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Structure and properties of SrO-Al 2 O 3 -SiO 2 glasses and melts were investigated along the tectosilicate join (SrO/Al 2 O 3 = 1), varying the amount of silica. The structure of the glasses was studied by means of various spectroscopic techniques: Raman, 27 Al NMR and XAS at the Sr K-edge.

. Increase of T g at low silica content was correlated to a decrease in AlO 5 content as well as to a decrease of a number of different structural units and, as a consequence, an ordering of the system.

A C C E P T E D

M A N U S C R I P T

INTRODUCTION

Strontium is an element whose abundance in Earth's crust is at the level of 300-400 ppm [START_REF] Turekian | The geochemistry of strontium[END_REF][START_REF] Turekian | Distribution of the Elements in Some Major Units of the Earth's Crust[END_REF]Taylor, 1964;[START_REF] Rudnick | Composition of the Continental Crust[END_REF]. In earth science, strontium can be used as a Sr/Rb geochronometer, for studying the petrogenesis of igneous rocks and for tracing weathering processes (Moorbath et al., 1977;[START_REF] Capo | Strontium isotopes as tracers of ecosystem processes: theory and methods[END_REF]. It is also possible to date rocks formation by measuring the ratio of non-radiogenic 86 Sr to radiogenic 87 Sr (resulting from the radioactive decay of 87 Rb). But Sr and Rb follow different behaviour during fractional crystallization: the former goes preferentially in early-formed calcic plagioclase while the latter concentrates in the residual magma and enters later potassium minerals [START_REF] Faure | Strontium Isotope Geology[END_REF][START_REF] Depaolo | Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[END_REF]. In material sciences, Sr aluminosilicate glasses, glass-ceramics and ceramics have shown applications as transparent ceramics [START_REF] Al Saghir | Transparency through structural disorder: A new concept for innovative transparent ceramics[END_REF], high-temperature sealants [START_REF] Sharma | A new formulation of barium-strontium silicate glasses and glass-ceramics for high-temperature sealant[END_REF] and refractory materials [START_REF] Hyatt | Crystal growth kinetics in BaOAl 2 O 3 2SiO 2 and SrOAl 2 O 3 2SiO 2 glasses[END_REF][START_REF] Bansal | Solid State Synthesis and Properties of Monoclinic Celsian[END_REF][START_REF] Beall | Refractory glass-ceramics based on alkaline earth aluminosilicates[END_REF].

To better understand natural and industrial processes, it is important to link macroscopic properties (density, viscosity, glass transition temperature etc.) of the glasses/ceramics with the structure of the corresponding melts. Some investigations in this field have been already made for Na-based [START_REF] Furukawa | Raman spectroscopic investigation of the structure of silicate glasses. III. Raman intensities and structural units in sodium silicate glasses[END_REF][START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Fukumi | Intensity of Raman band in silicate glasses[END_REF][START_REF] Mysen | Role of Al in depolymerized, peralkaline aluminosilicate melts in the systems Li 2 O-Al 2 O 3 -SiO 2 , Na 2 O-Al 2 O 3 -SiO 2 , and K 2 O-Al 2 O 3 -SiO 2[END_REF][START_REF] Merzbacher | The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy[END_REF][START_REF] Mysen | Structure and properties of alkali silicate melts at magmatic temperatures[END_REF][START_REF] Mysen | Silicate melts at magmatic temperatures: in-situ structure determination to 1651°C and effect of temperature and bulk composition on the mixing behaviour of structural units[END_REF][START_REF] Mysen | Structure and properties of magmatic liquids: From haplobasalt to haploandesite[END_REF]Allwardt et al., 2005a,b;[START_REF] Losq | The role of Al 3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts[END_REF], Mg-based [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Merzbacher | The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy[END_REF]Neuville et al., 2008a) and Ca-based aluminosilicates [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Frantz | Raman spectra and structure of BaO-SiO 2 , SrO-SiO 2 and CaO-SiO 2 melts to 1600[END_REF]Allwardt et al., 2005b;[START_REF] Kanehashi | In situ high temperature 27 Al NMR study of structure and dynamics in a calcium aluminosilicate glass and melt[END_REF]Neuville et al., 2004aNeuville et al., ,b, 2006Neuville et al., , 2008b[START_REF] Neuville | The structure of crystals, glasses, and melts along the CaO-Al 2 O 3 join: Results from Raman, Al L-and K-edge X-ray absorption, and 27 Al NMR spectroscopy[END_REF][START_REF] Drewitt | Structural transformations on vitrification in the fragile glass-forming system CaAl 2 O 4[END_REF]Jakse et al., 2014;[START_REF] Hennet | Neutron diffraction of calcium aluminosilicate glasses and melts[END_REF] using a multi-technique approach. The SrO-Al 2 O 3 -SiO 2 (SAS) ternary system is, on the other hand, poorly studied. There are only a handful of studies in this system and most of them concentrate only on specific properties and have used only few techniques (see for example [START_REF] Bockris | Viscous flow in silica and binary liquid silicates[END_REF][START_REF] Chiari | The structure of partially disordered, synthetic strontium feldspar[END_REF][START_REF] Magaritz | Diffusion of Sr, Ba and Na in obsidian[END_REF][START_REF] Creux | Anomalous wide angle X-ray scattering study of strontium silicate and aluminosilicate glasses[END_REF][START_REF] Neuville | Structure and properties in (Sr, Na) silicate glasses and melts[END_REF][START_REF] Licheron | Raman and 27 Al NMR structure investigations of aluminate glasses: (1-x)Al 2 O 3 -x MO, with M = Ca, Sr, Ba and 0.5[END_REF][START_REF] Abel | Liquidus Temperature of SrO-Al 2 O 3 -SiO 2 Glass-Forming Compositions[END_REF].

