
HAL Id: cea-01480847
https://cea.hal.science/cea-01480847

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coordination Scheme Editor for building management
systems

Maxime Louvel, François Pacull, Maria Isabel Vergara-Gallego

To cite this version:
Maxime Louvel, François Pacull, Maria Isabel Vergara-Gallego. Coordination Scheme Editor for
building management systems. IECON 2016-42nd Annual Conference of the IEEE, Oct 2016, Firenze
(Florence), Italy. pp.7052 - 7057, �10.1109/IECON.2016.7793354�. �cea-01480847�

https://cea.hal.science/cea-01480847
https://hal.archives-ouvertes.fr

Coordination Scheme Editor for Building
Management Systems

Maxime Louvel, François Pacull, Maria Isabel Vergara-Gallego
Univ. of Grenoble Alpes
CEA, LETI, MINATEC

Email: FirstName.LastName@cea.fr

Abstract—This paper presents our work on the Coordination
Scheme Editor (CSE). This editor provides a web interface to
design building automation rules. Rules are designed with a drag
and drop programming. Then rules are validated, generated and
activated in the buildings.

CSE allows to define template rules. The rules are then
instantiated in building rooms with the available sensors and
actuators. CSE also offers a monitoring interface to know which
scenario is impacted by one or several faulty sensors/actuators.

The CSE relies on the LINC middleware to provide coordina-
tion across several building automation systems and sensors/ac-
tuators technologies.

I. INTRODUCTION

Building management systems (BMS) have traditionally
been proprietary and closed systems. A BMS consists of hard-
ware and software components; in general, software compo-
nents are proprietary, based either on closed solutions or open
industrial standards. Typical examples of standard solutions for
BMS are LONworks, KNX, BacNet, and Modbus [1]. When
a building is built, the hardware components are installed and
a software commissioning is done. Once again this operation
is done using proprietary software and, in most of the cases,
it requires the intervention of a skilled technician.

Buildings are usually built to last 20 years or more, and,
during their lifetime, they have to evolve. Indeed, buildings
are usually retrofitted every two or three years to add new
equipment, new facilities (e.g. walls, building extension or
new material), or simply to reconfigure a poorly functioning
building. Another type of evolution is reconfiguration for users
comfort or usage. For instance, a wall can be added/removed
to create/remove rooms. After such modifications, the BMS
must be reconfigured to adapt the building behaviour. To do
so, a skilled technician has to come in the building and perform
the reconfiguration of the BMS using a proprietary software.

The complexity increases when considering multiple tech-
nologies in one building. Today there is a trend to integrate
open industry standards meaning that a unique building may
integrate several technologies, or several BMS, that work
independently and that have to be configured independently.
Another trend is to install new devices, such as sensors,
that are not originally provided by the BMS. For instance,
indoor air quality sensors exist but they are not connected
to existing BMS. Typically, when these sensors are installed
data are collected by a dedicated system, an off-line analysis
is done and guidelines are provided to the facility manager.

The facility manager then calls a technician to update the
BMS accordingly. Another example is the emerging market of
the Energy Sub-Contracting Companies (ESCOs) [2]. ESCOs
want to manage the building more efficiently to reduce the
energy bill and take some money in the loop. To make their
job more efficient they will want to install specific sensors that
should interact with the BMS.

Several solutions have been proposed to connect multiple
BMS and technologies through a software layer [3], [4]. The
work proposed in this paper goes further, by providing a
graphical user interface that permits a user (e.g. the facility
manager or the building occupants) to monitor the BMS
and define the interactions between the connected devices.
The use of such interface does not require any special skill.
The proposed approach is called Coordination Scheme Editor
(CSE). The CSE is a software component based on the LINC
[5] coordination middleware. LINC has already been used
in building automation applications integrating heterogeneous
systems [6], [7]. The CSE provides a web interface to design,
monitor, and update BMS rules. This interface is based on
the latest web standards (HTML5, SVG and javascript) and
blockly [8] to offer an easy drag and drop programming. Once
the rules are defined by the user, LINC verifies, compiles, and
executes the rules using the real devices. In addition, when a
sensor or an actuator becomes faulty, alerts are raised in the
CSE to show all the rules impacted by the error.

