
HAL Id: cea-01480849
https://cea.hal.science/cea-01480849

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of an Energy Management Control
Strategy for WSNs using the LINC Middleware

Maria Isabel Vergara-Gallego, Olesia Mokrenko, Maxime Louvel, Suzanne
Lesecq, François Pacull

To cite this version:
Maria Isabel Vergara-Gallego, Olesia Mokrenko, Maxime Louvel, Suzanne Lesecq, François Pacull.
Implementation of an Energy Management Control Strategy for WSNs using the LINC Middleware.
Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, Feb
2016, Gratz, Austria. �cea-01480849�

https://cea.hal.science/cea-01480849
https://hal.archives-ouvertes.fr

Implementation of an Energy Management Control Strategy for
WSNs using the LINC Middleware

Maria Isabel Vergara-Gallego, Olesia Mokrenko, Maxime Louvel, Suzanne Lesecq, François
Pacull

Univ. of Grenoble Alpes
CEA, LETI, MINATEC Campus

{FirstName.LastName}@cea.fr

Abstract
Energy optimisation in Wireless Sensor Networks

(WSNs) is traditionally done either at the sensor node level
or at the network level. To obtain even more energy sav-
ings, the final application must be considered. Control the-
ory offers promising solutions to tackle this challenge. This
paper details an implementation of a control strategy to min-
imise energy consumption of a WSN, while ensuring the ap-
plication Quality of Service (QoS). The application QoS is
expressed with the sampling period for sensor nodes and a
minimum number of samples that must be available at the
application level at each sampling time. With a Model Pre-
dictive Control strategy, the lifetime of the WSN is doubled
compared to the basic case. The control strategy has been
implemented and evaluated on a real test-bed, formed of het-
erogeneous sensor nodes, thanks to the LINC coordination
middleware.
Keywords

Energy Management, Middleware, Implementation,
Model Predictive Control

1 Introduction
Wireless Sensor Networks (WSNs) have been a hot field

of research for several decades [20]. A great deal of effort
has been put on optimising energy consumption of single
sensor nodes and/or of the whole WSN. The grail is to im-
plement distributed applications that will run autonomously
for years, without battery changes.

To make this a reality, power consumption must be drasti-
cally reduced at the sensor node level. Several solutions, that
tackle this objective already exist at the design time of the
node hardware and/or software. Regarding hardware design,
solutions can go from the design of novel radio technolo-
gies [12] to microcontroller architectures [11], and energy
management methodologies [1]. At the software level, in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EWSN’16, February 15–17, 2016, Graz, Austria.
Copyright c© 2016 ACM 978-1-4503-1169-4 ...$10.00

the literature and industry, a large number of approaches and
algorithms are proposed at different layers of the commu-
nication stack to increase the network lifetime [3]. These
approaches try to minimise the nodes active period (using
duty cycle), optimise routing protocols, reduce the quantity
of transmitted data, etc. However, maximising the WSN life-
time boils down to reducing the energy consumption not only
of nodes (node level) or of one part of the network (network
level). Energy must be considered at the global level, i.e.
including the applications running on top of the WSN.

A trade-off between performance (or application Quality
of Service (QoS)) and energy consumption must be found. A
promising solution to find this trade-off is to rely on Control
Theory. From a model of the system (here a WSN system),
possibly with constrains, Control Theory can ensure the ap-
plication QoS while minimising the energy consumption of
the whole WSN. This control objective can be expressed
with a cost function to be minimised under constraints. The
associated control law will then require a bit of information
from the nodes and protocol layers (for instance, energy con-
sumption of the nodes, remaining energy in the batteries of
the nodes, the work each node has to perform) in order to
manage the nodes and the whole system. To our knowledge,
most of the work relying on Control Theory for the minimi-
sation of energy consumption in WSNs are related to manag-
ing the transmission power of the sensor nodes. These mech-
anisms are applied at the node level, where no knowledge
regarding the global state of the network is required. More-
over, the application constraints are not taken into account.
Note that [3] reviews various energy conservation schemes
but none of them seems grounded in control theory. [18] pro-
poses a classification of power control mechanisms in WSN,
based on control theory. These works are actually related to
power control protocols only.