In order to connect structural features with macroscopic properties of Sr aluminosilicates we intend to apply a multi-technique approach for studying tectosilicate compositions. This approach consists of measuring density and viscosity as well as spectroscopic techniques such as Raman, NMR and X-ray absorption spectroscopy. We also intend to compare the effect of Sr on the aluminosilicate network with the well-studied ones of Mg and Ca, recalling that strontium is a heavier element possessing a bigger radius than the two latter cations. Those differences are expected to affect the properties and structure of the melts and corresponding glasses/ceramics like potassium does, i.e. by greatly disturbing the network and increasing its topological and chemical disorder (Le [START_REF] Losq | Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts[END_REF][START_REF] Losq | Percolation channels: a universal idea to describe the atomic structure of glasses and melts[END_REF].

A C C E P T E D M A N U S C R I P T

EXPERIMENTAL METHODS

Starting materials

Strontium aluminosilicate samples were made by a traditional melting-quenching procedure described in [START_REF] Neuville | Viscosity, structure and mixing in (Ca, Na) silicate melts[END_REF]. For this, powders of Rectapur reagents from Merck were pre-dried at 1000 °C (SiO 2 , Al 2 O 3 ) and 550 °C (SrCO 3 ) before being mixed at a stoichiometric amount and crushed together in an agate mortar under ethanol for 1 h. Then the mixture was slowly heated in a platinum crucible up to 1100-1250 °C in an electric muffle furnace and held at that temperature for several hours to decompose the carbonate. After the decarbonation step, mixtures were melted at 1600 °C and quenched either by dipping the bottom of the crucible in water if the viscosity of the melt was high or by pouring the melt on a large copper plate if the viscosity was low. The grinding, melting, quenching procedures were repeated three times to ensure the homogeneity of the final product.

Compositions were maintained at a temperature above their melting points for several hours to produce bubble-free samples for further viscosity measurements. In the cases when glass samples could not be obtained by traditional quenching (i.e. SA10.45, SA20.40, SA50.25 and SA57.21 samples), ceramic compositions were prepared following the above described procedure and an aerodynamic levitation device coupled with two CO 2 lasers was used to prepare small glass spheres [START_REF] Hennet | Levitation apparatus for neutron diffraction investigations on high temperature liquids[END_REF][START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF]Neuville et al., , 2008a[START_REF] Neuville | Advances in Raman Spectroscopy Applied to Earth and Material Sciences[END_REF]. To be sure that those two quenching procedures did not affect the properties and structure of the glasses, two samples of a SAS glass obtained by traditional and "levitation" quench were studied. 27 Al NMR and Raman spectroscopies as well as density measurements did not reveal any differences in the samples. So, we assume further that for the studied samples the quenching method did not cause significant differences in the structure and properties.

