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In an electrical circuit, the output impedance of a source must be matched to the input impedance of the load in order to maximize power transfer [START_REF] Horowitz | The Art of Electronics[END_REF]. In RF circuits, where 50 Ω matching is standard, it is difficult to detect small signals emitted from high output impedance sources. For quantum conductors, whose output impedance is typically on the order of the resistance quantum, R K = h/e 2 25.8 kΩ, matching is especially difficult.

Developing techniques to solve this mismatch is technologically important since high output impedance quantum circuits are promising as ultra sensitive detectors of charge, e.g. Single Electron Transistors (SETs) [START_REF] Fulton | [END_REF][3][4], or magnetic flux, e.g. Superconducting Quantum Interference Proximity Transistors (SquipTs) [5,6]. In both cases, their high output impedance (∼ 100 kΩ) and a typical 100 pF stray capacitance to ground of the wiring limit the detection bandwidth from dc to a few kHz. An efficient technique used to overcome this limitation, originally developed to efficiently measure SETs [3], consists in embedding the sensor in a RF resonant circuit, which allows matching its high output impedance to 50 Ω at a chosen frequency. Resonant RF circuits can be made using discrete lumped elements externally connected to the chip [3,7], or defined on-chip [8] with transmission lines terminated by an adequate impedance to ground, e.g. a stub-shunted geometry [9,10]. On-chip impedance matching has the advantage of reducing the stray capacitance, allowing to reach detection bandwidths in the 10 MHz range [8][9][10]. Here we report on a technique which offers matching to high detection impedances (demonstrated up to 35 kΩ) at a tunable frequency in the few GHz range and with bandwidth above 100 MHz.

As shown in Fig. 1(a), we have developed λ/4 co-planar, resonators [START_REF] Pozar | Microwave Engineering[END_REF] whose inner conductor contains a high kinetic inductance metamaterial [START_REF] Castellanos-Beltran | [END_REF], namely a series array of superconducting quantum interference devices (SQUIDs). This increases the characteristic impedance of the resonator [13,14] and the resulting detection impedance. Using SQUIDs instead of plain Josephson junctions allows tuning in-situ the kinetic inductance by threading a magnetic flux in the SQUID loops. The resonator matches a highly resistive normal tunnel junction with a tunnel resistance R T = 230 kΩ to a 50 Ω measurement line. We characterize the resonator by detecting the well known shot-noise produced when a dc voltage bias is applied to the junction.

A Z 0 = 50Ω load terminating a section of length l of a transmission line with characteristic impedance Z 1 and phase velocity c is transformed into an impedance depending on the frequency ν [START_REF] Pozar | Microwave Engineering[END_REF]:

Z(ν) = Z 1 Z 0 + jZ 1 tan(2πνl/c) Z 1 + jZ 0 tan(2πνl/c) , (1) 
The impedance is real and equal to Z 2 1 /Z 0 at resonant frequencies ν n = (2n + 1)c/4l, with n integer, thus transforming the load impedance Z 0 into a higher impedance when Z 1 > Z 0 . For n = 0, l is equal to a quarter of a wavelength, hence the name of quarter wavelength transformer. Assuming Z 1 Z 0 , the real part of the impedance reads in the

vicinity of ν 0 : Re[Z(ν)] ∼ Z 2 1 Z 0 1 + πZ 1 (ν -ν 0 ) 2Z 0 ν 0 2 -1
. It is equivalent to a damped LC circuit with a resonant frequency ν 0 = 1/(2π √ LC), impedance Z Res = L/C = 4Z 1 /π. The external quality factor, due to dissipation in the matched load Z 0 , is

Q = π 4 Z 1
Z 0 . Reaching an impedance Z(ν 0 ) R K requires a transmission line with Z 1 1 kΩ. This is well beyond the values attainable with metallic co-planar transmission lines, for which Z 1 only depends logarithmically on their transverse dimensions, but is achievable with high kinetic inductance lines.

A balanced SQUID [15] consists in two identical parallel Josephson junctions closing a superconducting loop. When the inductance of the loop connecting the Josephson junctions is negligible, as here, its inductance is L J (φ) = φ 0 /I C (φ) with φ 0 = /2e , φ is the flux applied through the SQUID, and I C the critical current of the SQUID. I C is given by the Ambegaokar-Baratoff formula [16], I C = π∆| cos(φ/2φ 0 )| eR N with R N is the tunnel resistance of each junction. This expression for the Josephson inductance is valid provided that i) the characteristic energies hν and k B T respectively associated to the frequency and the temperature are much smaller than the superconducting gap, ii) the phase across the junction can be considered as a classical quantity [17], and iii) is much smaller than 1, which implies that the current going through the SQUID is much smaller than I C . To evaluate the lineic impedance Z of the inner conductor of our transmission line, one must take into account the capacitance C J of the tunnel junction, yielding Z = i2πνL J (φ)/a(1 -ν 2 /ν 2 P ), with ν P the Josephson plasma frequency [18] 

