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Abstract. We show, using covariant Lyapunov vectors in addition to standard

Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic

systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors,

they act collectively on the trajectory and hence characterize the instability of its

collective dynamics. We further develop, for globally-coupled systems, a connection

between these collective modes and the Lyapunov modes in the corresponding Perron-

Frobenius equation. We thereby address the fundamental question of the effective

dimension of collective dynamics and discuss the extensivity of chaos in presence of

collective dynamics.
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1. Introduction

Emergence of collective behavior in large dynamical systems is a striking example

of situations where microscopic interactions lead to non-trivial time-dependent

macroscopic behavior, in contrast with equilibrium systems: a collection of dynamical

units is in general not self-averaging, and hence macroscopic observables may show a

variety of temporal evolutions even in the presence of microscopic chaos and in the

absence of synchronization [1–4]. Such non-trivial collective behavior (NTCB) is now

known to be quite generic, being observed whether interactions are local or global,

time variable is discrete or continuous [5–8], and evolution is deterministic or noisy

[9–11]. One of the most interesting features of NTCB is that microscopic chaos can

coexist with macroscopic evolutions of different instability – periodic, quasi-periodic,

and even chaotic in the case of global coupling [4, 12]. It is therefore natural to ask

whether emerging macroscopic behavior can be captured by some of the Lyapunov

exponents (LEs), which measure the infinitesimal rates of exponential divergence of

nearby trajectories in phase space [13]. If such collective Lyapunov modes exist, they

should shed light not only on how macroscopic and microscopic instabilities coexist in

http://arxiv.org/abs/1207.5571v2
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the single Lyapunov spectrum of the system, but also on a number of fundamental

questions. For instance, the set of the collective LEs would give the effective dimension

of the collective behavior and allow us to study its analogy to small dynamical systems,

which had only been inferred so far from the observed dynamics. Furthermore, collective

Lyapunov modes also call for redefining extensivity of chaos [14], which is usually taken

to be the existence of a well-defined LE density per unit volume, numerically examined

by measuring Lyapunov spectra at different system sizes and collapsing them after

rescaling of the exponent index by the system size. Since NTCB is well-defined in

the infinite-size limit, collective LEs characterizing NTCB are expected to be intensive,

so that the above definition of the extensivity should not hold as it stands. Indeed, in

contrast to spatiotemporal chaos in one spatial dimension, for which extensivity has been

numerically shown in various generic models (see, e.g., [15–17]), in higher dimensions

where NTCB can take place, only few studies could suggest extensivity [18, 19] within

rather narrow ranges of system sizes.

Given this importance, a few earlier studies attempted to capture collective

Lyapunov modes, without, however, reaching a definitive answer. Shibata and Kaneko

[20] and, independently, Cencini et al. [21] argued that one needs to study finite-

amplitude perturbations to quantify the instability of collective chaos in globally-coupled

maps (see [22] for a review on such finite-size LEs). Showing that macroscopic instability

is captured when the amplitude of the perturbation exceeds O(1/
√
N), where N is the

system size, they implied that the standard LEs for infinitesimal perturbations do not

reflect the collective dynamics. On the other hand, Nakagawa and Kuramoto studied

a collective chaos regime of globally-coupled limit-cycle oscillators and showed that

Lyapunov spectra at different system sizes overlapped onto each other, if a few LEs at

both ends of the spectra were taken away before the spectra were rescaled by the system

size [7]. They speculated that these LEs are associated with the collective dynamics,

but they had to find such collective LEs by trial and error and, more importantly, could

not provide any criterion to define them. Indeed, we and coworkers have recently shown

that, for globally-coupled systems, in general, there are subextensive bands of LEs that

should be scaled by logN instead of N at both ends of the spectrum, which sandwich the

extensive LEs in between [23]. Therefore, Nakagawa and Kuramoto may have actually

taken away such subextensive LEs from the spectrum to obtain the remaining branch of

extensive LEs, within the system sizes they studied, instead of truly collective Lyapunov

modes.

This frustrating situation was overcome when Ginelli et al. proposed an efficient

algorithm to compute covariant Lyapunov vectors (CLVs) in large dynamical systems

[24, 25]. The CLVs are the vectors spanning the subspaces of the Oseledec decomposition

of tangent space [13]. Each LE λ(j) has its associated CLV δx(j) at any point on the

trajectory x(t)‡, which provides the intrinsic direction of perturbation growing at the

rate λ(j). Therefore, the vector components of the CLVs indicate which dynamical units

‡ Similarly, in this article, δ(·)(j) denotes the infinitesimal change in the quantity (·) caused by the

infinitesimal perturbation δx(j) to the trajectory x along the jth CLV.
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constitute the corresponding Lyapunov modes. Using this property of the CLVs, we, in

our preceding work [26], reported numerical evidence that collective behavior of large

dynamical systems is indeed encoded in their Lyapunov spectrum: while most modes

are localized on a few degrees of freedom, thus corresponding to microscopic fluctuations

of the system, there exist some collective modes characterized by the delocalized CLVs,

acting therefore collectively on the dynamical units. The delocalization of the CLVs is

quantified by the mean value of the inverse participation ratio (IPR) [27]

Y
(j)
2 ≡

〈

∑

i

|δx(j)
i |4

〉

t
, (1)

where δx
(j)
i is the ith component of the CLV δx(j) normalized with the L2-norm

∑

i |δx
(j)
i |2 = 1 and the brackets 〈· · ·〉t indicate the average taken along the trajectory.

Given that Y2 provides the inverse of the average number of degrees of freedom

participating in the mode δx(j), we expect Y2 ∼ 1/N for the collective modes, as the

number of the participating components increases with the system size N , while Y2 stays

constant for large N for the remaining microscopic modes. This is our definition of the

collective and microscopic modes, or the delocalized and localized modes, and provides

a clear criterion for distinguishing them. In this way we indeed identified a few collective

modes in collective chaos exhibited by globally-coupled limit-cycle oscillators [26]. We

also showed, for globally-coupled maps with additive noise, that the collective modes

in the standard Lyapunov analysis also arise as Lyapunov modes for the corresponding

Perron-Frobenius dynamics, further justifying our definition of the collective modes.

This approach is further developed in the present article. After providing a detailed

description on the detection of the collective modes in the limit-cycle oscillators, we shall

study the role of each collective mode in the observed macroscopic dynamics (Section 2).

Then, taking another, rather simple example of collective chaos in globally-coupled noisy

maps, we show a quantitative correspondence between collective modes and Perron-

Frobenius Lyapunov modes and discuss the generality of the role of the collective modes

found in the preceding section (Section 3). On this basis, in Section 4, we study a regime

of truly non-trivial collective chaos and show the interplay of macroscopic instabilities in

this NTCB regime. We shall deal in particular with the effective dimension of collective

chaos, revisiting earlier work by Shibata et al. [9] which concluded that the dimension

D increases as D ∼ − log σ with decreasing noise amplitude σ and hence the dimension

is infinite in the noiseless limit σ → 0. Here, we show how this dimension is related to

the collective dynamics and to the macroscopic instabilities, and discuss the generality

of our results. Section 5 is devoted to discussions and concluding remarks.