All samples were checked to be free of a crystalline phase. For this, several pieces of each composition were studied microscopically and by means of Raman spectroscopy. Densities measured with the Archimedean method using toluene as the immersion liquid of those pieces were also measured and are found to be approximately identical for each composition. Chemical compositions (Table 1) were measured using a Cameca SX100 electron probe microanalyser with a 10 nA current, accelerating voltage of 15 kV and 90 s counting time. Each composition is an average of 5-10 measurements. The names of the glasses are given by SAxx.yy, where xx is the SiO 2 content in mol%, yy is the Al 2 O 3 content in mol%, the remaining being the content of SrO.

Viscosity measurements

Creep apparatus: the viscosity measurements at low temperatures were performed using a creep apparatus [START_REF] Neuville | Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets[END_REF][START_REF] Neuville | Viscosity, structure and mixing in (Ca, Na) silicate melts[END_REF] permitting measurements in the
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temperature interval of 700-1200 K and the viscosity range of 10 8 -10 12 Pa•s. Samples used for the measurements were glass cylinders of 5-7 mm in diameter and 10-15 mm in length with two polished parallel faces. The cylinders were held in a furnace at 600-800 °C for 1 day to remove internal stress before the measurements. To ensure minimal temperature gradient during the measurements a silver cylinder was placed around the sample. This allowed reducing the gradient between the top and the bottom parts of the sample to less than 0.3 K. The thermal gradients along the sample were checked using two Pt-PtRh10% thermocouples. The reported viscosity values at one temperature are the result of an average of 20-40 measurements at different applied stresses.

The viscosity uncertainty and reproducibility is less than 0.03 log units with this technique [START_REF] Neuville | Viscosity, structure and mixing in (Ca, Na) silicate melts[END_REF].

Micro-penetration: Glass spheres obtained using the levitation device were too small to use the creep apparatus. Therefore, the viscosity measurements were performed on a homemade microindenter. The samples were polished to obtain two parallel faces at least 1 mm in diameter. These surfaces were polished using SiC paper and diamond suspension (1/4-micron particle size). The apparatus is a depth-sensing indentation device, permitting viscosity measurements between 293 and 1373 K with a thermal gradient of ±1 K. The method used to measure the load/penetration and to determine the viscosity from the indentation creep tests is described elsewhere [START_REF] Bernard | Indentation creep of window glass around glass transition[END_REF][START_REF] Gueguen | High-temperature elasticity and viscosity of Ge x Se 1-x glasses in the transition range[END_REF]. The indenter used was a sphere made of silicon carbide of 2 mm in diameter. The penetration depth has never exceeded 50 μm. The viscosity uncertainty of this method is 0.1 log units.

DTA measurements

Glass transition temperatures (T g ) of two samples -SA10.45 and SA20.40 -were measured using Setaram® L96 Evo TGA-DTA/DSC apparatus in DTA mode with the heating rate of 5 K/min. T g was determined as an inflection point of the heat flow curve and a correction of 22 K was then applied to the values to have T g comparable to those obtained from the viscosity curves at log = 12 Pa•s. This correction value was calibrated by measuring samples with known glass transition temperatures under the same conditions.

Raman spectroscopy

Unpolarized Raman spectra were recorded at room temperature using a T64000 Jobin-Yvon® triple Raman spectrometer equipped with a confocal system, a 1024 Charge-Coupled Detector cooled by liquid nitrogen and an Olympus® microscope. A Coherent® 70-C5 argon laser with a wavelength of 488.01 nm was used as the excitation source. All spectra were acquired between 20 and 1400 cm -1 with acquisition time of 300 s and with 3 repetitions. Before the deconvolution of the
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high-frequency region, all spectra were corrected for temperature and excitation line effects using the method of Long [START_REF] Long | Raman Spectroscopy[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF]. Corrected spectra were normalized to the peak of maximum intensity and then the high-frequency region of the spectra was deconvoluted. All parameters, such as band's frequency, width and intensity were not constrained during the deconvolution procedure. Al(NO 3 ) 3 solution. Magic Angle Spinning (MAS) experiments were performed at a spinning speed of 30 kHz in aluminium-free zirconia rotors of 2.5 mm diameter. All spectra were obtained using a single-pulse ("Bloch-decay") sequence using a radio-frequency field ν rf = 62.5 kHz and applying a pulse of 0.4 µs (i.e. less than π/18 to ensure quantitative irradiation). Four thousand scans were accumulated for each composition with a recycling time of 0.15 s (spin-lattice relaxation times found in the range 1-5 s), using a spectral window of 2 MHz to avoid folding of the spinning-sideband's manifold. The decomposition of the spectra was obtained using the dmfit software [START_REF] Massiot | Modelling one-and two-dimensional solid-state NMR spectra[END_REF], taking into account the spinning sidebands of the external transitions. This allows extracting the populations of the various components appearing on the central transition, their mean isotropic chemical shifts δ iso , their distributions of isotropic chemical shift Δδ iso and their mean quadrupolar coupling constants C Q within the framework of the so-called "Czjzek" or "GIM" model (Le Caer and Brand, 1998).