This paper is structured as follows. First, Section II gives an
overview of the middleware LINC; then, Section III describes
the CSE and how it can be used to generate, verify, and execute
new rules in the building. Section IV explains how the CSE
has been used to generate rules in different contexts. Finally,
Section V summarizes some existing related approaches and
Section VI concludes the paper and presents future directions.

II. OVERVIEW OF LINC

To make this paper self-contained, this section presents an
overview of the middleware LINC. More details on LINC
can be found in [5]. LINC provides a uniform abstraction
layer to encapsulate software and hardware components. This
abstraction layer relies on the associative memory paradigm
implemented as a distributed set of bags containing resources
(tuples). Inspired by Linda [9], bags are accessed through three
operations:

• rd(): takes a partially instantiated tuple as input param-
eter and returns from the bag a stream of fully instantiated
tuples matching the given input pattern;

• put(): takes a fully instantiated tuple as input parameter
and inserts it in the bag;

• get(): takes a fully instantiated tuple as input parame-
ter, verifies if a matching resource exists in the bag and
consumes it in an atomic way.

Bags are grouped within objects according to application
logic. For instance, all the bags used to manage a set of devices
that communicate using the same communication technology
can be grouped in the same LINC object. LINC objects are
able to execute rules that manipulate resources in its own bags
or in the bags of other objects.

The rest of this section describes the properties of LINC
and the existing frameworks that facilitate the development of
building automation applications and user interfaces. Finally,
it describes how rules can be injected into the system, and
activated/deactivated at run-time.

A. Coordination rules

The three operations rd(), get() and put() are used
within production rules [10]. A production rule is composed
of a precondition phase and a performance phase.

Precondition phase: The precondition phase is a sequence
of rd() operations which detect or wait for the presence of
resources in several given bags. The resources are, for instance,
values from sensors, external events, or results of service calls.
In the precondition phase:
• the output fields of a rd() operation can be used to

define input fields of subsequent rd() operations;
• a rd() is blocked until at least one resource correspond-

ing to the input pattern is available.
Performance phase: The performance phase of a LINC

rule combines the three rd(), get() and put() operations
to respectively verify that some resources (e.g. the one(s)
found in the precondition phase) are present, consume some
resources, and insert new resources.

In this phase, the operations are embedded in one or multi-
ple distributed transactions [11], executed in sequence. Each
transaction contains a set of operations that are performed
in an atomic manner. Hence, LINC guarantees that actions
belonging to the same transaction, are either all executed or
none. This ensures properties such as:
• Some conditions responsible for firing the rule (precon-

dition) are still valid at the time of the performance
phase completion (e.g. the presence sensor still detects
someone);

• All the involved bags are effectively accessible (e.g. bags
encapsulating sensors or an actuators).

B. LINC for buildings management systems

In the context of building automation, LINC provides the
PUTUTU framework [6], [7], which integrates more than
20 wireless and wired technologies commonly used in BMS
and WSAN (Wireless Sensor/Actuator Networks). PUTUTU

is formed of a set of LINC objects that encapsulate different
communication technologies. These objects inherit from three
basic objects which contain special bags to facilitate the
manipulation of information and the development of BMS
rules. The three basic objects are:
• WSAN Sensor Object: This object is used to encapsulate

sensors. Among others, it provides three bags: Sensors
to store sensor values in the form: (id, value), Type to
associate the identifier of a sensor with the type of data it
provides (i.e. (id, type)), and Location to manage the
spatial location of the sensor (i.e. (id, location)). The first
two bags are usually filled by the driver that encapsulates
the technology and the last bag is filled by the application
when the binding is done.