2. Existence of collective Lyapunov modes

We first demonstrate that the standard Lyapunov spectrum does contain collective

Lyapunov modes, without the need to invoke finite-amplitude perturbations. Following

Nakagawa and Kuramoto’s work [6, 7] and our preceding letter [26], we consider here N
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Figure 1. Collective chaos in N = 107 globally-coupled limit-cycle oscillators (2). (a)

Series of snapshots of the oscillators (dots) in the complex plane, taken at a fixed time

interval 0.8. The red circles indicate the position of the global field 〈W 〉. (b) Typical

instantaneous distribution for the angular position θi ≡ argWi of the oscillators, here

corresponding to the first snapshot in the panel (a). (c) Instantaneous distribution of

the oscillators in the complex plane, at a moment near folding of the supporting line.

The bottom panel shows the positions of the oscillators within the region indicated in

the main panel. (d) Time series of the modulus of the global field, |〈W 〉|.

globally-coupled limit-cycle oscillators

Ẇi = Wi − (1 + ic2)|Wi|2Wi +K(1 + ic1)(〈W 〉 −Wi), (2)

with i = 1, 2, · · · , N , complex variables Wi, and the global field 〈W 〉 ≡ 1
N

∑

i Wi. The

parameter values are set to be c1 = −2.0, c2 = 3.0, K = 0.47, which correspond to

a regime of collective chaos [6, 7, 26]. We numerically integrate Equation (2) by the

fourth-order Runge-Kutta method with time step 0.1 and compute LEs and CLVs using

Ginelli et al.’s algorithm [24, 25]. Most data presented in this section are recorded over

a period longer than 105 after a transient of length 104 or more is discarded. When full

Lyapunov spectrum is computed, we allow a transient period of 100N or more for the

convergence of the Lyapunov exponents and vectors.

Collective chaos exhibited by these limit-cycle oscillators is shown in Figure 1.

Because of the coupling to the global field, individual oscillators do not follow the

limit-cycle oscillation but rotate rather irregularly with varying amplitudes and angular

velocities, leading to stretching and folding of the supporting line (Figure 1(a)). This

makes the local density of oscillators quite intricate with many peaks and fractal-

like multilayer structure (Figure 1(b,c)). This imbalanced, fluctuating distribution of

the oscillators drives irregular behavior of the global field 〈W 〉 and other macroscopic
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Figure 2. Spectra of LEs λ(j) against the rescaled index h ≡ (j − 0.5)/N (a), those

of IPRs Y
(j)
2 (b), and the parametric plots (λ(j), Y

(j)
2 ) (c), measured at different sizes

N for the globally-coupled limit-cycle oscillators (2). The arrows indicate increasing

N . The insets show close-ups of the positive branch (λ(j) > 0) of the spectra.

variables, which, in the studied regime, takes the form of a weak chaotic modulation of

a quasiperiodic signal as seen in the time series of the modulus, |〈W 〉| (Figure 1(d)).

This evolution resembles chaos emerging from a quasiperiodic regime in small systems

such as in two coupled nonlinear oscillators with incommensurate frequencies [28].

The values of the LEs λ(j) and the IPRs Y
(j)
2 in this system are shown in Figure

2(a,b) against the rescaled index h ≡ (j − 0.5)/N . Reflecting the LEs of an uncoupled

limit-cycle oscillator, one zero and one negative, the Lyapunov spectra of the coupled

system have two branches, near 0.05 and −1.25 in this case (Figure 2(a)). The spectra at

different sizes, however, do not collapse onto a single curve, but show rather strong size

dependence (inset). This indicates that the system is not entirely extensive as expected

for globally-coupled systems [23]. The spectra of the IPRs also tend to stay around

some constant values within the two branches, indicating that most CLVs are localized

according to our definition, but systematic drifts are also visible near both ends of the

two branches (Figure 2(b)). The situation is better presented when the IPRs Y
(j)
2 are

plotted against the corresponding LEs λ(j), as shown in Figure 2(c). Here we clearly

see that Y
(j)
2 decreases with increasing N at both ends of the spectra as well as near

λ(j) = 0, while most Lyapunov modes are concentrated in the regions where the values

of Y
(j)
2 hardly depend on N . This suggests that the Lyapunov spectra may contain

delocalized, collective modes near the largest, smallest, and zero LEs, but not elsewhere

for the system sizes studied here.
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Figure 3. Collective modes at λ(j) = 0 in globally-coupled limit-cycle oscillators

(2). (a) LEs λ(j) and IPRs Y
(j)
2 as functions of the system size N . The dashed line

indicates Y2 ∼ 1/N . The two neutral modes (solid symbols) are delocalized and thus

collective, whereas other modes nearby (open symbols) are microscopic. (b) Time-

series of the modulus and the argument of the global field 〈W 〉 at N = 256, for

the unperturbed trajectory W (black solid line) as well as for the “perturbed ones”

W + c1δW
(zero1) (red dashed line) and W + c2δW

(zero2) (greed dot-dashed line) with

arbitrary constants c1 and c2. Here the former and the latter shift the phase for |〈W 〉|
and arg〈W 〉, respectively, though in general these degenerated Lyapunov modes are

arbitrary superpositions of the two fundamental perturbations.

Now we demonstrate that there indeed exist a few collective modes in these regions.

Concerning the region near λ(j) = 0, the system has two neutral modes associated with

invariance under time translation and angular rotation. They are delocalized and thus

collective as their Y
(j)
2 decreases as 1/N (solid symbols in Figure 3(a)). Indeed, these

collective modes shift the two phases of the quasiperiodic collective dynamics under

the chaotic modulation, as shown in time series of the global field for the unperturbed

trajectory W and for those shifted in the direction of the two corresponding CLVs,

δW (zero1) and δW (zero2) (Figure 3(b)). In contrast, other nearby LEs change their

values smoothly as N is varied, some of them crossing the zero line (open symbols in

Figure 3(a)). The IPRs of these modes are essentially independent of N , except when

their LEs become accidentally close to zero, in which case the numerical scheme cannot

resolve well the degeneracy with the collective zero modes. This clearly indicates that

these near-zero modes are microscopic.

For the negative end of the spectrum, Figure 4(a) shows the values of the LEs λ(j)

and the IPRs Y
(j)
2 as functions of the system size N for the last four modes. Although

their IPR values decrease more slowly than 1/N for small system sizes, when N is
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Figure 4. First and last Lyapunov modes in globally-coupled limit-cycle oscillators

(2). (a,b) LEs λ(j) and IPRs Y
(j)
2 against the system size N , for the last four

modes (a) and the first three modes (b). The dashed line in the panel (a) indicates

Y2 ∼ 1/N . (c) Histogram of the instantaneous IPR y2 for the first mode, measured

at N = 512, 2048, · · · , 131072, 106, 107, 5 × 107 (increasing as indicated by the arrow).

