre-
sented in Appendix A, see Fig. 2. The initial conditions

~m ¼ 0; ~v ¼ r0; eT ¼ 0; ~x ¼ 0; eL ¼ 0; ð23Þ

where r0� 1, are used.
Fig. 2 shows that the meniscus oscillates around an average po-

sition defined by the reduced vapor mass. The average position gi-
ven by the PWL equations fluctuates but its fluctuations are small,
which provides the justification for the averaging approximation.
The film edge eL shows a similar behavior. The averaged description
of the film length is however worse because its initial strong vari-
ation is smoothed. A better agreement may probably be attained in
the next order of approximation where both the mean value and
the average amplitude of the film edge position are introduced as
slow variables (only the first of them was considered here). The
growth rate of the amplitude of oscillations is underestimated by
the averaging approximation (Fig. 2b). The approximation quality
declines with the increase of growth rate.

Depending on the system parameters, the oscillations may de-
cline (Fig. 2(a)) to the equilibrium state or, on the contrary, grow
(Fig. 2(b)). The latter situation corresponds to the instability. A pri-
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 5 10 15 20
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(a)

Fig. 2. Comparison of the solutions of the PWL and averaged equations calculated for e =
to ~x > 0. (a) Below instability threshold; ae = 0.02, ac = 0.02. (b) Above instability thresh
ori, the averaging approximation should be suitable for the insta-
bility threshold determination because the oscillation amplitude
(which is one of the slow variables) does not vary when the param-
eters correspond to the threshold. To find the instability criterion,
one needs to analyze the behavior of the oscillation amplitude at
large times, see Appendix B.

Eqs. (B.5) define the instability threshold within the averaging
approximation. The threshold may be expressed as a dependence
of the dimensionless group (c � 1)e/b on ac and ae. This function
is shown in Fig. 3. The system is unstable for the parameters that
correspond to the points below the surface and stable for the
points above the surface.

Several general conclusions can be made from this result. First,
both condensation and evaporation are necessary for oscillations.
Indeed, if either ac or ae are zero, no instability is possible. The in-
crease of ac or ae favors the instability. If the system is character-
ized by a point located above the surface in Fig. 3 (i.e. in the
stable region), an appropriate increase of ac and ae (achieved e.g.
by increasing the temperature difference Te � Tc) brings the system
to the instability. This agrees with the experiment where a thresh-
old value of the above temperature difference is one of few well
established features of the PHP startup [2,12].

Another consequence of Fig. 3 is that the heat exchange of the
dry evaporator walls with the gas (characterized by e) is the energy
dissipation and hinders the oscillations. Indeed, an increase of e
may bring the system above the surface in Fig. 3, where the system
is stable. This feature can be easily understood. Since the heat ex-
change between the dry evaporator walls and the gas does not con-
tribute to the evaporation/condensation mass exchange (which is
the moving force of oscillations), the corresponding energy is lost,
which means that e characterizes the energy dissipation. Since
e � Ug � kg, the oscillation threshold in terms of Te � Tc should be
lower for the fluids with lower kg. This means that, in general,
the fluids with low gas heat conductivity are advantageous for
the PHP.

The impact of the film thickness on the stability is more sophis-
ticated. On one hand, an increase of df leads to the decrease of ac

and ae and thus hinders the instability. On the other, it leads to
the increase of b which favors the instability. This means that in
general there is a range of df, for which the oscillations develop. Be-
yond this range the system is stable.

The rigorous instability threshold can be found by solving
numerically Eq. (21), comparing the velocity amplitude at long
-0.06
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Fig. 3. Instability boundary calculated with the averaging approximation.
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times with r0, and finding the set of parameters where they coin-
cide. From the comparison with the averaging approximation re-
sults (Fig. 4), one may deduce that the instability threshold is
well approximated by the averaging approach for small ae, ac. This
is easy to interpret when recalling that these parameters are the
ratios of s (that defines the oscillation period) and the respective
characteristic times. The averaging method assumes that the sys-
tem variables change weakly on the time scale s. This assumption
breaks down when either ae, ac or e becomes comparable with
unity. From numerical solution of the PWL equations it can be
found that in general the averaging approximation underestimates
the growth rate (cf. Fig. 2(b)). This means that the actual PWL e
threshold is higher than that predicted by the averaging
approximation.