• WSAN Actuator Object: This object encapsulates actua-
tors. As the WSAN_sensor object it provides a bag
Type to keep information about the device type and a
bag Location to keep information about the location
of the device. It provides also the bag Command which is
used to send a command to the actuator. Then, to control
an actuator, a resource is put in the bag Command. The
resource contains the id of the actuator, the command
to apply, and possible parameters. When the resource
is added, the command is sent to the actuator through the
driver encapsulating the protocol.

• WSAN Sensor Actuator object: This object inherits from
the last two objects and it is used to encapsulate tech-
nologies that provide sensors and actuators devices.

Other components, such as BMS software tools and data-
bases, can be mapped to obtain information regarding the
building, to add information regarding new discovered devices,
and to reconfigure the devices. For instance, in [12] the soft-
ware tools of a LONWorks [13] BMS have been encapsulated
in LINC in order to automatically reconfigure the BMS.

C. User interfaces

LINC provides graphical user interfaces based on the
Model-View-Controller(MVC) [14] approach. The MVC
mechanism has been implemented above the bag paradigm.
This mechanism permits to create interfaces that represent the
real system, the user is able to interact with the real system,
and the interface is updated when there is an event from
the system. A framework that provides user interfaces has
been developed [15]. The framework permits creating web
interfaces based on the latest standards (HTML5, javascript
and CSS). A LINC user interface is provided by a LINC object
and can be accessed through any web browser. The framework
provides three main types of objects which are based on the
MVC mechanism and that are used to create user interfaces:
• Object SVGInterface: This object is able to render Scal-

able Vector Graphic (SVG) files. The SVG file is pre-
viously designed and javascript code is attached to sup-
port user interaction (e.g. click on predefined graphical
elements). Graphical elements in the SVG are modified
dynamically (e.g. change color, shape, text, hide, show,

and so on), accroding to events from the system, thanks
to the MVC mechanism.

• Object Plot: This object generates different types of plots
(as SVGs) and pies to visualize data.

• Object Layout: This object provides the layout of the
main interface. The interface contains several LINC in-
terfaces, that can be provided by different LINC objects
(SVGInterface, plot, layout, or other) and may also in-
clude external web interfaces. The layout is defined using
an HTML web-page or a SVG file previously designed.

D. Rule generation and execution

In LINC, rules can be added in a running system. The
rule is simply added as a resource in the form of (r_id,
context, rule). When the resource is added, the rule is
verified and compiled. If there is no error, the rule is executed
by a LINC object. The context is an information meaningful
for the application. It can be used to activate or deactivate a
group of rules. For instance, a building may have different
rules for different day periods, or it could have some rules for
normal functioning and others for emergency situations.

Additionally, the execution of a rule is also controlled by
resources in the RulesId bag of coordinator objects. This
bag contains tuples shaped as ”(rule id, context, status)”, the
status can be either ENABLED or DISABLED. When the
rule is compiled, a rd to this bag is added at the beginning
of the precondition and the performance of the rule, to
check if the rule is ENABLED. Adding these rd operations
permit stopping the execution of a rule by simply replacing
the resource ("rule_id", "context", "ENABLED")
to ("rule_id", "context", "DISABLED"). Indeed,
the rd operation of the rule status causes the transaction to fail.
In this way, a rule can enabled/disabled by adding a resource
on a bag. Combining this with the context information, it
is possible to enable/disable all the rules of a given context.

III. COORDINATION SCHEME EDITOR

This section describes how the CSE works. First it describes
its architecture. Then, it details how new rules can be defined
and verified using the graphical interface of the CSE. Finally,
a brief overview of the building monitoring interface provided
by the CSE is presented.

A. CSE Overview and Architecture

The architecture of the CSE is illustrated in Figure 1.
Existing communication technologies for building automation
are integrated with LINC using the PUTUTU framework [6].
In this way, heterogeneous sensors and actuators can be ac-
cessed and manipulated by the application. Besides, the system
integrates a database that keeps information regarding the
devices deployed in the building(s). This information permits
the application to associate a device identifier with the type
of information it can provide, the actions it can perform, its
location, and so on.