The abscissa is multiplied by N in the inset. (d) Finite-size LE λ(δ) as a function of

the amplitude δ of the perturbation. The dashed line shows the value of the largest

LE λ(1) at N = 131072.

increased further§, the last two modes become completely delocalized, i.e., Y
(j)
2 ∼ 1/N ,

whereas the IPRs of the other modes decrease more and more slowly towards some

asymptotic non-zero values. Therefore, only the last two Lyapunov modes are collective

here. The situation is similar at the positive end of the spectrum (Figure 4(b)), except

that one needs to explore extremely large system sizes: the IPR of the first mode starts

to decrease faster and faster only above N = 106, and is still far from the 1/N decay

at N = 5 × 107. However, the histogram of the instantaneous values of the IPR,

y
(1)
2 ≡

∑

i |δW
(1)
i |4, reveals that the distribution function actually scales as 1/N , except

the upper bound which is fixed at y
(1)
2 = 1 by definition (Figure 4(c)). This indicates the

asymptotic scaling of Y
(1)
2 ∼ 1/N and therefore the first Lyapunov mode is collective.

This conclusion can also be confirmed by using finite-amplitude perturbations. Shibata

and Kaneko [20] and Cencini et al. [21] showed, somewhat speculatively, that the mean

expansion rate λ(δ) of perturbations of size δ, called the finite-size LE [22], are equal to

§ For globally-coupled systems, one can explicitly write down the backward evolution for tangent space

dynamics, using stored information of trajectory. This allows us to compute LEs (and CLVs) from

both ends of the spectrum, so that we can study the last Lyapunov modes even at very large system

sizes.
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Figure 5. Role of the collective modes with positive and negative LEs (j = 1 and

j = 2N − 1 and 2N , respectively) in the globally-coupled limit-cycle oscillators (2) at

N = 512. (a) Instantaneous profile for the density ρ(θ) of the oscillators (upper panel)

and the shift in their angular positions induced by the collective Lyapunov modes,

δ(argWi)
(j) (lower panel). The vertical dotted lines indicate the regions of the five

main peaks in the density profile. The local density ρ(θi) is measured from the number

of oscillators within the range [θi−π/20, θi+π/20]. The profile of δ(argWi)
(1) is locally

averaged with the same window, while the raw data are shown for δ(argWi)
(2N−1) and

δ(argWi)
(2N). (b,c) Schematic drawings illustrating the role of the positive (b) and

negative (c) collective modes.

the largest LE λ(1) for δ ≪ δc ∼ 1/N and to the largest expansion rate of the collective

dynamics for δ ≫ δc. In our case, since the first mode is collective, the finite-size LE

λ(δ) exhibits a single plateau at the value of the first LE λ(1) regardless of the system

size N (Figure 4(d)).

The role of these three collective Lyapunov modes can also be studied from the

structure of the corresponding CLVs. Although, strictly, the full structure of the CLVs

as well as of the oscillator density in the complex plane should be considered, we have

confirmed that the components of the CLVs for the collective modes are mostly along

the supporting line of the oscillators, so that the vector structures can be faithfully

represented on the angular coordinates, θi ≡ argWi. Figure 5(a) shows an instantaneous

profile of the oscillator density ρ(θ) projected on the angular coordinates θi (upper panel)

and the shift in the angular positions induced by each of the three collective modes

with positive and negative LEs, δ(argWi)
(j) ≡ limǫ→0[arg(Wi + ǫδW

(j)
i ) − argWi]/ǫ =

Im(δW
(j)
i /W

(j)
i ) (lower panel). One can see that the shift due to the positive collective

mode, δ(argWi)
(1) (red solid line), is varying along the angular coordinates, except in

the peaked regions of the oscillator density (indicated by vertical dotted lines) where

the values of δ(argWi)
(1) stay practically constant. This indicates that the positive
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collective mode moves these peaks in the density profile, almost uniformly, with different

amplitudes (Figure 5(b)). Since such a shift makes a direct perturbation to the global

field 〈W 〉, which behaves chaotically in the present regime, this mode is naturally

assigned with the positive LE λ(1). By contrast, for the two negative collective modes,

the angular shifts δ(argWi)
(2N−1) and δ(argWi)

(2N) vary widely and often change their

sign within the peaked regions (green dashed and blue dot-dashed lines). The two tails

of the peaks are then moved in the opposite directions, and hence the peak widths

are expanded or narrowed (Figure 5(c)). Since these modes have negative LEs, such

perturbations leading to changes in the peak widths decay exponentially fast. In other

words, these negative collective modes tend to adjust the width of the peaks, maintaining

local synchronization of the oscillators. The two neutral collective modes have already

been studied in Figure 3(b) and turned out to shift the two fundamental phases of the

remaining quasiperiodic behavior.

To summarize, we have found one positive, two neutral, and two negative collective

modes, at least up to the largest sizes we studied. This set of the collective LEs

is analogous to small dynamical systems exhibiting bifurcation from quasiperiodic to

chaotic behavior [28], but here the associated CLVs act on collections of oscillators,

controlling dynamics of peaks in the density profile. We have shown, therefore, that

collective Lyapunov modes do exist within the framework of the standard Lyapunov

analysis, characterized by the delocalization of the CLVs, without the need to rely on

finite-amplitude perturbations. Unlike the finite-amplitude perturbations which capture

the largest expansion rate in the collective dynamics, the collective Lyapunov modes

characterize, we believe, full instability that emerges at the collective level. However,

we have also noticed that we need to overcome strong finite-size effects, in order for

collective modes to be clearly decoupled from neighboring microscopic modes (see Figure

4(a,b)), which is unfortunately quite demanding with the current machine power. The

situation becomes even worse for locally coupled systems such as coupled map lattices,

for which one needs at least two spatial dimensions to study NTCB [1] and, further, local

correlation of dynamical units reduces the effective system size, though we believe that

collective Lyapunov modes should exist in locally-coupled systems as well. In addition,

for globally-coupled systems, the existence of collective chaos also helps us to capture

collective Lyapunov modes, since for large system sizes one can typically probe only first

few Lyapunov modes with positive LEs. Moreover, globally-coupled systems allow us

to investigate the infinite-size limit “directly” from the evolution of the instantaneous

density profile, which is given by the nonlinear Perron-Frobenius (PF) equation [3, 4, 9].