The present paper details the implementation, on a real
test-bed, of a control strategy based on Model Predictive
Control (MPC). The objective of this strategy is to minimise
the energy consumption of the whole WSN and, at the same
time, to ensure the application QoS. For the selected test-
bed, the MPC strategy, which is described in [15], extends
the WSN lifetime by a factor of 2, compared to the situation
where no MPC control is implemented. Theoretical founda-
tion and preliminary results on a real test-bed can be found
in [14]. The main goal of the present paper is to detail how
it was possible to bridge the gap between theory and imple-

mentation, demonstrate and validate the theoretical results.
In addition, two communication technologies are deployed,
leading to a heterogeneous network. The implementation is
based on LINC [13], a coordination middleware. Thanks
to its resource-based approach and transactional guaranties,
LINC makes it possible for the global controller to take deci-
sions according to the current state of the WSN, and to force
the WSN to behave as expected.

The paper is organised as follows. Section 2 presents a
description of the WSN considered here and the application.
Then, Section 3 describes how the WSN has been imple-
mented and integrated with the global controller. Section 4
presents the implementation results. Finally, Section 5 dis-
cuses the related works and Section 6 gives some global con-
clusions and future work directions.
2 System description

The system considered in this paper is a WSN deployed
to monitor an environmental parameter in a particular area,
using several sensor nodes. For monitoring applications
in buildings, typical monitored parameters are temperature,
CO2 level (indoor or outdoor), and humidity. The values ac-
quired by the sensor nodes are sent to a sink node that will,
for instance, interact with the air conditioning unit. Though
the system may contain a control part (i.e., commands can be
sent to actuators), this work focuses only on the monitoring
part. To reach a nominal behaviour at the application level,
a certain application Quality of Service (QoS) must be pro-
vided. In this context, the application QoS refers to the min-
imum information required for the correct functionality of
the application, and it can be defined from the sampling fre-
quency of the nodes, and the quantity and quality of sensed
values. Note that the sensor nodes are supposed to be densely
deployed in the sensor field, leading to a certain degree of re-
dundancy. As a consequence, when the minimum number of
nodes needed to ensure the application QoS is lower than the
total number of nodes in the network, it is possible to switch
off some nodes. In this way, the network lifetime can be ex-
tended. In addition, a node can be replaced by another when,
for instance, the first one runs out of energy. Nodes sensing
the same environmental variables may differ according to:
• available energy: sensor nodes are powered by a bat-

tery and/or harvesting system(s), hence at every instant
they have different available energy (i.e., due to differ-
ent battery sizes, harvesting periods, battery ageing);

• energy consumption: to provide the same type of mea-
surements, different sensor nodes may require different
energy budgets;

• heterogeneity: sensor nodes may be heterogeneous in
terms of communication protocol, data format and/or
hardware characteristics.

Hence, deciding which node must be active at a given in-
stant of time is not straightforward. In addition, nodes can
disconnect from the network (become Unreachable) without
notice. Disconnection may be caused by energy starvation,
communication problems, or hardware failures. Nodes may
also join back the network when they leave the Unreachable
state if they have regained enough energy thanks to harvest-
ing systems, or if the communication is back.

Regarding heterogeneity, as multiple hardware platforms
and communication protocols must be supported, it is neces-
sary to rely on a middleware layer. Such a layer abstracts the
controller from the communication protocol, data format, or
any low level matter.

Figure 1 illustrates the monitoring system, which can be
divided in four levels: I) the sensor nodes, II) the communi-
cation infrastructure, III) the data collection and synchroni-
sation level and IV) the Controller. These levels are detailed
in the following subsections.

Communication

 infrastructure

...

Figure 1. WSN System levels

2.1 Sensor nodes
Typical sensor nodes can be split in four main units,

namely, computation, communication, sensing and power
supply [2]. For each node, different power modes are de-
fined. These power modes correspond to a combination of
the state for each unit in the node. The energy consump-
tion of the node in a given power mode is given by the node
manufacturer.

In a WSN, the activity of nodes (i.e. sensing, computing,
communication) is usually “duty cycled”: the node period-
ically wakes-up (i.e. the CPU is activated), senses an envi-
ronmental value (i.e. the sensing unit is turned on), processes
and transmits the information (i.e. the radio is activated), and
finally enters the sleep mode (i.e. all units are disabled wait-
ing for a timer event). The wake-up period (or duty cycle)
determines the energy consumed by the node.