The user interface has been developed using the MVC
GUI framework provided by LINC. As seen in Figure 2,

HMI

LINC Core

Rules Generation

 and veri cation

Activate rule

PUTUTU

...
communication

technology_1
communication

technology_2

Data Base:

Devices

Information

communication

technology_3

Fig. 1: CSE architectures

BUILDING PLAN VIEW

ROOMS AND DEVICES

SELECTION

RULES CREATION

MENU

BUILDING

SELECTION

BLOCKLY WORKSPACE

Fig. 2: CSE Interface

the interface consists of a Layout interface (managed by a
Layout object) which contains several SVG sub-interfaces, all
provided by the CSE LINC object. The interface displays the
plan of the building and floor of interest. It lists the rooms of
the floor and displays the different devices available in every
room. Finally, through the use of a blockly-based interface,
new rules, that describe interactions between the devices, can
be defined by the user and added into the system.

B. Rule design

Rules can be defined by the user, through the creation of
Templates. Defined Templates are then activated in the
desired room(s). The blockly interface provides blocks that
can be selected by the user to create or update the template.

The user can also create a dedicated rule (without a tem-
plate) by directly choosing the devices available on a specific
room of the building. The same interface is used for dedicated
rules or templates.

1) Templates definition: A template permits the creation of
generic rules, using a set of devices, that can be activated
later on a given room or set of rooms. The template can
correspond to a scenario (i.e. a set events generating actions
for actuators), a soft-sensor (i.e. combination of real sensors
or external values), or a soft-actuator (i.e. to act on several
actuators).

Fig. 3: Scenario Template Creation Example

Template Scenario: A template scenario defines a rule that
combines several sensors and actuators. A scenario is formed
of a set of conditions, such as values of sensors, to trigger
actions to a set of actuators. Figure 3 illustrates the definition
of a template scenario that detects the presence of someone in
the room, using a presence sensor; then, it determines if the
room temperature is higher than “26 degrees Celsius”, using
a temperature sensor. If the two previous conditions are true,
the ventilation of the room is turned on.

Template Soft-Sensor: The value of a soft-sensor is a
function that combines the values of a set of real sensors.
Figure 4 shows an example of definition of a soft-sensor. In
this case, the value of the soft-sensor will be “true” if the
presence sensor value is “true” and the humidity is higher
than or equal to “50%”.

Fig. 4: Soft Sensor Template Creation Example

Template Soft-Actuator: Acting on a soft-actuator means
acting on several actuators. For instance, all the lights in a
room can be combined on a single actuator, so that turning on
this actuator will turn on all the lights in the room.

C. Template activation

Once a template is defined, the user can activate it on a
room. For that the user can choose the desired building and
floor. Then, the list of defined templates and possible rooms
will be displayed on the interface, and the user can bind a
template to a room.

Once the user submits the activation, LINC will check if
the room has all the devices needed by the template. If this
is the case, LINC will generate the appropriate rule, using the
available devices, and add the rule into the system to execute
it. Listing 1 shows the rule generated for an instance of the
template scenario shown in Figure 3. Line 1 and 7 are used to
control the rule execution. Line 2 corresponds to the first con-
dition of the template (presence == ”True”) and matches
resource ("pr_23", "True"). Line 3 and 4 correspond
to the second condition of the template (temperature > 26).

Fig. 5: Dedicated Scenario Example

Line 3 reads the resource in the sensor bag and line 4 checks
if the temperature is higher than 26. If matching resources
are found, the performance is triggered. Line 8 and 9 checks
tha the sensor values did not change and line 10 sends the
command on to the ventilation system.