Lyapunov exponents measured in the PF dynamics have therefore been related to the

collective dynamics [4], without, however, direct evidence being ever shown. In the

next section, following our preceding letter [26], we will show that there is indeed a

quantitative correspondence between the collective Lyapunov modes and some of such

PF Lyapunov modes.
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3. Correspondence to Perron-Frobenius Lyapunov modes

The PF equation describes the evolution of the instantaneous distribution function of

the dynamical variables, denoted here by ρt(x). This idea can be applied to a single

dynamical unit for globally-coupled systems, since the global field is given by ρt(x),

which makes the PF equation nonlinear [3, 4, 9]. Then, one needs to rely on numerical

approaches in most cases, typically discretizing the support of the evolving distribution

into sufficiently fine bins. It is unfortunately unrealistic for the globally-coupled limit-

cycle oscillators studied above, because of the intricate, fractal-like structure of the

support in the complex plane (see Figure 1(c)). To avoid this difficulty, we study here

a simpler case of globally-coupled maps of a real variable, whose support is typically a

bounded interval of the real axis.

Specifically, we consider the following system:

xt+1
i = (1−K)f(xt

i) +K〈f(x)〉+ ξti , (3)

with the logistic map f(x) = 1 − ax2 and an iid noise ξti , which is added here to avoid

singularities in the PF dynamics as explained below. In the infinite-size limit N → ∞,

the corresponding nonlinear PF equation reads

ρt+1(x) =

∫

ρN(F
t(y)− x)ρt(y)dy, (4)

where ρN(ξ) is the probability density of the noise and

F t(y) = (1−K)f(y) +K

∫

f(z)ρt(z)dz. (5)

If the system is noiseless, i.e., if ξti = 0, ρN(ξ) is replaced by the delta function and hence

ρt+1(x) =
1

1−K

∑

y s.t. F t(y) = x

ρt(y)

|f ′(y)| , (if noiseless), (6)

where the summation is taken over the preimages of x and f ′(y) is the first derivative of

f(y). Following these preimages and dealing with the singularity due to the superstable

point f ′(y) = 0 make the system practically inaccessible by numerical means. This

singularity is tamed by adding noise to the system as in Equation (3), or by studying

a heterogeneous system with site-dependent local parameters [20, 21], which do not

destroy collective dynamics but provides a useful situation to elucidate the nature of

the collective behavior [9–11].

Computation of the PF equation (4) and its tangent space dynamics is

straightforward, but has a few pitfalls which have been overlooked by some earlier

studies. First, the noise distribution ρN(ξ) must be bounded in such a way that

the distribution of the dynamical units, ρt(x), is always confined within the basin of

attraction. Gaussian noise cannot be used here for this reason. Second, because the

tangent space dynamics reads

δρt+1(x) =

∫

dy

[

ρN(F
t(y)− x)δρt(y) +Kρ′N(F

t(y)− x)ρt(y)

∫

f(z)δρt(z)dz

]

(7)
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Figure 6. Lyapunov analysis for globally-coupled noisy logistic maps (3) with

a = 1.57,K = 0.28, σ = 0.1 and the corresponding PF equation (4). (a) IPR Y
(j)
2

against LE λ(j) for the maps with N = 16, 32, · · · , 512. The last four modes are shown

additionally for N = 2048, 8192, · · · , 131072. The arrows indicate increasing N . The

inset shows the spectrum of LEs for the PF dynamics, λ
(j)
PF. The values of the first

and second PF LEs, namely λ
(1)
PF = 0.081 and λ

(2)
PF = −0.49, are indicated by the

vertical dashed lines in the main panel. (b,c) First three LEs (b) and their IPRs (c)

as functions of the size N of the maps. The dashed line in the panel (b) indicates the

value of the first PF LE λ
(1)
PF and that in the panel (c) indicates Y2 ∼ 1/N .

and involves the derivative of ρN(ξ), the noise distribution must be differentiable for

proper computation of LEs and CLVs. For these reasons, we choose the Kumaraswamy

noise distribution [29] ρN(ξ) = αβ(ξ′)α−1(1 − (ξ′)α)β−1 with ξ′ ≡ (ξ/σ + 1)/2 ∈ [0, 1],

α = 3, and β = 5, for which the probability density is unimodal, bounded within

ξ ∈ [−σ, σ], twice differentiable, and nearly symmetric.

We start with a rather simple regime of collective chaos under strong coupling,

where dynamical variables tend to synchronize to the chaotic dynamics of the uncoupled

logistic map, but are weakly scattered by microscopic chaos and noise [10, 11, 30].

Specifically, we set the local logistic parameter at a = 1.57, which corresponds to the

one-band chaos regime, and in the present section K = 0.28 and σ = 0.1, unless

otherwise specified. We perform both direct simulations of the maps (3) with finite N

and simulations of the PF equation (4), which should correspond to the N → ∞ limit.

It is indeed checked by confirming that the evolution of ρt(x) from the PF equation

matches that of large collections of the maps for many time steps, when starting from

almost identical initial density profiles. In the following, we compare Lyapunov modes

obtained by the two methods. Most data are recorded over 3 × 105 time steps after a

transient period of 300N or 50000 steps for the maps, and recorded over 105 steps after

discarding 104 steps for the PF equation, simulated with sufficiently many bins of equal

width (typically 1024 bins within the interval [−1.0, 1.5] in this section).

Figure 6(a) displays the full parametric plots of (λ(j), Y
(j)
2 ) for the maps up to

N = 512, showing signs of delocalization for first few modes. Increasing the system size

further, we find that only the first one is actually delocalized, i.e., Y
(1)
2 ∼ 1/N , while the
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Figure 7. Snapshots of the distribution ρ(x) and CLVs δρ(j)(x) for globally-coupled

noisy logistic maps (3) with a = 1.57. (a) Typical snapshots for K = 0.28 and σ = 0.1.

Black solid lines and red circles indicate the results from PF and the maps of size

N = 107, respectively. The blue dashed line shows the (normalized) first derivative

of ρ(x), which overlaps the PF CLV δρ(j)(x) for the most part. (b,c) Snapshots for

K = 0.70 and σ = 0.1, taken at a typical moment (b) or when the global field Xt ≡ 〈xt〉
is near the superstable point (c). The black solid lines indicate the results from PF,

whereas the red dashed lines show the jth derivative of ρ(x). The inset of the panel

(c) shows the return map of the global field, the red point indicating the moment when

the snapshots are taken.

following ones are localized (Figure 6(c)). The values of the LEs also vary differently

for the first mode, which remains well separated from the others irrespective of the size

N (Figure 6(b)). Moreover, comparison to the LEs for the PF equation reveals that

this first, collective LE tends to the first PF LE, suggesting limN→∞ λ(1) = λ
(1)
PF. For the

following Lyapunov modes, however, we do not find such direct correspondence within

the system sizes probed here. The PF LEs λ
(j)
PF decrease so rapidly with increasing

index j (Figure 6(a) inset) that even the second one λ
(2)
PF is smaller than the last LE

of the maps, λ(N) (main panel). The values of the last few LEs decrease as the system

size increases, but they do not reach λ
(2)
PF nor indicate any sign of delocalization in the

associated IPRs up to the largest size we examined, namely N = 131072. The first

Lyapunov mode is therefore the only collective mode present at the studied system

sizes, so that it takes the same LE value as the first PF Lyapunov mode.