X-ray absorption spectroscopy

X-ray absorption experiments at the Sr K-edge (16105 eV) were performed at the DIFFABS beamline at the SOLEIL synchrotron (Gif-sur-Yvette, France). This storage ring has energy of 2.75 GeV and was operating in a top up mode with an average electron current of 450 mA. The beamline optics consist of a double Si[111] crystal monochromator surrounded by 2 rhodium coated mirrors.

The X-ray beam is focused onto the sample horizontally and vertically by bending the second crystal and the second mirror respectively. The final beam size at the sample position was about 300 µm (H)

x 250 µm (V). The actual energy of the monochromator was calibrated at the Y K-edge (17038 eV) using an yttrium calibration foil. The experiments were performed in a transmission mode. The incident and transmitted intensity were measured with two ionization chambers operating with a nitrogen flux at atmospheric pressure as absorbing gas. All studied samples were crushed to a fine

powder. An appropriate quantity to provide an absorbance jump of 1 at the edge was ground with boron nitride (BN) and pressed into pellets with a thickness of about 250 µm. Each spectrum is an
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average of 3 measurements performed with a step of 2 eV which was reduced to 1 eV around the absorption edge. The data reduction was performed using the Athena software [START_REF] Ravel | HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT[END_REF].

RESULTS

Viscosity

The viscosity measurements are presented in Table 2 and plotted in Figure 1 as a function of reciprocal temperature. When considering the two extreme compositions -SA75.12 and SA26.37, a difference of about 15 K at constant viscosity of 10 12 Pa•s and almost an order of magnitude in the viscosities at T = 1169 K (T g of SA75.12) are observed. Low-temperature viscosity data were fitted by using the Vogel-Fulcher-Tammann-Hesse (VFTH) equation:

, ( 1 
)
where η is the viscosity in Pa•s, T is the temperature in K and A, B, T 1 are adjustable parameters

given in Table 3. The glass transition temperatures T g were obtained from the fitting of the experimental data and are summarized in Table 3 and shown in Figure 2 (along with the data derived from DTA measurements). The inset in Figure 1 represents the viscosity of the melts plotted as a function of T g /T and illustrates the evolution of the melts' fragilities (m) [START_REF] Angell | Relaxation in liquids, polymers and plastic crystals -strong/fragile patterns and problems[END_REF], i.e. the gradient of the viscosity curve at the glass transition temperature on a reduced temperature scale [START_REF] Plazek | Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts[END_REF][START_REF] Böhmer | Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids[END_REF]. It can be calculated by the following equation: ,

where B and T 1 are recovered from the equation (1). The calculated fragilities are listed in the Table 3.

From the inset in Figure 1 one can see that the melts become more fragile upon decreasing the silica content. The viscosity of melts can also be connected to their entropy of configuration through the Adam and Gibbs theory [START_REF] Adam | On the Temperature Dependence of Cooperative Relaxation Properties in Glass-Forming Liquids[END_REF][START_REF]Viscosité et structure de silicoalumineux liquides. I. Méthode de mesure et résultats expérimentaux[END_REF][START_REF] Richet | Viscosity and configurational entropy of silicate melts[END_REF][START_REF] Scherer | Use of the Adam-Gibbs Equation in the Analysis of Structural Relaxation[END_REF][START_REF] Neuville | Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets[END_REF]:

, ( 3 
)
where η is the viscosity in Pa•s, T is the temperature in K, A e is a pre-exponential factor, B e is a constant proportional to the potential barrier opposed to the cooperative rearrangement of the liquid's structure and S conf (T) is the melt's configurational entropy. S conf (T) can be calculated from the following equation:

, ( 4 
)
where S conf (T g ) is the configurational entropy of the melt at T g , C p conf is the configurational heat capacity calculated as a difference of heat capacities of the glass at T g , C p,g (T g ), and the heat capacity of the liquid, C p,l , determined from Richet and Botinga (1985). Partial molar heat capacities of SiO 2 and Al 2 O 3 for the calculations of C p,g (T g ) were taken from [START_REF] Richet | Heat capacity of silicate glasses[END_REF] and the value of partial molar heat capacity of crystalline SrO was taken from [START_REF] Robie | Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1bar Pressure and at Higher Temperatures[END_REF], following previous calculations by [START_REF] Neuville | Viscosity, structure and mixing in (Ca, Na) silicate melts[END_REF]. Combining equations ( 3) and ( 4), parameters such as S conf (T g ), A e and B e can be estimated (Table 3).

In Figure 2 the glass transition temperatures T g of the studied glasses derived from viscosity and DTA measurements are plotted as a function of silica content. T g decreases rapidly with the addition of even a small quantities of SrAl 2 O 4 to the silica glass. After this, a slight decrease in T g is observed upon changing the composition from SA75.12 to SA42.29. The latter has the minimal T g and with further addition of SrAl 2 O 4 the glass transition temperature starts to increase again, similarly to observations made on the tectosilicate join of the CaO-Al 2 O 3 -SiO 2 system (Neuville et al., 2004b).

Raman spectroscopy

Figure 3a presents unpolarised raw spectra of SAS glasses. The Raman spectra can be divided into four regions: the Boson region (20-250 cm -1 ), the low frequency region (250-700 cm -1 ), the intermediate region (700-850 cm -1 ), and the high frequency region (850-1300 cm -1 ).

The boson region (20-250 cm -1 ). The origin of the boson peak has been attributed to rotational motions of interconnected tetrahedral units (Bucheneau et al., 1986;[START_REF] Hehlen | Hyper-Raman scattering observation of the boson peak in vitreous silica[END_REF][START_REF] Hehlen | Nature of the Boson peak of silica glasses from hyper-Raman scattering[END_REF][START_REF] Courtens | Vibrational modes of glasses[END_REF]. It becomes more pronounced and shows a shift of approximately 1 cm -1 each 10 % of silica added to SrAl 2 O 4 . (Figure 3b). This decrease can be extrapolated up to Sr aluminate and are found in agreement with previous measurements [START_REF] Licheron | Raman and 27 Al NMR structure investigations of aluminate glasses: (1-x)Al 2 O 3 -x MO, with M = Ca, Sr, Ba and 0.5[END_REF]. This variation in frequency as a function of composition is found to be a linear combination of that of the pure SiO 2 and SrAl 2 O 4 compounds.

The low frequency region (250-700 cm -1 ). In the Raman spectrum of SiO 2 three bands are clearly observed at 600, 490, and 435 cm -1 . These bands are well known and attributed to 3-, 4-and highermembered rings of SiO 4 tetrahedra, respectively [START_REF] Sharma | Raman investigation of ring configurations in vitreous silica[END_REF]Galeener, 1982a,b;[START_REF] Galeener | Vibrational Decoupling of Rings in Amorphous Solids[END_REF][START_REF] Mcmillan | A study of SiO 2 glass and supercooled liquid to 1950 K via hightemperature Raman spectroscopy[END_REF][START_REF] Pasquarello | Identification of Raman Defect Lines as Signatures of Ring Structures in Vitreous Silica[END_REF][START_REF] Umari | Modeling of the Raman spectrum of vitreous silica: Concentration of small ring structures[END_REF][START_REF] Rahmani | Signature of small rings in the Raman spectra of normal and compressed amorphous silica: A combined classical and ab initio study[END_REF][START_REF] Kalampounias | Temperature-induced structural changes in glassy, supercooled, and molten silica from 77 to 2150[END_REF]. The band at 500 cm -1 decreases in intensity and shifts strongly to a higher frequency when SiO 2 is substituted by SrAl 2 O 4 and becomes a shoulder for the compositions with SiO 2 content less than 42 mol%. A new band appears at 560 cm -1 , increases in intensity and moves a little to lower frequency upon decreasing silica content. It is observed as a shoulder for the compositions with SiO 2 content above 42 mol%. These two bands are usually
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assigned to vibrations of three-(~ 560 cm -1 ) and four-membered (~ 500 cm -1 ) rings of tetrahedra present in the aluminosilicate network [START_REF] Mcmillan | Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy[END_REF].

