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Interfacial flows close to a moving contact line are inherently multi-scale. The shape of the
interface and the flow at meso- and macroscopic scales inherit an apparent interface slope and
a regularization length, both called after Voinov, from the dynamical processes at work at the
microscopic level. Here, we solve this inner problem in the case of a volatile fluid at equilibrium with
its vapor. The evaporative/condensation flux is then controlled by the dependence of the saturation
temperature on interface curvature – the so-called Kelvin effect. We derive the dependencies of the
Voinov angle and of the Voinov length as functions of the substrate temperature. The relevance of
the predictions for experimental problems is finally discussed.

The dynamics of a macroscopic solid plunging in a liq-
uid bath [1, 2] or withdrawn from it [3–5] depends sen-
sitively on its wetting properties i.e. on the intermolec-
ular interactions at the nanoscopic scale. The motion of
the contact line separating wet from dry regions is there-
fore an inherently multi-scale problem. Amongst the im-
portant consequences of the coupling between inner and
outer scales (Fig. 1), the speed at which a contact line
can recede over a flat solid surface cannot exceed a crit-
ical value, associated to a dynamical wetting transition
which leads to the formation of a dewetting ridge [6, 7],
of a V-shaped dewetting corner [1, 8–10] or to the en-
trainment of films [2, 10, 11] (see [12, 13] for detailed
reviews). In many applications, such as coating, imbi-
bition of powders, immersion lithography or boiling-free
heating, these entrainment phenomena are crucial limit-
ing factors for industrial processes.
Fig. 1 shows schematically the structure of the flow

close to a moving contact line. Even for an infinitesi-
mal velocity U , there exists a range of mesoscopic scales
– roughly six decades – separating the microscopic scale
from the macroscopic length L, in which the diverging
viscous stress is balanced by a gradient of capillary pres-
sure. This balance can be made quantitative in the lubri-
cation approximation, for which the angles are assumed
small, and which gives a third order differential equation
for the interface profile h(x):

γ
d3h

dx3
= −3ηU

h2
. (1)

where η is the liquid dynamic viscosity and γ the surface
tension; U is positive for an advancing contact line. This
equation has an exact solution [14] which reduces to the
asymptotic form proposed by Voinov [15] far from the
contact line, but for x ≪ L:

h′(x)3 = θ3V +
9ηU

γ
ln

(

x

ℓV

)

. (2)

θV is by definition the apparent contact angle in the

FIG. 1. (Color online) Schematic showing a liquid vapor in-
terface h(x) – here, a spreading drop (U > 0) on a cooled
plate (∆T < 0) – at different scales. The inner region,
close to the moving contact line, is controlled by evapora-
tion/condensation (top right). The slope changes from the
Young angle θY to the Voinov angle θV across a scale ℓV given
by the Kelvin length ℓK . In a mesoscopic range of scales,
the shape of the interface results from the balance between
viscous friction and Laplace pressure gradient, resulting in a
slope h

′(x) which varies logarithmically in scale (Eq. 2).

static case (U = 0), which can be different from the
Young angle θY due to out of equilibrium processes tak-
ing place at a microscopic scale. The Voinov length ℓV is
also a quantity defined in the mesoscopic range of scales
but inherited from the inner region, where the problem
is regularized. The mesoscopic solution (2) must also
be matched at the macroscopic scale L to an outer so-
lution where viscosity can usually be neglected. Fig. 1
features the case of a spreading drop or of a growing
bubble but the outer matching problem has been solved
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for many other geometries including a gravity controlled
bath [3, 4, 16] or a capillary ridge [7].
Different models have been proposed to solve the mov-

ing contact line paradox i.e. the singularity of Eq. (1)
as x → 0. The simplest regularization is obtained by
imposing the Navier slip boundary condition based on
a slip length ℓs that can be expressed using a statisti-
cal physics description of liquids [17] and gas [18]. The
Voinov angle is then Young’s angle θY and the Voinov
length reads ℓV = 3ℓs/(e θV ), where e is Euler’s num-
ber [4]. Alternative descriptions have been proposed,
based on disjoining pressure (ℓV then scales on the Is-
raelachvili’s length (A/6πγ)1/2, where A is the Hamaker
constant) and diffuse interface models (ℓV is then set by
a diffusion length). Finally, when the substrate present
heterogeneities, the contact line dynamics becomes in the
inner layer a thermally activated process [13, 19].
Here we consider the contact line motion of a volatile

liquid in contact with an atmosphere of its pure vapor,
see [20–24] and references therein. We show that the
lubrication equation is perfectly regular when evapora-
tion/condensation processes are taken into account. The
Voinov length ℓV and the Voinov angle θV as functions of
the substrate temperature constitute the central results
of this Letter. The relevance of the theory for the case
of a drop evaporating in air, usually assumed to be con-
trolled by vapor diffusion [25–28], will be discussed in the
conclusion.
Lubrication equations including Kelvin effect – Evap-

oration/condensation process has first been proposed as
a possible mechanism controlling the contact line motion
at the molecular scale by Wayner [29] and Pomeau [30].
In this Letter, we formalize this idea in a hydrodynami-
cal framework, starting from the equation governing the
evolution of the interface position h:

∂th+ ∂xq = −j (3)

where q is the hydrodynamic flow rate. The rate j at
which a liquid evaporates is governed by the energy bal-
ance at the liquid-gas interface. Assuming that the va-
por pressure is fixed, the interfacial temperature T i de-
pends on the interface curvature κ ≃ h′′(x) according to
Kelvin’s law

T i = Ts

(

1 +
γκ

ρL

)

, (4)

where Ts is the saturation temperature, L the latent heat
and ρ the liquid density. In the lubrication approxima-
tion, the temperature varies linearly across the liquid
layer from the substrate temperature Ts +∆T , assumed
to be imposed (Fig. 1), to the interfacial temperature Ti.
Neglecting the energy flux in the vapor phase, the evap-
oration rate is controlled by the conductive energy flux
across the liquid,

j =
k

ρLh

(

∆T − Ts γκ

ρL

)

. (5)
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FIG. 2. Solution of the equations for a receding contact line
(δ = −0.02), with an overheating ǫ = 0.1. The dotted line
corresponds to the static case (δ = 0). The dashed line corre-
sponds to the Voinov outer asymptotics (2). These solutions
allow one to obtain the Voinov length ℓV and angle θV .

where k is the liquid heat conductivity.
Starting from the Voinov law (2), we define the reduced

capillary number [31], using θV as a characteristic slope:

δ ≡ 3ηU

γθ3V
. (6)

The characteristic length ℓK is obtained dimensionally
by balancing the two fluxes driven by the interface cur-
vature, namely the evaporation rate j and the divergence
of the hydrodynamical flow rate q = γh3κ′/(3η):

ℓK ≡
√
3ηkTs

θ2V ρL
. (7)

We therefore make the solution dimensionless using

h(x) = θV ℓKH(ζ) , ζ = x/ℓK ,

Under the lubrication approximation, the governing
equations in the scaled variables then read

H ′′ = K, K′ = QH−3 − δH−2, Q′ = (K− ǫ)/H, (8)

where ǫ is the superheating parameter, defined by

ǫ ≡
√
3ηkTs

γθ3V

∆T

Ts
(9)

and Q is the dimensionless counterpart of (q+Uh). The
fourth order differential equation (8) must be comple-
mented by the appropriate boundary conditions. We
choose x = 0 for the contact line position (so H(0) =
0) and impose the slope H ′(0) = θY /θV according to
Young’s law. As we look for regular solutions of the
problem, the continuity of the temperature at the con-
tact line requires K(0) = ǫ. Finally, to make the problem
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compatible with the asymptotic expansion (2), one as-
sumes a vanishing curvature far from the contact line:
K(∞) → 0.
Voinov angle – By definition, θV is the interface slope

for x ≫ ℓK at vanishing capillary number δ. In this limit,
the outer boundary condition K(∞) → 0 is equivalent to
the constant slope condition H ′(∞) = 1. The dotted line
in Fig. 2 corresponds to a typical solution obtained nu-
merically for δ = 0 [34]. Overheating (ǫ > 0) induces an
evaporation flux that would diverge as h−1 at the con-
tact line (cf. Eq. 5), if not balanced by Kelvin’s effect.
The induced liquid flow towards the contact line is ac-
companied by a capillary pressure gradient: the resulting
interface curvature leads to an apparent angle θV larger
than θY . The cross-over from θY to θV takes place at
the microscopic scale, for ζ of the order unity. The ratio
θY /θV is reported in Fig. 3a as a function of ǫ. Following
[23], we perform a linear expansion of the solution in ǫ
for δ = 0, writing H ≡ H0 = ζ+ǫHǫ+O(ǫ2). Linearizing
Eq. 8, one obtains a differential equation on Kǫ = H ′′

ǫ ,
which reads (ζ3K′

ǫ)
′−Kǫ/ζ = −1/ζ. The solution verify-

ing the boundary conditions involves the modified Bessel
function of the first order K1: Kǫ = 1 − ζ−1K1

(

ζ−1
)

.
Integrating Kǫ from ∞ to 0, one obtains H ′

ǫ(0) = −π/2,
which gives the expansion for the Voinov angle

θY /θV = 1− (π/2) ǫ+O(ǫ2), (10)

shown in dashed line in Fig. 3a.
The most important feature of the curve θY /θV (ǫ) is

the existence of a critical value ǫc ≃ 0.297 of the over-
heating parameter – note that the linear approximation
(10) overestimates ǫc by a factor ≃ 2. In the limit ǫ → ǫc,
θV becomes much larger than θY . Then, Kelvin effect is
just balanced by the maximal available capillary force, so
that H ′ goes from 0 to 1 [34]. The equation ǫ = ǫc gives
the large ∆T asymptotic expression of the Voinov angle
θV , which does not depend any longer on θY :

θV ≈
(√

3ηkTs

ǫcγ

∆T

Ts

)1/3

. (11)