The correspondence between this collective mode and the first PF Lyapunov mode

is underpinned from the structure of their CLV. Figure 7(a) compares the distribution

ρ(x) (top panel) and the first CLV δρ(1)(x) (bottom panel) obtained directly from the

PF equation (black solid line) and those constructed from the maps of size N = 107 (red

circles), at a moment when the two distributions coincide very well. One can see that

the first CLV from the maps exerts the same shift δρ(1)(x) on the distribution as that

from the PF equation (bottom panel). It indicates that this collective mode, identified
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in the original system by the standard Lyapunov analysis, should indeed converge to

the PF Lyapunov mode in the infinite-size limit. Moreover, we notice in Figure 7(a)

that the spatial profile of the CLV δρ(1)(x) is very close to the first derivative of the

distribution, ∂xρ(x) (blue dashed line), which is normalized here with the same L2-norm

as the CLV. Since ρ(x+∆x) ≃ ρ(x)+∂xρ(x)∆x for small ∆x, this collective mode with

the positive LE merely shifts the position of the peak, similarly to the positive collective

mode found in the globally-coupled limit-cycle oscillators (see Figure 5).

The similarity to the derivative is more prominent for larger coupling strengths

K. For K = 0.70, the first PF CLV δρ
(1)
PF(x) and the first derivative ∂xρ(x) are almost

indistinguishable, and, actually, so are the jth PF CLV δρ
(j)
PF(x) and the jth derivative

∂j
xρ(x) for most times (Figure 7(b)), unless j is too large. In particular, the second

PF CLV δρ
(2)
PF(x) resembles the second derivative ∂2

xρ(x), which can be regarded as the

“diffusion term” that changes the width of the peak. The associated LE being negative,

λ
(2)
PF = −1.69 here, this second PF Lyapunov mode maintains a constant width of the

peak for each moment of the evolution. This is again similar to the negative collective

modes in the limit-cycle oscillators, though the second PF mode in the present system is

not captured by the Lyapunov analysis of the maps at least for the studied system sizes.

The similarity of the jth CLV to the jth derivative is, however, lost occasionally, when

the global field X t ≡ 〈xt〉 visits the close vicinity of the superstable point in its return

map (Figure 7(c); recall that the global field evolves like a single uncoupled logistic

map in this case). Then, since F t(y) in Equation (5) hardly depends on y, Equation

(4) merely yields ρt+1(x) ≈ ρN(1 − x) irrespective of ρt(x). This results in the near

degeneracy of all the CLVs, as indicated in Figure 7(c).

In this section, we have shown a quantitative correspondence between a collective

Lyapunov mode identified for the maps and a Lyapunov mode of the corresponding PF

dynamics, both having the same value of the LE and applying the same perturbation

to the collection of the dynamical units in the infinite-size limit. The correspondence

has been demonstrated for the (single) positive Lyapunov mode in the strong-coupling

regime of the globally-coupled noisy logistic maps, whereas we could not capture a PF

Lyapunov mode with negative LE by analyzing the maps, for the system sizes probed

in the present study. In fact, we consider that negative Lyapunov modes in the PF

representation may not necessarily be present in the original dynamical systems. A

trivial example is an uncoupled collection of identical chaotic maps, e.g., at K = 0 for

the current system (3), where all Lyapunov modes are degenerate at the single positive

LE, while the PF dynamics yields infinitely many negative LEs. These negative PF

modes should correspond to superpositions of local perturbations to the local maps, so

that the perturbation grows exponentially in phase space but the perturbed distribution

relaxes towards the invariant measure. In contrast, we believe that PF modes with zero

or positive LE should be all present as collective modes in the original system, because

they cannot be superpositions of such incoherent microscopic perturbations. Similarly,

we conjecture that all collective modes in dynamical systems should also arise in the

corresponding PF equations, regardless of the sign of the LEs, because our definition of
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the collective modes indicates that O(N) dynamical units are perturbed thereby, which

should also have impacts on the distribution. A question that may naturally arise here is

whether one can distinguish such “physical” PF Lyapunov modes from “spurious” ones,

which are missing in the original dynamical systems, among infinitely many negative PF

LEs. Hyperbolicity of the Lyapunov modes could be a key to tackle this problem, as in

spatially-extended dissipative systems where the Lyapunov spectrum consists of a finite

number of mutually connected physical modes and the remaining spurious modes that

are hyperbolically decoupled from all the physical modes [31, 32], but first attempts in

this direction worked only for the trivial case of the fully synchronized collective chaos

(data not shown). Elucidating this possible decoupling of the physical and spurious

PF Lyapunov modes for general cases of NTCB is a fundamental issue left for future

studies.

4. Dimension and nature of non-trivial collective chaos

The study in the previous section allowed us to establish the direct connection between

a collective mode and a PF Lyapunov mode, but we dealt with a rather trivial regime

of collective behavior with strong coupling, which reduces for K = 0.70 to the fully

synchronized state of the local maps in the noiseless limit. Now we turn our attention

to a regime of non-trivial collective chaos, where dynamical units loosely form a number

of coevolving clusters, mutually connected and interacting through chaotic behavior of

the global field. We focus in particular on a weak-coupling regime of the globally-coupled

noisy logistic maps (3) with a = 1.86 and K = 0.10, studied earlier by Shibata et al.

[9]. They measured the Kaplan-Yorke dimension DKY from the PF LEs and found it to

grow with decreasing noise amplitude σ as DKY ∼ − log σ, using however the Gaussian

noise distribution, for which one cannot numerically evolve the PF equation (4) in a

proper way. Here, using the controlled Kumaraswamy noise with various amplitudes, we

revisit this problem of the effective dimension and, moreover, examine the instabilities

of collective chaos on the basis of the Lyapunov approach developed in the previous

sections. The transient and recording periods are typically 300N and 3×105 time steps

for the maps and 104 and 105 time steps for the PF equation, respectively.