The energy management strategy implemented in this pa-
per assigns different functioning modes to Reachable nodes.
Each functioning mode is defined by a given period for sens-
ing and communication tasks. Hence, all nodes in the net-
work are duty cycled, and their energy consumption depends
on their duty cycle for communication and sensing (i.e. each
functioning mode is associated to a known energy consump-
tion that depends on the duty cycle). Basically, the con-
troller combines information received from the nodes regard-
ing their remaining energy and the application QoS require-
ments, to decide the most suitable functioning mode for each
node. For instance, if the controller objective is to minimise
the energy consumption of a node, it can increase the com-
munication period and deactivate the sensing activity (i.e. the
sensing period is equal to infinity).

The controller requires information regarding the remain-
ing energy of the nodes. This information must be sent on a
periodic basis to the controller. Thus, a minimum communi-
cation duty cycle is required for the proper functionality of
the controller. Notice that the nodes must embed an estima-
tor of their remaining energy, since a sensor that measures
the remaining energy in a battery does not exist.

2.2 Communication architecture
In order to exchange data with the sink, a communication

architecture is defined. It determines, through a given topol-
ogy, how nodes communicate with the sink. In this paper,
a star topology is considered. Nodes communicate directly
with the sink through a router. Hence, the controller can
choose to increase the communication period of one node,
without affecting the communication with other nodes.

Note that a cluster-tree topology can be easily imple-
mented and evaluated. For this topology, the cluster co-
ordinators are responsible for forwarding information from
nodes in the cluster. Thus, coordinators are duty cycled and
synchronised with associated nodes for data reception and
forwarding. Hence, to communicate with all the associated
nodes, the wake-up (or communication) period of the coordi-
nator must be at most the shortest communication period of
all the associated nodes. Therefore, the controller can change
the functioning mode of all end-nodes in the network. The
functioning mode of the coordinators are then set accord-
ingly. Besides, further parameters have to be taken into ac-
count by the controller. For example, the number of hops
required to send a packet to the sink, which is proportional
to the energy cost of communication, must be considered.
All these factors can be easily integrated in the controller,
nodes must inform their role in the network (coordinator or
end node) and the number of hops to the sink. The controller
integrates this information to the constraints and takes deci-
sions as for the star topology case.

More complex topologies, such as mesh networks, require
the controller to know the current topology and routing in-
formation, which is highly dynamic. Indeed, the controller
cannot arbitrarily change the functioning mode of the nodes
as it can break the routing and topology maintenance mech-
anisms. Thus, the integration with a mesh network requires
further work.

2.3 Data collection and synchronisation
This layer is responsible for collecting the sensed data,

synchronising the sensor nodes, and calling the controller
when the information is ready. These three tasks are
achieved through the coordination middleware LINC [13].

LINC uses an associative memory [5] implemented as a
distributed set of bags. This offers a decoupling in space and
time between the data producer (the sensor nodes) and the
data consumer (the controller). LINC has been successfully
used in several application domains and currently supports
around 30 technologies. The associative memory also pro-
vides an abstraction layer to present all the measurements in
the same format to the controller.

To ensure the expected application QoS, sensor nodes
need to communicate with the sink at a given period (ac-
cording to their functioning mode). It can be of the order

of seconds, minutes, hours, or days, depending on the ap-
plication domain. Between two communication instants, the
external timer of the sensor node is programmed according
to the desired period. Then, the node enters the sleep state,
waiting for a timer interrupt. Oscillators in sensor nodes are
not perfect and they will drift over time. Therefore, if the
clocks are not resynchronised, sensor nodes may wake up
outside of the timing-window accepted by the sink. On the
one hand, if the node wakes up too early, the measurement
may be outdated when it is used by the controller. On the
other hand, if the node wakes up too late, the controller will
not take the values in consideration and may think the node
is in the Unreachable state.

To avoid synchronisation problems, LINC ensures that
the clocks of the nodes are resynchronised when needed. To
do so, a resynchronisation frame is periodically exchanged
with the nodes. The resynchronisation period depends on
the type of oscillators being used by the sensor nodes (i.e.,
the more precise the oscillator, the longer the resynchronisa-
tion period). This parameter can be determined empirically
or according to nodes’ characteristics.

The resynchronisation procedure is completely indepen-
dent from the controller. Thus, the latter does not need to
take care of synchronisation. It only processes the measure-
ments currently received from the Reachable nodes.