The intermediate frequency region (700-850 cm -1 ). A band at 800 cm -1 is observed for SiO 2 . This band is usually attributed to the threefold degenerate "rigid cage" vibrational mode of TO 2 units [START_REF] Galeener | Band limits and the vibrational spectra of tetrahedral glasses[END_REF], to the motion of the Si atom in its oxygen cage [START_REF] Mysen | Curve-fitting of Raman spectra of silicate glasses[END_REF] The high frequency region (850-1300 cm -1 ). For SiO 2 glass in the high frequency region two broad bands are observed. They merge into a single band for SA75.12, and this band becomes narrower and shifts to lower frequency with decreasing silica content, similarly to what has been observed for MAS and CAS tectosilicate glasses [START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF](Neuville et al., , 2008a)). Several studies pointed out that different peaks are convoluted in this band, arising from the T-O stretching (T = Si, Al) in different Q n tetrahedral units, where n is the number of bridging oxygens and Q is the four-fold coordinated cation [START_REF] Mcmillan | Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy[END_REF][START_REF] Mysen | Structure and properties of magmatic liquids: From haplobasalt to haploandesite[END_REF].

Spectra deconvolution. Before treating the high frequency region, the Raman spectra of the SAS glasses were corrected for temperature and excitation line effects [START_REF] Long | Raman Spectroscopy[END_REF]. The spectra were then simulated following Mysen (1999) using three Gaussians bands as proposed by several authors [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF] (Figure 4a)). These three bands have been observed in silica glass as well as in alkali and alkaline earth tectosilicate glasses [START_REF] Mysen | Curve-fitting of Raman spectra of silicate glasses[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF]Neuville et al., 2004aNeuville et al., , 2008a;;[START_REF] Losq | The role of Al 3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts[END_REF]. Bands' parameters are reported in Table 4 and the bands' frequencies are plotted as a function of silica content in Figure 4b together with data for sodium, magnesium and calcium tectosilicates. All three bands shift to lower frequencies with decreasing silica content, changing from 990, 1100 and 1182 cm -1 for SA75.12 to 814, 926 and 1007 cm -1 for SA10.45. The two higher frequency bands have been attributed to two Q 4 units in two different structural environment presenting a T-O-T angle difference of about 5-10° [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF]. The band at the highest frequency, called Q 4,I , arises from Q 4 units with a larger T-O-T angles than the band at lower frequency, called Q 4,II , having a smaller T-O-T angles. The lowest frequency band has been reported in spectra of vitreous silica, alkali and alkaline earth silicate and aluminosilicate glasses and melts [START_REF] Mysen | Curve-fitting of Raman spectra of silicate glasses[END_REF][START_REF] Mcmillan | Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF]. It has been suggested by Le [START_REF] Losq | Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts[END_REF] that this band can arise from a stretching T 2s vibrational mode of TO 4 tetrahedra.
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NMR spectroscopy