Figure 8(a) shows the time evolution of the instantaneous distribution ρt(x) in this

regime, with noise amplitude σ = 1× 10−3. The distribution now consists of a number

of peaks, connected to each other by gradually varying low-density regions, in striking

contrast to the strong-coupling regime (Figure 7(a)) but rather similarly to the collective

chaos in the limit-cycle oscillators (Figure 1(b)). Here, on top of the broad support, the

rightmost, sharpest peak is created from the superstable point of F t−1(y), i.e., y = 0 (see

Equation (5)); its image would be singular if no noise were added, but in the presence

of noise it is scattered and leaves a peak of finite width, roughly σ. This peak is then

transported to different positions on each time step, with its width broadened by noise

and chaos, and is finally dispersed over the support. Because of this intricate structure

of the distribution, the return map of the global field X t ≡ 〈xt〉 is not simple and single-
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Figure 8. Collective chaos dynamics in globally-coupled noisy logistic maps (3)

with a = 1.86 and K = 0.10. (a) Three consecutive snapshots of the instantaneous

distribution ρt(x) for σ = 1 × 10−3, obtained from the evolution of the PF equation

(4) with 65536 bins. (b) Return maps of the global field Xt ≡ 〈xt〉 for σ = 1 × 10−3

(top) and σ = 0 (bottom). The black and red dots indicate the results from 107 maps

and the PF equation, respectively.

valued any more (Figure 8(b) top panel), being scattered around the mean values. This

readily suggests that the effective dimension of the collective chaos is not as low as in

the strong-coupling case. Somewhat counterintuitively, eliminating the noise does not

reduce this scattering but, instead, enhances it (Figure 8(b) bottom panel), because

the noise smooths the intricate structure of the distribution ρt(x) and simplifies the

collective dynamics. The noise also allows us to simulate the evolution of ρt(x) precisely

by the PF equation with finite numbers of bins: for σ = 1 × 10−3, for example, a large

collection of maps and the PF equation yield statistically indistinguishable results for

the return map (Figure 8(b) top panel).

The Lyapunov spectrum of this system at σ = 1× 10−3 is measured both from the

maps (Figure 9(a,b)) and from the PF equation (black circles in Figure 10(a)). One

notices that, in this weak-coupling regime, even the largest LE in the PF dynamics,

λ
(1)
PF ≈ 0.047, is much smaller than all the LEs in the maps with finite N we investigated.

Indeed, none of the Lyapunov modes from the maps show signs of delocalization (Figure

9(b)): the local minimum of Y
(j)
2 apparent in Figure 9(b) depends only weakly on N ,

specifically Y
(jmin)
2 ∼ N−0.35 in contrast to Y2 ∼ 1/N for the true delocalization, even

in the distribution of the instantaneous IPR values y2 (Figure 9(c); to be compared

with Figure 4(c) for the case of a true collective mode). This local minimum is actually

due to the near degeneracy of LEs around λ(j) ≈ 0.34 (Figure 9(a)), which is typical of

globally-coupled systems [23] and thus also present in Figures 2 and 6(a). Although the

eventual emergence of collective modes is expected somewhere in the spectrum, which

tends to cover a wider range of LE values for larger N , their detection seems out of



Collective Lyapunov modes 16

0 0.2 0.4 0.6 0.8 1
h

0.2

0.25

0.3

0.35

0.4

λ

(a)

0.2 0.25 0.3 0.35 0.4
λ

10
-2

10
-1

10
0

Y
2

(b)

10
-2

10
-1

10
0

y
2

10
-4

10
-2

10
0

10
2

ρ(
y 2)

(c)

y
2
 ~ N

 -0.35

Figure 9. Lyapunov spectrum of the maps with finite N for globally-coupled noisy

logistic maps (3) with a = 1.86, K = 0.10, and σ = 1× 10−3. (a) LE λ(j) vs rescaled

index h ≡ (j − 0.5)/N and (b) parametric plots (λ(j), Y
(j)
2 ) for N = 16, 32, · · · , 512

(increasing as indicated by the arrows). The last four modes are shown additionally for

N = 2048, 8192, 32768 and the last mode is shown for N = 131072. (c) Distribution

of the instantaneous IPR y
(jmin)
2 for the mode at the local minimum in the panel (b),

jmin ≡ argmin Y
(j)
2 .
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Figure 10. Lyapunov spectrum of the PF equation for globally-coupled noisy logistic

maps (3) with a = 1.86 and K = 0.10. (a) PF Lyapunov spectrum λ
(j)
PF for various

noise amplitudes σ = 1 × 10−3, 4 × 10−4, 2 × 10−4, 1 × 10−4, 4 × 10−5 (from bottom

to top). Sufficiently many bins are used in order that the shown values of the LEs

are reliable. The arrow indicates a rough position of the threshold between the two

regions, for σ = 1 × 10−3 (see text). Inset: Kaplan-Yorke dimension DKY and the

index of the inflection point jinf as functions of σ. (b) The first three PF LEs as

functions of σ (inset) and σ1/4 (main panel). The dashed lines indicate the best linear

fits to the data for σ ≤ 4 × 10−4. (c) (λ0 − λ
(j)
PF)σ

−1/4 against j (same symbols as in

(a)) with λ0 = 0.163. The dashed line shows an estimate of the asymptotic curve Fj ,

obtained by a quadratic fit to the data for σ = 4 × 10−5 (green leftwards triangles)

within j ≤ 17.

reach of current computer power. We therefore focus on the PF Lyapunov modes in the

following, to investigate the nature of the non-trivial collective chaos.

The PF Lyapunov spectrum consists of gradually descending LEs, showing, roughly,
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two different slopes for the beginning and the rest of the spectrum, as indicated by the

arrow in Figure 10(a) for σ = 1 × 10−3. With decreasing noise amplitude σ, both

negative slopes increase and the threshold between the two regions shifts rightwards.

This obviously increases the value of the Kaplan-Yorke dimension DKY, which turns out

to grow as DKY ∼ − log σ for small σ (black circles in the inset) similarly to the result

by Shibata et al. [9]. In fact, the position of the threshold also moves logarithmically,

as indicated by the index of the inflection point of the spectrum, jinf (red squares in

the inset). In contrast, the values of the LEs λ
(j)
PF with fixed indices cannot increase

logarithmically, since they should remain finite in the noiseless limit. Instead, our data

suggest that at least first few LEs depend linearly on σ1/4, i.e., λ
(j)
PF ≃ λ0−Fjσ

1/4 (Figure

10(b)). Moreover, the estimates of λ0 from the fits to the first three LEs (dashed lines)

coincide very well at λ0 = 0.163(1), where the number in the parentheses indicates

a range of error in the last digit. Rescaling the Lyapunov spectra in Figure 10(a) as

(λ0 − λ
(j)
PF)σ

−1/4 with the above estimate of λ0, we find a reasonable collapse for small j

(Figure 10(c)), which indicates that the asymptotic behavior λ
(j)
PF ≃ λ0−Fjσ

1/4 actually

holds over the first region of the spectrum. This asymptotic form of the PF Lyapunov

spectrum will be further investigated below.