The threshold for the general PWL case cannot be presented as a
surface in a 3D space like that of Fig. 3. The threshold e value de-
pends in general separately on all four remaining dimensionless
parameters. This is evident from Fig. 4 where the threshold value
of (c � 1)e/b is shown to depend on both b and c when ae, ac be-
come large enough. The usefulness of the averaging approximation
is however evident. It gives a lower bound for the instability
threshold in a 3D space of the system parameters. Its application
can be illustrated on an example of the experimental data
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Fig. 4. Instability boundary for the particular case ac = ae � a: comparison of the
PWL and averaging approximation results. The averaging approximation curve
corresponds to the section of the surface of Fig. 3 by the plane ac = ae.
presented in Fig. 2(a) of [12]. From the graph one gets the maxi-
mum meniscus velocity of 1 m/s which corresponds to vRMS = 0.7 -
m/s from which df = 60 lm is obtained with Eq. (1). Note that this
value falls within the range 50 � 100 lm obtained by [12] by fit-
ting their experimental data to the FEC model. The coefficients
ac = 0.07, ae = 0.04, b = 30, e = 0.47 can now be calculated and result
in (c � 1)e/b = 10�3. A comparison with Figs. 3 and 4 shows that the
latter value places the model system inside the instability region,
in agreement with the experiment, cf. Fig. 2(a) of Das et al. [12]
where the oscillations are indeed observed.
7. Conclusions

The main result of the above analysis is the criterion for insta-
bility (i.e. the startup) of the simplest, single-branch PHP without
adiabatic section. It can serve to predict the start-up thresholds
of new single branch PHPs (because provides the lower bound
for the PHPs with adiabatic section) and for theoretical consider-
ation of the full nonlinear problem (to delimit the region where
the oscillations occur). The origin of the self-sustained oscillations
is now evident. The evaporation in the evaporator causes the gas
pressure increase that propels the meniscus towards the condenser
where the condensation causes the pressure decrease and the
meniscus returns back to the evaporator. The averaging method
is used to solve analytically the piece-wise linear governing equa-
tions and to obtain an analytical instability criterion. The analytical
analysis of the film evaporation–condensation model was possible
thanks to its simplicity. Five dimensionless groups that rule out the
oscillation startup are identified; their physical significance is
established. The instability region is presented in terms of these
groups. Thanks to the averaging approach, the dimensionality of
the parametric space, in which the instability boundary is defined,
is reduced to 3D. The instability boundary can thus be presented as
a surface. The threshold dissipation value obtained from the aver-
aging approximation is the lower bound of its rigorous value that
may be obtained only numerically in 5D parametric space.

The model describes correctly the known experimental features
of PHP startup: (i) both evaporation and condensation are vital for
the oscillation startup, which means that during the oscillation
startup the meniscus needs to penetrate into both the condenser
and the evaporator, and (ii) the startup of oscillations is controlled
by the temperature difference between the evaporator and the
condenser. The quantitative comparison is more delicate because
of the scarcity of the experimental data for such a system: in spite
of the importance of PHP startup issue for applications, the fea-
tures (i,ii) are about all we know; more experimental data on the
PHP startup (in particular, for single branch PHP) are needed.

The above analysis predicts the independence of the startup cri-
terion of the evaporator length under the condition that the oscil-
lation period is kept constant. It can be checked experimentally.
Indeed, one can imagine an experiment where both the evaporator
length and the liquid plug length are variable so that the constant
period constraint may be satisfied.

The theoretical analysis reveals the role of the heat exchange
between the gas and the dried out portion of the evaporator walls,
which turns out to be the source of energy dissipation in the sys-
tem. This means that the fluids with low gas heat conductivity
are to be chosen for use in the PHP.
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Appendix A. Application of the averaging method

Let us choose first a ground state that provides a periodical
solution. It can be defined by the equations

_~x ¼ ~v;
_eT ¼ ð1� cÞ~v;
c _~v ¼ eT � ~xþ ~m;
_~m ¼ 0

ðA:1Þ

obtained from the set (21) by putting to zero ai and e. The dimen-
sionless Eq. (A.1) correspond to Eqs. (18) and (19), the solutions
of which are indeed periodical with the unit eigenfrequency,

~v ¼ r sin j; ðA:2aÞ

~x ¼ �r cosjþ C ðA:2bÞ

eT ¼ ðc� 1Þr cos jþ D; ðA:2cÞ

C ¼ Dþ ~m; ðA:2dÞ

where j ¼ ~t þu; r;u;C;D; ~m are arbitrary constants. Therefore,
~v ; ~x; eT are the ‘‘fast’’ variables. One may now reduce the initial set
(21) with the method of variation of arbitrary constants. Assume
r;u;C;D; ~m to be ~t functions and substitute the expressions (A.2)
back into the governing Eqs. (21a-21c). A straightforward reduction
results in the equations