The time/space decoupling and the abstraction offered
by LINC have been particularly useful here. Indeed, it is
straightforward to ensure that the latest measurements are
available in the associative memory. The measurements
are simply added to a dedicated bag whenever this is re-
quired (sampling/ resynchronisation periods). The controller
is called when the current state of the nodes is known. The
LINC application waits during a configurable time to receive
information from nodes. If no information is received after
this time, the node is considered as Unreachable.
2.4 Control design

The controller is based on a Model Predictive Control
(MPC) approach. In order to control energy saving in the
WSN, the remaining energy in each sensor node i, i= 1, ...,n,
is modelled with a discrete-time linear model:

xi(k+1) = xi(k)+Biui(k), (1)

where xi(k) is the remaining energy in the battery of sensor
node i at sampling time k. Biui(k) represents the energy that
will be consumed during the time interval [kTc,(k+1)Tc]. Tc
is the control period.

ui = [ui1 ... uih ... uim]
T is the control input. It

is related to the functioning mode h, h = 1, ...,m, of
node i, where uih ∈ {0,1}. The control matrix is Bi =
[bi1 ... bih ... bim]. bih represents the amount of en-
ergy consumed by node i working in mode h.

The energy consumption of each node during this next
period of time depends on the functioning mode assigned by
the controller. The controller decisions tend to minimize the
energy consumption of the whole set of nodes while the ap-
plication QoS is met1. This decision comes from the minimi-

1Note that different control objectives can be added thanks to the flexi-
bility of the MPC approach. For instance, the controller could balance the

Table 1. Power consumption of Flyport platform and
EnOCean transceiver (Supply Voltage 3.3 V) [7, 16]

Mode Power Remarks
Wi-Fi con-
nected 162,70 mA MCU on / Wi-Fi on, con-

nected to access point
Wi-Fi not
connected 39,75 mA MCU on / Wi-Fi on but not

connected
EnOcean Rx 61.21 mA No Wi-Fi
EnOcean Tx 52.21 mA No Wi-Fi
Hibernate 28,21 mA MCU on and Wi-Fi off
Sleep 1,44 mA MCU off and Wi-Fi off

sation of a cost function under constraints. Note that the opti-
misation problem is a Mixed Integer Quadratic Programming
(MIQP) one, the optimisation variables being both boolean
values (ui) and positive real values (xi) with bounds. More-
over, a set of constraints must be taken into account. The
first subset is related to the remaining energy in the batteries
that must be strictly positive to avoid battery damages (lower
bound). Moreover, the remaining energy cannot be infinite
and a maximum value cannot be exceeded. The second sub-
set of constraints expresses that each node can be in a unique
functioning mode. The last subset expresses the application
QoS. The interested reader can refer to [15] where theoreti-
cal details are provided.

The controller has been first designed in the Matlab envi-
ronment, and evaluated in simulations. The numerical values
used in the simulation (e.g. maximum energy in the node bat-
teries, energy consumption in each functioning mode) have
been extracted from datasheets [16]. Then, the controller has
been implemented and optimised in python, leading to an
efficient implementation in terms of computational time.

3 Implementation Description
The main objective of this work was to validate theoretical

and simulation results. Thus, the proposed energy manage-
ment approach is implemented on a real test-bed composed
of heterogeneous wireless sensor nodes. The test-bed is now
described, along with the data collection approach.
3.1 Test-bed description

The hardware test-bed considered here consists of one
sink, one router, and 6 sensor nodes spread over a given area.
The sensor nodes chosen for experimentation are the Open-
picus Flyport Wi-Fi 802.11g [16] with Wi-Fi transceiver and
with EnOCean transceiver TCM-310 [7], leading to a het-
erogeneous deployment. Table 1 gives the power consump-
tion of the Flyport platform. The Openpicus Flyport Wi-Fi
802.11g platforms embed a Microchip PIC 16-bits processor
with a Wi-Fi radio module and ready-to-use protocol stacks.
Openpicus provides a FreeRTOS-based framework imple-
menting the CSMA-CA MAC protocol and the TCP trans-
port protocol. Applications are written as FreeRTOS tasks.

When using Wi-Fi, Openpicus nodes form an infrastruc-
ture topology: they connect to one access point or router.
The latter forwards all the received packets from/towards the
sink. For the EnOcean protocol, an EnOcean transceiver is

energy between nodes for fault tolerance

connected to the GPIOs of the Openpicus platform. This
transceiver exhibits very low-power serial communication,
that permits the exchange of very short frames. The EnO-
cean node communicates directly with the sink, this latter
making use of an EnOcean USB dongle module.