One may expect this asymptotic regime to be relevant
close to the gas-liquid critical point, in particular to the
description of boiling [32, 33].
Voinov length – We now consider a contact line mov-

ing at a velocity U . We linearize the governing equations
with respect to δ, around the solution H0 obtained for
δ = 0 [34]. A typical solution is shown in Fig. 2 (solid
line) together with the asymptotic expansions around
ζ → 0 (static solution obtained for δ = 0, dotted line) and
ζ → ∞ (Voinov expansion, dashed line). It shows that a
perfectly regular solution is obtained, in spite of the no-
slip boundary condition imposed at the solid-liquid inter-
face: at a scale smaller than ℓK , the interface advances by
the curvature driven condensation (or recedes by evapo-
ration). How can a contact line advance (even at ǫ = 0)
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FIG. 3. (a) Ratio of Young angle to Voinov angle as a function
of overheating parameter ǫ, determined numerically (solid
line). The dashed line is the analytical expansion (10).

in the absence of any regularizing mechanism leading to
a slip of the fluid at the boundary? Consider a perfect
wedge initially at rest at the Young angle. Imposing an
hydrodynamics flux towards the contact line leads to an
increase of the apparent contact angle. However, θY re-
mains to be the true contact angle at the molecular scale
so that a positive curvature κ appears at a small scale,
which induces a condensation by Kelvin effect. As a con-
sequence, the contact line advances although the liquid
velocity vanishes at the contact line: the phase transition
flux j(0) = −UθY balances exactly that induced by the
contact line motion.

At distances much larger than the scale ℓV , one re-
covers as expected the Voinov solution H ′(ζ) ∼ 1 +
δ log(ζℓK/ℓV )+O(δ2). The Voinov length ℓV is obtained
from the matching to this outer expansion, as shown ge-
ometrically in Fig. 2 (intersection between the dashed
line and the horizontal line H ′ = 1). Fig. 3 shows the
dependence of ℓV on the overheating parameter ǫ. As
expected from dimensional analysis, ℓV is on the order
of the Kelvin length ℓK . The ratio ℓV /ℓK turns out to
increase with the overheating parameter, from ≃ 1.32 at
ǫ = 0 to ≃ 3.00 at ǫ = ǫc.
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Concluding remarks – As long as one aims to address
a macroscopic problem involving a moving contact line,
the only quantities inherited from the inner molecular-
scale region are the Voinov length and the Voinov an-
gle. For a volatile fluid with a vanishing slip length, we
have shown here that the Voinov length is set by the
Kelvin length. However, a true fluid presents both slip at
the solid/liquid interface and evaporation/condensation
at the solid/vapor interface. The theory developed in
this Letter is applicable if the Voinov length produced
by Kelvin effect is larger than that induced by the slip
length i.e. if the condition θV ℓK/ℓs > 1 is fulfilled. The
product θ2V ℓK depends only on the liquid properties and
ranges from 0.3 nm for water and methanol to 1 nm for
alkanes and refrigerants such as ammonia or fluorocar-
bon. It can be even larger, for fluids like glycerol or sili-
con oils whose large viscosities are due to glassy effects.
As the slip length ℓs is around two molecular sizes when
θY < π/2, a good proxy of θV ℓK/ℓs is θ−1

V : evaporation
is indeed the regularizing mechanism for any contact line
problem, in the limit of low contact angles.

The theory developed here is directly applicable to the
microscopic description of boiling, as nucleating bubbles
are constituted of pure vapor. It may help resolving the
demanding problem of the boiling crisis [33]. However, a
second evaporative effect has been neglected here: when
a fluid molecule joins the vapor phase, its momentum is
lost by the liquid. A normal stress ρ2j2/ρv is therefore
exerted on the interface (ρv ≪ ρ is the vapor density).
Balancing this effect with capillary pressure γ/lK , one
deduces that the vapor recoil effect is dominant when
the contact line velocity U is much larger than the recoil
velocity Ur = (γL)1/2(ρv/ρ)1/2 (3ηkTs)

−1/4. Ur is very
large (∼ 10 m/s for a fluorocarbon) so that vapor recoil
pressure can usually be neglected.

Is Kelvin’s effect relevant to the coffee stain prob-
lem [25] where a drop evaporates in air? The rate of
evaporation j in such a case must satisfy simultaneously
three conditions: (i) the kinetic equation based on Hertz-
Knudsen law, (ii) the conservation of mass, controlled by
the diffusion of vapor and (iii) the energy conservation
at the interface. The problem reduces to that consid-
ered here if the first two processes are fast enough, i.e. if
the evaporation rate predicted by Eq. (5) is the limiting
factor. (i) The kinetics of evaporation involves thermal
velocities of a fraction of the speed of sound in air, much
larger than observed evaporation rates. (ii) The evap-
oration rate j predicted by the diffusion alone [25–28]
diverges at the contact line as x−1/2. (iii) In conclu-
sion, the evaporation rate at the microscopic scale must
be generically controlled by the energy brought by ther-
mal conduction to the liquid/air interface. Kelvin’s effect
shall therefore regularize both the stress and the evapo-
rative flux singularities induced by the wedge geometry
of a contact line [35].
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