We now turn our attention to the structure of the CLVs associated with these PF

Lyapunov modes (Figure 11). Comparing the instantaneous distribution ρ(x) (panel

(a)) and CLVs δρ(j)(x) (panels (b,c)), we find that the CLVs in the first region, i.e.

those with small j, tend to be concentrated near the peaks in the distribution (red

dashed lines and green dotted-dashed lines in panels (b,c)). Around each peak these

CLVs are almost proportional to the first derivative of the distribution, ρ′(x) ≡ ∂xρ(x)

(black solid line), but not globally, because the proportionality constant is different for

each peak. This indicates that these modes shift peaks in the distribution at different

amplitudes and directions, similarly to the positive collective mode found in the limit-

cycle oscillators (Figure 5). In contrast, CLVs with large j do not resemble such a

patchwork of local first derivatives but tend to be distributed widely, both around the

peaks and on top of the broad plateaux in between (blue double-dotted-dashed lines in

Figure 11(b,c)). They therefore deform the plateau structures and/or change the weight

balance between the peaks and the plateaux. To distinguish between these two types of

Lyapunov modes, we quantify how similar each CLV δρ(j)(x) is to the assembly of the

local first derivatives,
∑

k A
(j)
k ρ′k(x), where k denotes the region Sk = [xk, xk+1] of the

kth peak bordered at the local minima xk and xk+1 of the distribution (dotted lines in

Figure 11(a)) and ρ′k(x) = ρ′(x) if x ∈ Sk and 0 otherwise. Specifically, we compute the

residue

R(j) ≡
∑

k

∫

Sk

[

δρ(j)(x)−A
(j)
k ρ′(x)

]2

dx (8)

with the optimal choice of the coefficients, A
(j)
k =

∫

Sk

δρ(j)(x)ρ′(x)dx/
∫

Sk

ρ′(x)2dx. This

indeed shows a clear transition with varying j (Figure 11(d)), which underpins the

existence of the two regions in the Lyapunov spectrum. The same transition can also

be seen in the spectrum of the IPRs, defined here by Y
(j)
2 = 〈

∫

δρ(j)(x)4dx〉t with the
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Figure 11. Snapshot of the distribution ρ(x) (a) and CLVs δρ(j)(x) (b,c) from the

PF equation for globally-coupled noisy logistic maps (3) with a = 1.86, K = 0.10, and

σ = 1× 10−3. Vertical dotted lines in panel (a) show the partition of the support into

the regions Sk, each containing one peak and bordered by local minima. In panels (b,c),

black solid lines indicate the (arbitrarily scaled) first derivative of the distribution, the

dashed lines show the CLVs δρ(j)(x) with j = 1, 8, 32 as stipulated in the legends,

and the vertical dashed lines mark the positions of the peaks. Panel (d) shows the

time-averaged residue 〈R(j)〉t as a function of the index j (see text).

normalization
∫

δρ(j)(x)2dx = 1 (Figure 12(a)). Since the CLVs in the first region are

localized around the density peaks, whose width is scaled by the noise amplitude σ, those

IPRs take similar values when multiplied by σ (Figure 12(b)). By contrast, IPRs in the

second region decrease exponentially with increasing index j, setting a clear threshold

index jth for each noise amplitude σ (intersection of two linear fits in Figure 12(b)).

The threshold index jth is found to increase logarithmically with decreasing σ (Figure

12(c)), like DKY and jinf shown in the inset of Figure 10(a).

The role played by the Lyapunov modes in the first region against the density

peaks in the distribution suggests a direct connection between their numbers. Indeed,

decreasing the noise amplitude σ, we find more and more peaks in the instantaneous

distributions (Figure 13(a)), simply because the sharpest peak created from the

superstable point becomes sharper and sharper. We then count the time-averaged

number of peaks Npeak for each noise amplitude σ, and find that it varies logarithmically

as Npeak ≃ N0−Cpeak log σ (black solid circles in Figure 13(b)), similarly to the number
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Figure 12. Y
(j)
2 spectrum of the PF Lyapunov modes for globally-coupled noisy

logistic maps (3) with a = 1.86 and K = 0.10. (a) Spectra of the IPRs Y
(j)
2 for

different noise amplitudes σ. (b) Same data are multiplied by σ. The dashed lines

show linear fits (in the semilog scale) to the two spectrum regions for σ = 4 × 10−5

(top symbols), whose intersection determines the threshold index jth(σ). (c) Threshold

index jth as a function of the noise amplitude σ.

of the Lyapunov modes in the first region, or the threshold index, jth ≃ j0 − Cth log σ

(red squares; reproduced from Figure 12(c)). Moreover, the two coefficients are found to

be very close, i.e., Cpeak ≈ Cth (same slope in Figure 13(b)). This indicates that, for each

peak added by decreasing the noise amplitude σ, a new Lyapunov mode is introduced

to the first region of the PF spectrum, in order for this mode and the other existing

ones to describe the instability of the newly added peak. The number of the peaks

Npeak therefore controls the form of the Lyapunov spectrum in the first region: using

λ
(j)
PF ≃ λ0 −Fjσ

1/4 reported in Figure 10(b,c), we find a reasonably good collapse of the

PF Lyapunov spectra within the axes λ
(j)
PF+Fjσ

1/4 vs j−Npeak for sufficiently small noise

amplitudes (Figure 13(c)). In particular, the ordinates in this representation indicate

the LE values in the noiseless limit σ → 0, which are surprisingly flat at λ0 = 0.163(1)

in the first region.

To sum up, using the CLVs and the controlled noise distribution, we arrive at the

following conclusion reached by Shibata et al. [9] on a firm basis: the effective dimension

D of the non-trivial collective chaos is finite when noise is added to the system, but it

increases logarithmically with decreasing noise amplitude, D ∼ − log σ, and in particular

diverges in the noiseless limit. In other words, the collective chaos in the noiseless system

has infinite dimensionality. We have shown that this logarithmic divergence is due to the

increasing number of the leading Lyapunov modes in the PF description, which exert

various translational shifts to the density peaks in the distribution of the dynamical

units. Therefore, the effective dimension of the collective chaos can be estimated, at

least in this regime, by the number of these peaks Npeak as demonstrated in Figure

13(a), which can also be measured from the microscopic simulations of the maps, in

principle.

On the basis of these results obtained for globally-coupled noisy logistic maps, we
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Figure 13. Number of density peaks and rescaling of the PF Lyapunov spectra for

globally-coupled noisy logistic maps (3) with a = 1.86 and K = 0.10. (a) Typical

instantaneous distributions ρ(x) for different noise amplitudes σ. (b) Time-averaged

number of peaks Npeak as a function of σ (black solid circles). The bars indicate the

standard deviation of the instantaneous values of Npeak. The threshold index jth,

the index of the inflection point jinf and the Kaplan-Yorke dimension DKY are also

shown with shifts and factors stipulated in the legend. (c) PF Lyapunov spectra in

the rescaled axes, exhibiting the asymptotic spectrum in the noiseless limit (same data

and symbols as in Figure 10(a)). The horizontal dashed line indicates our estimate of

the asymptotic LE, λ0 = 0.163(1).

finally revisit the collective chaos studied in Section 2, exhibited by the globally-coupled

limit-cycle oscillators. Given the similar structure of the instantaneous distributions