3.2 Definition of the functioning modes
For the energy management strategy, two functioning

modes and an Unreachable state are defined for each node,
for both the Wi-Fi and the EnOcean transceiver:
• in Mode 1 (or Active mode): both the communication

and sensing tasks are activated periodically. The sens-
ing period is equal to the communication duty cycle
Ts = 1 min;

• in Mode 2 (or Standby mode): the node sensing unit is
disabled. The node wakes-up periodically, as requested
by the controller, to report to the sink its battery state
and to receive commands (i.e. its functioning mode for
the next period of time) from the controller. The com-
munication period of a node in this mode is equal to the
controller period Tc = 1 hour;

• nodes enter the Unreachable state when they are unable
to communicate with the sink due to network issues,
hardware damage, or lack of energy.

When a node transmits a frame to the sink (to send a
sensed value or available energy) it waits for an answer.
The answer can be an acknowledgement, a resynchronisa-
tion frame, or a command frame asking the node to change
its functioning mode.

3.3 Definition of the application QoS
The application QoS is expressed as the minimum number

of measurements that must be provided by the WSN to the
application over a defined time period. Hereafter, this appli-
cation QoS is called mission, which must be guaranteed by
the controller. This latter assigns a functioning mode to the
nodes, taking into account the nodes that are unreachable.

In the scenario, d1 nodes must be assigned to the Ac-
tive mode, in order to meet the mission, while minimising
the overall energy consumption. Moreover, the mission can
change dynamically, i.e. depending on a time schedule or on
external events. This dynamic mission permits following the
needs of the application during the system evolution. Here,
we consider that during the working hours, when people are
present in the office, the mission is defined with d1 = 3 nodes
in Mode 1, while during the night period, when there is no-
body in the office, d1 is equal to 1.

The lifetime of the WSN is defined as the period of time
during which the mission can be fulfilled. This time should
be the time before the number of reachable nodes is smaller
than the minimum number of required active nodes (d1).

3.4 Data Collection
To collect data from the sensor nodes, the first step is to

encapsulate the nodes in LINC. This is made easy by the
PUTUTU framework [17] that provides generic LINC ob-
jects to speed up integration of sensor and actuator technolo-
gies. For instance, the EnOcean protocol was already inte-
grated in the framework. Figure 2 illustrates the LINC ap-
plication put in place. The application is composed of three

openpicus_WiFi

 object

TCP Server

openpicus_enOcean

 object

enOcean dongle

controller_object

Commands

Battery

 Levels

Battery/Sensor(s)

values
Battery/Sensor(s)

values

CommandsCommands

Figure 2. LINC Application for integration

LINC objects all running in the sink:
• The openpicus wifi object acts as a TCP server that lis-

tens for connections from Wi-Fi nodes. It stores mea-
surements and battery information sent by these nodes.

• The openpicus enocean object opens a serial connec-
tion with the EnOcean dongle to communicate with the
EnOcean nodes. It stores the sensed values and battery
information sent by these nodes.

• The controller object collects information about the
battery status of all reachable nodes (from the
two other objects). It periodically calls the con-
troller to get the new functioning mode for each
node in the network. The updates are prop-
agated to the openpicus wifi object and the
openpicus enocean object. These latter send the
new functioning mode to each node if it has changed.

The first time the nodes communicate with the sink, their
clock is synchronised with the sink clock and keep synchro-
nised according to the synchronisation period. The syn-
chronisation period can be adjusted dynamically. Empiri-
cal experiments have shown that a synchronisation period of
around 6 hours is appropriate for this implementation. This
synchronisation period leads to a maximum clock drift of a
couple of seconds, which is acceptable given the dynamics
of the application.

4 Experimental Results
To evaluate the energy management strategy, an experi-

ment of a duration of 30 hours was run. The experiment
started at T0 = 8 a.m. Figure 3 shows the functioning modes
of the sensor nodes during the experiment. The EnOCean
node is S6. We can see that the mission defined above is ful-
filled during all the experiment: during the working hours, 3
sensors are Active, and during the night period, 1 sensor is
Active.