_D ¼ ð1� cÞer cosj� e
c

D; ðA:3aÞ

_r ¼ _C cos j; ðA:3bÞ
r _u ¼ � _C sin j; ðA:3cÞ

which are still rigorous. One may check by solving numerically Eqs.
(21d, 21e, A.2d, A.3) that all the variables r;u;C;D; eL; ~m exhibit
small oscillations around slowly varying mean values and are thus
the ‘‘slow’’ variables. Their slow variation can be (approximately)
determined from equations obtained by averaging Eqs. (21d, 21e,
A.3) over the oscillation period (=2p). While averaging the right
hand side of the equations, r;u;C;D; eL; ~m (but not _C; _D; _~m) are to
be assumed constant over the period.

From now on, under r;u;C;D; eL; ~m we mean their averaged
counterparts. It is evident that the averaging of Eq. (A.3a) leads to

_D ¼ � e
c

D: ðA:4Þ

This means that D � 0 when Dð~t ¼ 0Þ ¼ 0 (which may be assumed
without the loss of generality; nonzero D does not impact the con-
ditions of stability because it drops off the remaining equations).
Therefore,

C ¼ ~m: ðA:5Þ

Eq. (A.2b) shows that C is the average value of ~x during a period,
while r is its amplitude (Fig. A.5). When ~x < 0, the meniscus is lo-
cated in the evaporator and the value ~x ¼ 0 is the boundary be-
tween the condenser and the evaporator. Several cases can be
distinguished depending on the relation between jCj and r. Consider
first the case jCj < r, where the meniscus penetrates into both con-
denser and evaporator during one period (Fig. A.5). One may then
introduce

cos w ¼ �C
r
; ðA:6Þ

where 0 6 w 6 p. The condition ~x > 0 (equivalent to cos j < C/r) is
satisfied when p � w < j < p + w, see Fig. A.5. The derivative of w is
_w ¼
_~m

r sin w
þ

_r
r

cot w: ðA:7Þ

Since averaged eL is constant during a period, several cases are pos-
sible depending on the relation between eL, C and r. Consider first
the case where eL is larger than the minimal value of ~x over the per-
iod, i.e. �rð1þ cos wÞ 6 eL < 0, cf. Eqs. (A.2b) and (A.6) and Fig. A.5.
This case corresponds to a situation where the condition eL ¼ ~x
may be attained (i.e. the film disappears during some part of the
period). The above inequality can be rewritten as
�1 6 eL=r þ cos w < cos w. One may thus introduce a new slowly
varying variable n (such that 0 6 n 6 p) viaeL ¼ rðcos n� cos wÞ: ðA:8Þ

This definition means that eL ¼ ~x when j = p � n or p + n, cf. Fig. A.5.
The derivative of n is

_n ¼
_~m

r sin n
�

_eL
r sin n

þ
_r
r

cot n: ðA:9Þ

The averaging of Eqs. (21d), (21e) and (A.3b) results in

_eL ¼ 1
2p

1
b

Z pþn

0

_~mjac!0djþ
Z 2p

pþn

~vdj
� �

ðA:10aÞ

¼ r
2p

2aeðsin n� sin wþ w cos w� n cos nÞ½ �ð1þ cos nÞ�;

ðA:10bÞ

_~m ¼ aeb
2p

Z p�w

p�n

~xdjþ
Z pþn

pþw

~xdj� 2neL� �
� acb

2p

Z pþw

p�w

~xdj ðA:10cÞ

¼ br
p
½aeðsin n� sin wþ w cos w� n cos nÞ þ acðw cos w

� sin wÞ�: ðA:10dÞ

_r ¼ 1
2p

Z 2p

0

_D cos jdj� acb
Z pþw

p�w

~x cos jdj
�
þ aeb

Z p�w

p�n

~x cos jdj
�

þ
Z pþn

pþw

~x cosjdj� eL Z pþn

p�n
cosjdj

�	 ðA:10eÞ

¼ � ðc� 1Þer
2

þ br
2p
½aeðw� n� sin w cos wþ sin n cos nÞ

þ acðw� sin w cos wÞ�: ðA:10fÞ

Similarly, one deduces that the averaging of Eq. (A.3c) results in
_u ¼ 0. Note that _~m and _D given by Eqs. (21e) and (A.3a) need to be

injected into Eqs. (A.3b) and (A.3c) before averaging them. For clarity,
the same notation is kept for the averaged variables. To distinguish
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the averaged and non-averaged values one notes that in Eqs. (A.10),
all variables are averaged except of those under integrals. In what
follows, all variables are averaged.