The 27 Al quantitative 1 pulse MAS NMR spectra of the investigated SAS glasses are shown in Figure 5. The NMR bands consist of the main contribution which maximum shifts from approximately 55 to 78 ppm with decreasing SiO 2 content, positions characteristic of four-fold coordinated aluminium, Al [4] . A small shoulder around 30-45 ppm is also visible for almost all compositions and is ascribed to the presence of aluminium in five-fold coordination, Al [5] (MacKenzie [START_REF] Mackenzie | Multinuclear Solid StateNMR of Inorganic Materials[END_REF][START_REF] Massiot | Modelling one-and two-dimensional solid-state NMR spectra[END_REF]Neuville et al., 2004a) and similar contributions have also been observed for MAS and CAS glasses (Neuville et al. 2004a[START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF][START_REF] Neuville | Local Al site distribution in aluminosilicate glasses by 27 Al MQMAS NMR[END_REF](Neuville et al. , 2008a)). These spectra are very satisfactorily simulated using fully random distribution of quadrupolar and isotropic chemical shift interactions as expressed within the GIM model (Le Caer and Brand, 1998). The retrieve average isotropic chemical shift δ iso , mean quadrupolar coupling constant C Q and population of each site are given in Table 5. The average isotropic chemical shift, δ iso , for Al [4] increases linearly with increasing SiO 2 content (Figure 6a) in a manner very similar to the one observed for the MAS and CAS systems on the same joins, independent of the XO/Al 2 O 3 ratio (X = Sr, Ca, or Mg). This suggests similar chemical AlO 4 environments in these three systems, the δ iso being mainly controlled by the progressive substitution of Al by Si in the first coordination sphere of Al [START_REF] Florian | Elucidation of the Al/Si Ordering in Gehlenite Ca 2 Al 2 SiO 7 by Combined 29 Si and 27 Al NMR Spectroscopy/Quantum Chemical Calculations[END_REF]. Less precisely defined because of much lower intensity, the average isotropic chemical shift of the Al [5] species also follows an overall linear decrease with increasing SiO 2 content, in agreement with previous observations for Mg-and Ca-based systems. The average quadrupolar coupling constant C Q for Al [4] is found between 7.0 MHz and 8.1 MHz, i.e. close to typical values found for Ca-based glasses (5.9 MHz to 9.3 MHz; [START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF] and slightly below those obtained on Mg-based systems (7.6 MHz to 10.0 MHz; Neuville et al., 2008a).

The maximum in Al [5] population for SAS glasses (see Figure 6b) corresponds to 4.5 % and is found for the compositions in the middle of the ternary system, i.e. close to the ones found in MAS and CAS systems [START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF](Neuville et al., , 2008a)).

X-ray absorption spectroscopy at Sr K-edge

Normalized spectra of SAS glasses together with a crystalline standard (strontianite, SrCO 3 ) are presented in Figure 7. The position of the white line is around 16105 eV for all compositions investigated and for the crystalline standard, which confirms that strontium is in the oxidation state +2. The XANES Sr K-edge spectra of all glasses are almost similar to that of the strontianite. This may imply that Sr in SAS glasses has a coordination number similar to the one found in SrCO 3 .

Coordination number has been reported by different authors to be 9 for strontianite (De Villeirs, 1971;[START_REF] Antao | The orthorhombic structure of CaCO 3 , SrCO 3 , PbCO 3 and BaCO 3 : Linear structural trends[END_REF][START_REF] Ye | Crystal structure and thermal expansion of aragonite-group carbonates by single-crystal X-ray diffraction[END_REF]). This value is higher than those proposed by [START_REF] Mckeown | X-ray absorption studies of local strontium environments in borosilicate waste glasses[END_REF] for Sr borosilicates and also higher than the 6-7 coordination number found for Ca
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aluminosilicate glasses with analogous compositions (Neuville et al., 2004b). A precise data analysis is underway, in order to confirm these fingerprint observations.

DISCUSSION

Structural changes along the SiO 2 -SrAl 2 O 4 join

The knowledge of the aluminosilicate glasses and melts structure is a key to understand the variation of macroscopic properties such as viscosity and glass transition temperature. This key may be lifted by coupling NMR and XANES studies, giving information about the short-range order, coordination number and speciation, and Raman spectroscopy which brings knowledge about the ring organization and polymerization of the glass and melt. Finally, both approaches provide information about the glasses and melts' structure and can be directly correlated to the viscosity through the configurational entropy variation as shown by [START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF].