In Figure 3 it can be observed that the node number 6 be-
came Unreachable after 6 hours, when its battery reached the
minimum energy level. Node 4 was disconnected twice from
the network after 10 hours, during 1 hour, and after 14 hours,
during 2 hours. The disconnection is due to radio channel
perturbations. The same phenomenon happens with nodes 2
and 5. When a node falls in the Unreachable state, it is no
longer taken into account by the controller when solving the
control problem. When the controller receives again infor-
mation related to the remaining energy of this sensor node, it

d1 = 3 d1 = 1 d1 = 3

Figure 3. Functioning mode of each sensor node vs. time

Table 2. Scalability of the MPC approach
Number of nodes 6 18 54

Time [sec] 0.36 5.13 10.81

adds the node again in the set of nodes to be controlled. Note
that the nodes do not possess “wake-up on event” capability.
Therefore, if an active node (mode 1) becomes unreachable,
due to the duty cycle Tc = Tw = 1 hour for the nodes in mode
2 (stand by), the controller will assign a node in mode 2 to
mode 1 when the control period Tc is elapsed. This means
that we can observe periods of time no longer than Tc when
the mission is not fulfilled. If nodes could be woken up at
any time by an external mechanism, before the end of the
duty cycle, this issue would be solved.

Note that, in the present scenario, nodes do not embed
harvesting systems. In this latter case, when the battery of
a node is drained, it can re-enter the “game” when it has
regained enough energy to communicate and be placed by
the controller in the Active or Standby mode.

Using the MPC approach, the fulfilling of the application
QoS is increased up to 36,7% compared to the “basic” con-
trol. The basic control presents the management of the node
activity when only mission is ensured without any other pa-
rameter to control.

This scenario is also evaluated to demonstrate the scala-
bility of the MPC approach. Table 2 shows the simulation
results of one step computation time in Matlab environment
for 6, 18 and 54 sensor nodes. We estimated the one step
computation time with 54 nodes to 10.81 sec, this step needs
to be computed every hour (Tc = 1 hour) in our example.

5 Related Work
To the authors’ knowledge, most of the research works

regarding power management in WSN focus on the protocol
stack [3, 18], or on the optimisation of the node units. The
application needs are seldom taken into account in the ener-
gy/power management strategies [19]. This latter proposes a
Dynamic Power Management (DPM) strategy at node level,
that takes into account application constraints to keep the
sensor node, as much as possible, in a sleep or idle state
without losing the real time responsiveness of the network
application. The DPM strategy is based on a hybrid automa-
ton. It is implemented within the node. The main advan-
tage, compared to our approach, is that the control strategy
is fully distributed. However, the DPM strategy does not
have a global knowledge of the WSN state and the changes

in the application needs. Moreover, having the DPM strat-
egy embedded within the node implies an overhead in the
energy consumption of the node. Note that there is no real
implementation of the proposed DPM strategy.

This paper relies on a middleware layer to apply the Con-
trol approach on a real WSN. The controller can then col-
lects information from the nodes and sets some parameters
of the network (i.e. the functioning mode of each node).
Middlewares and frameworks have been proposed with sim-
ilar purposes. For instance, PyFUNS [4] is a framework
that modifies network parameters according to the applica-
tion. In PyFUNS applications are written as python scripts,
then, the framework calibrates the network for energy effi-
ciency. However, it is suitable only for nodes running the
ContikiOS. Whereas the architecture described here, may
support, thanks to LINC, any operating system and commu-
nication stack. MILAN [10] is a middleware that continu-
ously controls the network’s functionality according to the
application demands. The implementation of such mecha-
nism is very complex given the huge number of parameters
that must be taken into account. It seems difficult to integrate
Control Theory with MILAN where several assumptions are
made on the WSN behaviour.

Other coordination middlewares, also using associative
memory, have been used for WSN, such as Agimone [9],
TeenyLIME [6] or Agilla [8]. However they do not offer the
same properties as LINC (e.g. distributed transactions, sup-
port of many protocols and integration frameworks). More-
over, these works focus on developing applications for WSN
where this paper integrates Control Theory. Hence, the guar-
antees offered by LINC are vital.

6 Conclusions
This paper has presented an implementation of a control

strategy for global energy management of a WSN. The im-
plementation is based on the LINC coordination middleware.
This papers detailed the different aspects taken into account
for the proper implementation, such as data collection and
synchronisation.

Experimental results, on a star topology, show that the
WSN is correctly integrated with the controller. Functioning
modes of nodes are set according to decisions taken by the
global controller, which minimises the energy consumption
of the whole WSN while ensuring the application Quality of
Service. The simulation results show that the control strat-
egy is scalable. The control approach is based on Model
Predictive Control. This permits to add new constraints or
control objectives if needed. For instance one may way to
spread the measurements for redundancy purpose. LINC has
been used in several domains such as smart buildings, smart
cities or smart parking. Hence the proposed approach may
be extended to other applications or domains.