The differential equations for w and n are obtained by the sub-
stitution of Eqs. (A.10b), (A.10d) and (A.10f) into Eqs. (A.7) and
(A.9), respectively. The resulting two equations form together with
Eq. (A.10f) a set of three ODE’s for three unknowns (w,n,r) and can
now be solved together. Their initial conditions w = n = p/2, r = r0

and the equality u = p/2 correspond to the conditions (23). Note
that the right hand sides of the equations for both _w and _n depend
only on w, n and are independent of r. This feature will be used be-
low during the stability analysis.

The obtained differential equations are valid until n attains p,
which may occur at some time moment ~t ¼ tn when the oscilla-
tions are declining. From this moment on, the curves ~xð~tÞ; eLð~tÞ do
not intersect any more and the introduction of n (that defines the
point of intersection, cf. Fig. A.5) is not possible any more. The
averaged equations for ~t > tn can be obtained from Eqs. (A.10a),
(A.10c) and (A.10e) where n is now replaced by p,

_eL ¼ �aer
p
½ðp� wÞ cos wþ sin wþ peL=r�; ðA:11aÞ

_~m ¼ br
p
facðw cos w� sin wÞ � ae½ðp� wÞ cos w

þ sin wþ peL=r�g;
ðA:11bÞ

_r ¼ �ðc� 1Þer
2

þ br
2p
½aeðw� p� sin w cos wÞ

þ acðw� sin w cos wÞ�:
ðA:11cÞ

To close the set of equations, one needs again to use Eq. (A.7). When
the oscillations are declining, w may in some cases attain zero or p
at a time tw > tn. The equations that valid for ~t > tw can be readily
obtained from Eqs. (A.11) by putting w = 0 or w = p, respectively.
They are linear and can be solved analytically. The solutions are
however cumbersome and for this reason are not written here.

Note that only Eqs. (A.10) need to be analyzed to study the sta-
bility of the system. Those valid for ~t > tn describe only the declin-
ing oscillations.

Appendix B. Instability boundary within averaging
approximation

One mentions at once that since both wð~tÞ and nð~tÞ functions
cannot evolve beyond the interval (0,p), they should either come
to saturation at ~t !1 or exhibit an oscillatory behavior. The sec-
ond option is unlikely within the averaging approach where these
functions are slowly varying. Indeed, the numerical calculations
show that both wð~tÞ and nð~tÞ always saturate when ~t !1.

Let us first outline the procedure of finding the instability
threshold by analyzing the stability of the set of equations for
(w,n,r) resulting from Eqs. (A.7), (A.9) and (A.10). One first obtains
the values wð~t !1Þ and nð~t !1Þ by imposing

_w ¼ 0;
_n ¼ 0:

ðB:1Þ

As mentioned above, the right hand sides of the differential equations
for w and n depend only on w and n. Thus the conditions (B.1) result in
the closed set of two equations that can be solved for wð~t !1Þ and
nð~t !1Þ. Next, the solutions should be used in the equation

_r ¼ 0 ðB:2Þ

that defines the stability threshold at ~t !1. Indeed, r is the oscil-
lation amplitude and the declining oscillations correspond to
_r < 0 while the instability condition is _r > 0.
We proceed now to the implementation of the outlined proce-
dure. By using Eqs. (A.7) and (A.9) one can rewrite the conditions
(B.1) as

_~mþ _r cos w ¼ 0;

_~m� _eL þ _r cos n ¼ 0:
ðB:3Þ

With the account of Eq. (B.2), they reduce to

_eL ¼ 0;
_~m ¼ 0

ðB:4Þ

where the values of the derivatives defined in Eqs. (A.10b) and
(A.10d) need to be substituted. After a rearrangement, the obtained
equations read

cos n ¼ 2acðsin w� w cos wÞ � 1;
aeðsin n� sin wþ w cos w� n cos nÞ ¼ acðsin w� w cos wÞ:

ðB:5aÞ

The parameter b drops out of Eq. (B.5a) which can easily be solved
numerically thus defining the threshold values of n, w as functions
of ac and ae. Their solutions can be used in the condition (B.2) equiv-
alent to the equation

ðc� 1Þe
b

¼ 1
p
½aeðw� n� sin w cos wþ sin n cos nÞ

þ acðw� sin w cos wÞ�:
ðB:5bÞ

Eq. (B.5b) defines the instability threshold. It expresses (c � 1)e/b as
a function of ac and ae.
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