ν P = 1/[2π(L J C J ) 1/2 ]
, and a is the distance between neighbouring SQUIDs. Below ν P , the inner conductor thus presents an effective lineic inductance

L = L J (φ)/a(1 -ν 2 /ν 2 P ). (2) 
The characteristic impedance of the SQUID transmission line is then given by

Z 1 = L/C,
where C is the lineic capacitance to ground of the SQUID array, evaluated using standard electromagnetic simulations. Note that at frequencies much lower than ν P , L is independent of frequency, so that our device can be considered as a standard quarter wavelength impedance transformer, albeit with high lineic inductance. Finally, we would like to point that this technique cannot provide characteristic impedances Z 1 R Q , since quantum phase slips then drive the array into an insulating state [19]. The feed this line is connected to a synthesizer with a level ∼ 1 dBm.

By setting the device resonance frequency below 4 GHz, the entire power incoming from the feed line is reflected by the device, which allows to calibrate the detection chain in the 4-7 GHz frequency range used in the experiments described below. One has to correct for the double passage through the bias Tee and the 10 cm coaxial cable connecting it to the sample, both independently calibrated. With this calibration in hand, we characterize the resonator with the on-chip radiation source provided by the electronic shot-noise of the tunnel junction. Indeed, at large dc bias voltage eV k B T, hν, a biased tunnel junction is a source of white current noise with a power spectral density S I = 2eV /R T . The power density delivered to the 50 Ω chain reads

P (ν) = 2eV Re[Z(ν)]R T |Z(ν) + R T | 2 2eV Re[Z(ν)]R T (Re[Z(ν)] + R T ) 2 , (3) 
where the last approximation holds if Im[Z(ν)] R T . This approximation, which allows to extract Re[Z(ν)] from P (ν), results in a less than 2% error, smaller than the ∼ 1 -2 dB uncertainty in the gain calibration.

The impedance Re[Z(ν, φ)] extracted in this manner is shown in the right panel of Fig. 2, next to the values predicted without fitting parameter. Besides a spurious resonance at 5.8 GHz, the data mostly present the expected resonance at frequency ν 0 | cos(φ/2φ 0 )| 0.5

with ν 0 = 6 GHz, and reach detection impedances always above 10 kΩ.

In order to analyze more quantitatively the impedance matching capability of our device and its comparison to the model, several curves obtained for distinct external magnetic fields are shown in Fig. 3 and compared to the predictions. These data show a variation of the bandwidth in the 100 to 240 MHz range, and of the detection impedance in the 15 to 35 kΩ range, as predicted. The 15% agreement obtained for the impedance is compatible with our gain calibration uncertainty 1 -2 dB.

Beyond an increased coupling to high output impedance sensors, the resonators developed here enrich the toolbox of quantum electrical engineering, in particular for circuit cavity quantum electrodynamics. Indeed, higher characteristic impedances would increase the coupling of double quantum dot qubits to the microwave cavity in which they are embedded [26,27], helping to reach the strong coupling regime. They could also be used to probe Kondo physics with microwave photons [28,29].

Being based on well known technology, it is fairly simple to predict the response of our devices as long as their Josephson junctions remain in the linear regime, which implies that the current must be kept well below their critical current. Note that when approaching the Josephson plasma frequency (∼ 25 GHz for aluminum based junctions), this strongly reduces the corresponding maximum microwave power. Above the Josephson plasma frequency, the capacitance of the junctions shunts their kinetic inductance, and the basic mechanism of our tecnhique breaks down. This physical limit can however be easily pushed up by using higher gap material, e.g. niobium nitride for which plasma frequencies above a few 100 GHz have been demonstrated [30,31]. Other schemes could also be implemented to bypass this limit, such as using thin films of highly disordered superconductors [32] which have a large kinetic inductance, or superconductor-normal metal-superconductor weak links [33] which furthermore have a negligible inter-electrode capacitance.

In conclusion, we have demonstrated impedance matching to 50 Ω of a high impedance component using a microwave resonator embedding a Josephson metamaterial that yields a large resonator impedance. The matching frequency is tunable in the 4 and 6 GHz range, with the bandwidth varying from ∼ 100 to 240 MHz. This impedance matching has been characterized using an on-chip white noise source. This method offers interesting perspectives for quantum electrical engineering at even larger frequency and impedance values. 