Future work directions include the implementation of the
control strategy on a WSN with a more complex topology,
such as mesh networks. Such implementation will require a
deeper knowledge about the network status such as routing
information and current topology. Another interesting direc-
tion is to have a distributed controller and study the impact
of distribution on the existing software architecture.

Acknowledge
This work has funded by the Artemis ARROWHEAD

(grant 332987) and the H2020 TOPas project (grant 676760).
7 References
[1] Y. Akgul, D. Puschini, S. Lesecq, E. Beigné, I. Miro-Panades,

P. Benoit, and L. Torres. Power management through dvfs and dy-
namic body biasing in fd-soi circuits. In Proceedings of the 51st An-
nual Design Automation Conference, pages 1–6. ACM, 2014.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less sensor networks: a survey. Computer networks, 2002.

[3] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella. Energy
conservation in wireless sensor networks: A survey. Ad Hoc Networks,
7:537 – 568, 2009.

[4] S. Bocchino, S. Fedor, and M. Petracca. Pyfuns: A python framework
for ubiquitous networked sensors. In Wireless Sensor Networks, pages
1–18. Springer, 2015.

[5] N. Carriero and D. Gelernter. Linda in context. Commun. ACM,
32:444–458, 1989.

[6] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco. Teenylime: tran-
siently shared tuple space middleware for wireless sensor networks. In
Proceedings of the international workshop on Middleware for sensor
networks, pages 43–48. ACM, 2006.

[7] enocean. www.enocean.com.
[8] Fok, Chien-Liang and Roman, Gruia-Catalin and Lu, Chenyang. Ag-

illa: A mobile agent middleware for self-adaptive wireless sensor
networks. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 4(3):16, 2009.

[9] G. Hackmann, C.-L. Fok, G.-C. Roman, and C. Lu. Agimone: Mid-
dleware support for seamless integration of sensor and ip networks. In
Distributed Computing in Sensor Systems, pages 101–118. Springer,
2006.

[10] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, M. Perillo, et al.
Middleware to support sensor network applications. Network, IEEE,
18(1):6–14, 2004.

[11] M. Hempstead, M. J. Lyons, D. M. Brooks, and G.-Y. Wei. Survey of
hardware systems for wireless sensor networks. J. Low Power Elec-
tronics, pages 11–20, 2008.

[12] F. D. Hutu, A. Khoumeri, G. Villemaud, and J.-M. Gorce. A new
wake-up radio architecture for wireless sensor networks. EURASIP
Journal on Wireless Communications and Networking, Oct. 2014.

[13] M. Louvel and F. Pacull. Linc: A compact yet powerful coordination
environment. In Coordination Models and Languages, Lecture Notes
in Computer Science, pages 83–98. Springer, 2014.

[14] O. Mokrenko et al. Design and Implementation of a Predictive Control
Strategy for Power Management of a Wireless Sensor Network. In
IEEE European Control Conference, July 2015.

[15] O. Mokrenko, S. Lesecq, W. Lombardi, D. Puschini, C. Albea, and
O. Debicki. Dynamic power management in a wireless sensor net-
work using predictive control. In 40th Annual Conference of the IEEE
Industrial Electronics Society, 2014.

[16] openpicus. http://www.openpicus.com, 2015.
[17] F. Pacull et al. Self-organisation for building automation systems:

Middleware linc as an integration tool. In IECON 2013-39th Annual
Conference on IEEE Industrial Electronics Society, pages 7726–7732,
Vienna, Austria, 2013. IEEE.

[18] N. Pantazis and D. Vergados. A survey on power control issues in
wireless sensor networks. IEEE Communications Surveys, 9:86 – 107,
2007.

[19] R. Passos, C. Coelho, A. Loureiro, and R. Mini. Dynamic power man-
agement in wireless sensor networks: An application-driven approach.
In Second Annual Conference on Wireless On-demand Network Sys-
tems and Services (WONS’05).

[20] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network sur-
vey. Computer Networks, 52(12):2292 – 2330, 2008.

	Introduction
	System description
	Sensor nodes
	Communication architecture
	Data collection and synchronisation
	Control design

	Implementation Description
	Test-bed description
	Definition of the functioning modes
	Definition of the application QoS
	Data Collection

	Experimental Results
	Related Work
	Conclusions
	References