1[” Ru les Id”] . rd (” r0033” , ” temp sc” , ” ENABLED”) &
[” Sensors”] . rd (” pr 23” , ” True”) &

3[” Sensors”] . rd (” t 34” , t v a l) &
INLINE ASSERT: t v a l > 26 &

5: :
{

7[” Ru les Id”] . rd (” r0033” , ” temp sc” , ” ENABLED”) ;
[” Sensors”] . rd (” pr 23” , ” True”) ;

9[” Sensors”] . rd (” t 34” , t v a l) ;
[” Ac tua to rs ”] . put(” v 42” , ” on”) ;

11} .

Listing 1: Rule generated from Template

A rule instantiated from a template can be deactivated by
removing the corresponding resource in the bag RulesId of
the coordinator object (i.e. the CSE object). It is also possible
to disable all the instantiated rules of template thanks to their
context information (e.g. "temp_sc").

D. Dedicated rules

Using the devices available in the building, it is also possible
to write rules. In this case no template is defined, the devices
are chosen from the list of available devices. The Figure 5
shows how a dedicated rule is created, available devices per
room can be chosen from the list in the right side of the
interface, then they can be used as a blockly block, in the
blockly workspace, to create the rule.

Dedicated rules are also verified before their execution, and
they can be activated/deactivated when desired.

E. Rule verification

When a template is instantiated or a rule is designed, several
verifications can be done. If an error is detected, it is shown on
the interface and the rule is not activated. Examples of errors
that can be detected are:
• values tested for the sensors are out of the sensor range;
• invalid command for an actuator;
• invalid type in free entry text (e.g. a string when expected

an integer).

Fig. 6: CSE monitoring interface

F. Monitoring

The CSE also provides an interface to monitor the rules
deployed in the buildings. The floor plan of a room is displayed
along with sensor values and actuator staus.

In addition, the monitoring interface informs when a new
device, that has not been bound, is discovered and allows the
user to bind the new device to a given location. After the
binding is done, the new devices can be used in rules. Figure 6
displays the monitoring interface where the building plan is
visualized on the right, and new discovered devices appear on
the left part of the window.

Finally, CSE offers a monitoring interface of all the rules
designed with CSE. It is possible to filter the rules based
on building, room, template generation/instantiation date, and
the status of the rule. The status of a rule can be activated,
stopped, deleted or error. Error status means that one or
more devices used by the rule became faulty. Thanks to the
template instantiation, the facility manager can then easily link
the faulty device to a template scenario. For instance, if the
presence sensor "pr_23" becomes faulty, used in Listing 1,
the rule "r0033" is impacted. This rule was generated by
instaniating the template 3 on a given room. Hence the facility
manager will know that the temperature of the room is not
properly controlled anymore.

IV. CASE STUDIES

A. Lighting system control

This use case has been implemented in the FP7 SCUBA
European project [16]. The demonstrator integrates the LON-
Works [13] Building Automation System (BAS) with exter-
nal information. LONWorks is a technology largely used to
control devices in large buildings. However, the BAS uses
only information coming from within the building. When the
building is built (or retrofitted), a LONWorks technician comes
and manually configures the connections between the sensors
(e.g. movement or buttons) and the actuators (e.g. light, shutter
or Heating Ventilation and Air Conditioning (HVAC)).

The goal of this scenario is to control the lighting system of
the building, using external information regarding the power
consumption of the building and the current energy price. The
idea is to decrease the light intensity to remove/decrease picks
of power consumption or to save money when the energy price

Light

Shutter

Plugwise

plug

Raspberry

Plugwise

dongle

EnOcean

swicth

Fig. 7: Building emulation

Fig. 8: Building Emulation Scenario

is high. Then, several lighting levels are defined, according to
the occupancy of the room and external information.

First, the LONWorks system has been integrated in
LINC [12] as well as the ligthing algorithm, running in the
cloud. Then, different devices of the building were mapped
in the CSE according to their position in the building. A soft
sensor and a soft actuator have been defined. The soft sensor
takes inputs from the lighting algorithm. The soft actuator
is the LONWorks device controlling the lights in the room.
Finally, three template scenarios were defined to adapt the
ligth intensity. The first one switches off the light when the
room is empty. The second one sets the light to 500 lux
when the room is occupied and no constraints are imposed
on energy consumption. The last one sets the light to 150 lux
if the external algorithm detects that energy price is high or
the demand is high in the building. With the CSE the facility
manager can create his own rules according to his objectives.