Figure 1 (

 1 Figure1(a) shows a picture of the measured co-planar resonator and its equivalent electric circuit scheme. From the left to the right a 50 Ω line is followed by a 350 µm long Josephson metamaterial line containing lithographically identical and evenly spaced SQUIDs with a 5 µm period. SQUIDs where fabricated following the process described in Ref.[20]: the SQUIDs (see the top inset) are obtained by double angle deposition of (20/40 nm) thin aluminum electrodes, with a 20 oxydation of the first electrode at 400 mBar of a (85% O 2 /15% Ar) mixture. Before the evaporation, the substrate was cleaned by rinsing in ethanol and Reactive Ion Etching in an oxygen plasma[START_REF] Ref | we performed Reactive Ion Etching under an oxygen pressure of 30 mBar and 10 W RF power, during 15 seconds[END_REF]. The barriers have an area of 0.5 µm 2 each resulting in a room temperature tunnel resistance R N = 720 Ω. To assess that the SQUIDs in the array are identical, we have perfomed reproducibility tests, yielding constant values of R N (within a few %) over millimetric distances. Assuming a superconducting gap ∆ = 180 µeV and a 17% increase of the tunnel resistance between room temperature and base temperature[START_REF] Gloos | [END_REF], one obtains a zero flux critical current for the SQUIDs I C = 671 nA, corresponding to L J (φ = 0) = 0.49 nH. This corresponds to an effective lineic inductance L 100 µH.m -1 at zero magnetic flux and frequency much lower than ν P . Assuming a capacitance for the junctions of the order of 80 fF/µm 2 yields ν P 25 GHz. Note that our simple fabrication mask (see Top Panel in Fig. 1(a)) produces 10 times bigger Josephson junction in between adjacent SQUIDs, resulting in an additional ∼ L 10 µH.m -1 lineic inductance. The ∼ L 1 µH.m -1 electromagnetic inductance associated to our geometry is negligible. With the designed lineic capacitance C = 84.3 pF.m -1 , the length of the resonator sets the first resonance at ν 0 7 GHz with an impedance Z Res 1.5 kΩ and quality factor Q 18. The frequency ν 0 being small enough compared to ν P , the frequency dependence of L given by Eq.2 is almost negligible. Sweeping the field then modifies L ∝ | cos(φ/2φ 0 )| -1 , ν 0 ∝ | cos(φ/2φ 0 )| 0.5 , the impedance Z Res ∝ | cos(φ/2φ 0 )| -0.5 and the quality factor Q ∝ | cos(φ/2φ 0 )| -0.5 . The 0.35 mT field period is estimated from the 3 µm 2 SQUID area. The 100 × 100 nm 2 normal tunnel junction (see Fig. 1(a) bottom inset) is fabricated
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 1 FIG. 1. (Color online) Description of the device and characterization circuit. (a) Optical microscope image of the λ/4 co-planar resonator based on a Josephson metamaterial, on top of the scheme of its equivalent electric circuit. Top inset: scanning electron microscope (SEM) image of few SQUIDs from the Josephson metamaterial. Bottom inset: SEM image of the high resistance normal tunnel junction terminating the resonator. (b) Electric circuit used to characterize the resonator: The sample shown in (a) is connected to the circuit with a bias tee. The inductive port is used to dc bias the sample and to measure the normal state resistance of the tunnel junction in a three point configuration. The capacitive port is used to amplify, filter and measure the fraction of the RF power emitted by the tunnel junction which is transmitted by the resonator.This quantity depends only on the dc bias, the detection impedance provided by the resonator, the output impedance of the tunnel junction and the gain of the detection chain. An additional RF line, heavily attenuated and connected to the circuit via a -20dB directional coupler, is used to calibrate the gain of the detection chain. For this calibration, the resonant frequency of the resonator is tuned out of the detection bandwidth so that the incoming radiation is fully reflected by the sample.
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 2 FIG. 2. (Color online) Left pannel: predicted real part of the detection impedance Re[Z(ν, φ)] obtained by terminating the resonator with a 50 Ω load as a function of frequency ν and the externally applied magnetic flux φ. Right pannel: Re[Z(ν, φ)] obtained experimentally. The dc biased tunnel junction is used as an on-chip calibrated RF source feeding the resonator with white current noise. The fraction of RF power transmitted by the resonator depends only on the dc bias, the detection impedance provided by the resonator, the output impedance of the tunnel junction and the gain of the detection chain allowing to extract Re[Z(ν, φ)] with Eq. (3).
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 3 FIG. 3. (Color online) Comparison between the measured (full lines) and the predicted (dotted lines) Re[Z det (ν, φ)] for several values of the externally applied magnetic flux φ = (0, 0.16, 0.23, 0.28, 0.3, 0.33, 0.35) from the left to the right.