(compare Figures 1(b) and 13(a)) and the similar role of the collective or PF Lyapunov

modes (Figures 5(a,b) and 11), we expect that these two systems may share basic

properties of the collective chaos. We therefore consider the limit-cycle oscillators in the

presence of noise, added here sporadically for the sake of simplicity:

Ẇi = Wi − (1 + ic2)|Wi|2Wi +K(1 + ic1)(〈W 〉 −Wi) +
∑

n∈Z

δ(t− n)ξni ,(9)

where ξni is drawn independently from the uniform distribution [−σ, σ]. We then measure

the oscillator density projected on the angular coordinates θi ≡ argWi for various noise

amplitudes σ, and indeed find more peaks for lower values of σ (Figure 14(a)). Counting

the number of the peaks therein, averaged along the trajectory, we again identify a

logarithmic increase Npeak ∼ − log σ (Figure 14(b)) like in the case of the logistic
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Figure 14. Instantaneous distributions (a) and number of peaksNpeak (b) for globally-

coupled noisy limit-cycle oscillators (9) with various noise amplitudes σ. Configurations

without folding are chosen for the instantaneous distributions shown in the panel (a),

which are projected onto the angular coordinates θi ≡ argWi. The distribution for

σ = 0 is recaptured from Figure 1(b). For panel (b), symbols and bars indicate the

mean and the standard deviation of the instantaneous numbers of the peaks. For both

panels, the numbers of the oscillators are chosen between 106 and 108 to obtain reliable

results.

maps. Therefore, if we assume that there are roughly as many Lyapunov modes as

the peaks for shifting them in this system too, the logarithmic growth in Npeak implies

that the effective dimension of the collective chaos also increases and diverges in the

noiseless limit. In this case, one should find more and more collective Lyapunov modes

in addition to the ones found in Section 2 as increasing the system size further, though

it is unattainable with the current machine power. Similarly, one can in principle study

Lyapunov modes associated with the PF evolution for this system, but it seems to be

unfeasible to track the evolution of the intricate, fractal-like density profile ρ(W ) in

the complex plane (see Figure 1(c)) in a reliable manner with a finite number of bins.

Although our results suggest that the logarithmic divergence takes place in Npeak as well

as in the dimension of the collective chaos, all the more because peaks are formed and

dispersed by stretching and folding of the support (and noise, if any) similarly to the

logistic maps, providing a direct evidence for it, either numerically or theoretically, is a

challenging open problem left for future studies.

5. Discussions and concluding remarks

In this paper, we have first shown that the standard Lyapunov analysis does capture the

collective dynamics of large chaotic systems: it is encoded in a set of collective Lyapunov
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Figure 15. System-size dependence of the first three LEs for globally-coupled limit-

cycle oscillators (2). The data shown in Figure 4(b) are plotted against 1/ logN . The

dashed lines show linear fits to the 1/ logN regime.

modes, which are delocalized over the collection of the dynamical units and thus exert

relevant perturbations to macroscopic variables, without the need for finite-amplitude

perturbations as opposed to some earlier claims [20, 21]. The CLVs allow us to detect

such collective modes with the delocalization criterion, Y
(j)
2 ∼ 1/N , and to examine

directly their role in the collective dynamics, as demonstrated for the regime of non-

trivial collective chaos in globally-coupled limit-cycle oscillators (Section 2). Moreover,

for globally-coupled systems, the instabilities of the collective dynamics can also be

studied by the associated PF equation, whose Lyapunov modes, at least some of them,

coincide with the collective modes of the original dynamical systems (Section 3). On

the basis of this correspondence, in Section 4, we have analyzed in detail the non-trivial

collective chaos in globally-coupled noisy logistic maps. We have then found leading PF

Lyapunov modes, thus leading collective modes, assigned to translational shifts of dense

clusters loosely formed by the dynamical units. The number of such clusters, Npeak

increases logarithmically with decreasing noise amplitude σ, i.e., Npeak ∼ − log σ, and

so do the number of leading collective modes and other effective dimensions of collective

chaos. This is expected to be a common feature of collective chaos that takes place

on a bounded support undergoing stretching and folding, and indeed the logarithmic

increase of Npeak was found also for globally-coupled noisy limit-cycle oscillators.

The existence of the collective modes, whether their number is finite or slowly

increasing with system size, calls for revisiting the conventional definition of the

extensivity of chaos in the presence of collective behavior, which assumes all the

Lyapunov modes in the spectrum to be extensive. For globally-coupled systems, this

form of extensivity does not hold even in the absence of collective behavior: in this

case extensive LEs are sandwiched by “subextensive” bands composed of O(logN)

LEs at both ends of the spectrum, which vary logarithmically with system size as

λ ∼ λ∞ + const./ logN [23]. This picture is modified when collective behavior takes

place (Figure 15): taking the first few LEs for the limit-cycle oscillators shown in

Figure 4(b) and representing them as functions of 1/ logN , we find that the second
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and subsequent LEs indeed obey the logarithmic size dependence for the subextensive

exponents (dashed lines), while the first, collective mode (black circles) deviates from

it as it develops the delocalized CLV structure with increasing system size. Moreover,

as we have discussed in the previous section, there could exist more and more collective

modes as the system size N is further increased. Recalling the fact that the global

field admits statistical fluctuations proportional to 1/
√
N around its time-evolving mean

value [3], we might consider that each dynamical unit is subjected to an effective noise of

amplitude σ ∼ 1/
√
N in this case. Then, our finding on the number of the density peaks

implies that the number of the collective modes increases as − log σ ∼ logN , adding

another logarithmic subextensive band to the Lyapunov spectrum. A theoretical study

is certainly needed to put this speculation on a firm basis. Seeking for a direct evidence

of a collective mode in locally coupled systems is also an important issue left for future

studies, in particular for the general understanding of the chaos extensivity.

Let us finally turn to the often-discussed but never-demonstrated analogy of NTCB

to small dynamical systems. We have found for the limit-cycle oscillators that the

collective LEs have the same set of the signs as what we would expect from the observed

macroscopic dynamics, whether the number of positive collective LEs increases or not,

and hence underpinned the analogy of NTCB to small dynamical systems. There is,

however, an essential difference here: in contrast to small systems, the total number of

the collective modes is not determined a priori. This implies that large dynamical

systems may have far richer bifurcation structure at the macroscopic level, where

collective exponents may not only change their signs but also be created and annihilated

at the transition between two different NTCB regimes. It is important to clarify how

this viewpoint is reconciled with some features like phase transitions, such as critical

phenomena, reported by a few earlier studies [33, 34]. The collective Lyapunov modes

should play central roles in tackling these fundamental issues left hitherto unexplored,

which we believe deserve rather high computational cost needed for the investigations.
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[8] Brunnet L, Chaté H and Manneville P 1994 Physica D 78 141–154

[9] Shibata T, Chawanya T and Kaneko K 1999 Phys. Rev. Lett. 82 4424–4427
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