B. Building emulation

The second use case is a portable demonstrator, that em-
ulates a buidling containing several sensors and actuators
technologies. Figure 7 is a picture of the demonstrator. The
demonstrator integrates a lighting control device (Plugwise
plug that can be on or off), a shutter (graphical interface on a
small screen), and emulates a presence and luminosity sensor
(EnOcean switch with four buttons). The building control and
the CSE run in a Raspberry PI platform.

With CSE we designed several scenarios to adapt the light
and the shutter according to the information coming from the
EnOcean button. Figure 8, shows a rule example, where the
shutters are controlled according to sensor values (EnOcean

switch). This emulation shows that we can easily implement
rules with CSE integrating several heterogenous technologies.

V. RELATED WORK

With the increase of embedded communicating devices in
applications, such as building automation and smart homes,
visual programming frameworks are an interesting approach to
provide the user with the tools necessary to control their own
system. Such framework must deal with several challenges.
First they have to support the integration of heterogeneous
devices and software/hardware components. Then they should
allow the generation, verification, and execution of distributed
rules. And finally, they should provide an intuitive visual
programming language. Based on LINC, the CSE answers all
these challenges and provides a complete solution.

Dealing with heterogeneity in these applications has been
studied in the literature [4], [17], however, no solution inte-
grates a friendly user interface with a mechanism to coordinate
distributed devices while hiding heterogeneity. Blockly has
already been used to program wireless sensor network appli-
cations in smart environments [18]. Similar to the CSE, the
authors provide a web interface based on blockly permitting
the definition of rules. Then, the proper code is generated.
Nevertheless, this approach does not support heterogeneous
devices (i.e. only CoAP capable devices are encapsulated).
Other visual programming approaches such as ClickScript [19]
and Labview [20] require some programming skills and are not
suited for non-experienced users.

VI. CONCLUSION

This paper presented the Coordination Scheme Editor
(CSE). CSE is a web-based tool used to design, monitor and
control building automation rules. CSE relies on the LINC
middleware and rules can thus be designed with heterogeneous
hardware and software technologies.

CSE offers a visual programming language based on the
latest web standard (HTML5, SVG and javacript) and Blockly.
This provides an easy to use HMI than can be used by
facility manager, building owners or event building occupants.
CSE interface allows to design template rules that can be
instantiated across buildings from a single web interface. At
design and instantiation time, rules are verified to check for
instance that only valid commands are sent to actuators. CSE
also provides a monitoring interface that can display the status
of all the rules. The monitoring interface also shows all the
rules and templates impacted by a faulty sensor.

Future work will focus on providing more advanced verifi-
cation with CSE. Indeed currently CSE only verifies that the
generated rules are correct. However there is no verification on
the potential conflicts between rules. A typical conflict is when
two rules can be activated at the same time (i.e. same triggering
condition) and they have different effect in the system (e.g.
start vs. stop the ventilation).

ACKNOWLEDGMENT

This work has funded by the Artemis ARROWHEAD (grant
332987) and the H2020 TOPAs project (grant 676760).

REFERENCES

[1] W. Kastner, G. Neugschwandtner, S. Soucek, and H. M. Newman,
“Communication systems for building automation and control,” Pro-
ceedings of the IEEE, vol. 93, no. 6, pp. 1178–1203, June 2005.

[2] E. Stuart, C. A. Goldman, P. Larsen, and D. Gilligan, “The us esco
industry: recent trends, current size and remaining market potential,”
Lawrence Berkeley National Laboratory, American Council for an
Energy-Efficient Economy Proceedings, Chicago, Illinois, 2014.

[3] D. Bruckner, J. Haase, P. Palensky, and G. Zucker, “Latest trends in
integrating building automation and smart grids,” in IECON 2012 - 38th
Annual Conference on IEEE Industrial Electronics Society, Oct 2012,
pp. 6285–6290.

[4] A. Veichtlbauer and T. Pfeiffenberger, “Generic middleware for user-
friendly control systems in home and building automation,” International
Journal on Advances in Networks and Services Volume 6, Number 1 &
2, 2013, 2013.

[5] M. Louvel and F. Pacull, “Linc: A compact yet powerful coordination
environment,” in Coordination Models and Languages. Springer, 2014,
pp. 83–98.

[6] F. Pacull et al., “Self-organisation for building automation systems:
Middleware linc as an integration tool,” in IECON 2013-39th Annual
Conference on IEEE Industrial Electronics Society. Vienna, Austria:
IEEE, 2013, pp. 7726–7732.

[7] L.-F. Ducreux, C. Guyon-Gardeux, S. Lesecq, F. Pacull, and S. R. Thior,
“Resource-based middleware in the context of heterogeneous building
automation systems,” in IECON 2012-38th Annual Conference on IEEE
Industrial Electronics Society. Montreal, Canada: IEEE, 2012, pp.
4847–4852.

[8] “Blockly: A visual programming editor,” https://developers.google.com/
blockly/, accessed: 2016-04-15.

[9] N. Carriero and D. Gelernter, “Linda in context,” Commun. ACM,
vol. 32, pp. 444–458, 1989.

[10] T. Cooper and N. Wogrin, Rule-based Programming with OPS5. San
Fransisco: Morgan Kaufmann, 1988, vol. 988.

[11] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control
and recovery in database systems. New York: Addison-wesley, 1987,
vol. 370.

[12] L.-F. Ducreux, M. Louvel, F. Pacull, S.-R. Thior, M.-I. Vergara-Gallego,
and O. Yaakoubi, “Dynamic reconfiguration of building automation
systems with linc,” Sensors & Transducers, vol. 185, no. 2, p. 68, 2015.

[13] U. Ryssel, H. Dibowski, H. Frank, and K. Kabitzsch, IEHandbook
LONWorks. Berlin: Vde-Verlag, 2010.

[14] G. E. Krasner and S. T. Pope, “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,” Journal
of Object Oriented Programming, vol. 1, pp. 26–49, 1988.

[15] L.-F. Ducreux, C. Guyon-Gardeux, M. Louvel, F. Pacull, S. R. Thior,
and M. I. Vergara-Gallego, “Rapid prototyping of complete systems,
the case study of a smart parking,” in 2015 International Symposium on
Rapid System Prototyping (RSP). IEEE, 2015, pp. 133–139.

[16] “SCUBA: Self-Organazing, Co-operative, and robUst Building Automa-
tion,” http://www.aws.cit.ie/scuba//, accessed: 2016-04-21.

[17] A. Fernbach, W. Granzer, and W. Kastner, “Interoperability at the
management level of building automation systems: A case study for
bacnet and opc ua,” in Emerging Technologies Factory Automation
(ETFA), 2011 IEEE 16th Conference on, Sept 2011, pp. 1–8.

[18] M. A. Serna, C. J. Sreenan, and S. Fedor, “A visual programming
framework for wireless sensor networks in smart home applications,”
in Tenth IEEE International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, ISSNIP 2015, Singapore, April
7-9, 2015, 2015, pp. 1–6.

[19] L. Mainetti et al., “A novel architecture enabling the visual implementa-
tion of web of things applications,” in 21st International Conference on
Software, Telecommunications and Computer Networks, SoftCOM 2013,
Split-Primosten, Croatia, September 18-20, 2013, 2013, pp. 1–7.

[20] G. W. Johnson, LabVIEW Graphical Programming: Practical Applica-
tions in Instrumentation and Control, 2nd ed. McGraw-Hill School
Education Group, 1997.