Common wisdom dictates that the tectosilicate glass network at both high and low silica content is fully polymerized and consists solely of corner sharing tetrahedral units TO 4 (T = Si, Al). In other words, in all compositions being on the charge compensation line, Al and Si are expected to stay as Q 4 species, i.e. only a very small amount of NBOs are expected to present [START_REF] Farnan | Quantification of the disorder in network-modified silicate glasses[END_REF][START_REF] Allwardt | Ca-Mg and K-Mg mixing around non-bridging O atoms in silicate glasses: An investigation using 17 O MAS and 3QMAS NMR[END_REF][START_REF] Thompson | Non-stoichiometric non-bridging oxygens and five-coordinated aluminum in alkaline earth aluminosilicate glasses: Effect of modifier cation size[END_REF]. SiO 2 glass is the simplest model of a fully polymerized glass structure and can be approximated by using the central-force model [START_REF] Sen | Phonons in AX 2 glasses: From molecular to band-like modes[END_REF][START_REF] Galeener | Band limits and the vibrational spectra of tetrahedral glasses[END_REF], used by [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF] to propose that SiO 2 is composed of two different coexisting structures with different inter-tetrahedral angles: Q 4,I , and Q 4,II . These two interconnected structures in vitreous SiO 2 have subsequently been found in alkali and alkaline earth aluminosilicates by a range of Raman studies [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF]Neuville et al., 2004aNeuville et al., ,b, 2006Neuville et al., , 2008a;;[START_REF] Losq | Effect of the Na/K mixing on the structure and the rheology of tectosilicate silica-rich melts[END_REF]. It should nevertheless be noted that no other techniques have yet evidenced such a bimodal distribution of Si-O-Si inter-tetrahedral angles.

For glasses along the SiO 2 -SrAl 2 O 4 join, the Raman spectra exhibit changes in the low and high frequency regions. In the silica's spectrum in the low frequency region signals from 3-, 4-and highermembered rings are observed (with a significant fraction of high-membered rings; see Figure 3a).

With introduction of SrAl 2 O 4 (e.g., SA75.12) the fraction of high-membered rings decreases and further addition of SrAl 2 O 4 favours formation of low-membered rings (e.g., SA10.45). In the high frequency regions Raman spectra exhibit a continuous shift of the band frequencies as a function of the Al/(Al+Si) ratio as already seen in the NAS, MAS and CAS systems. The high frequency envelope of the Raman spectra of glasses along this join was simulated (Figure 4a) using three bands associated with two Q 4 units and the T 2S band [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF]Neuville et al., 2004a;[START_REF] Losq | The role of Al 3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts[END_REF][START_REF] Neuville | Advances in Raman Spectroscopy Applied to Earth and Material Sciences[END_REF]. In Figure 4b, the wavenumbers of
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the three bands after deconvolution are plotted as a function of SiO 2 content showing no evidence for the appearance of new bands with decreasing silica content. The negative frequency change with increasing Al 2 O 3 content is consistent with aluminium substitution for Si in these units [START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF][START_REF] Mysen | Structure and properties of magmatic liquids: From haplobasalt to haploandesite[END_REF]. This substitution produces a linear shift in the Raman frequency [START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF][START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF]Neuville et al., , 2008a)). The Raman spectra of SAS glasses follow a similar trend as the one observed for the glasses in CAS [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF], MAS (Neuville et al., 2008a) and NAS [START_REF] Seifert | Three-dimensional network structure of quenched melts (glass) in the systems SiO 2 -NaAlO 2 , SiO 2 -CaAl 2 O 4 and SiO 2 -MgAl 2 O 4[END_REF][START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF] systems. This is in good agreement with [START_REF] Merzbacher | The structure of alkaline earth aluminosilicate glasses as determined by vibrational spectroscopy[END_REF] who have shown that the substitution of alkaline earth element produces a very small effect on the Raman spectra. This indicates that, on the tectosilicate join, Si/Al substitution has larger influence on the aluminosilicate network than the nature of a cation, which plays the role of a charge compensator. Nevertheless, Raman spectroscopy probing the medium range order is not able to investigate the short range order and detect minor species such as, for example, aluminium in the five-fold coordination state (Neuville et al., 2004a[START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF](Neuville et al., , 2008a)). This is the reason why NMR spectroscopy was used to investigate aluminium environment.

27

Al NMR data indicate that the majority (at least 95%) of aluminium atoms are in four-fold coordination. Figure 6a shows significant changes in  iso for Al [4] sites as a function of silica content, where, in agreement with previous values for MAS and CAS systems (Neuville et al., 2004a[START_REF] Neuville | Al coordination and speciation in calcium aluminosilicate glasses: Effects of composition determined by 27 Al MQ-MAS NMR and Raman spectroscopy[END_REF](Neuville et al., , 2008a)), the  iso goes from 62 up to 79 ppm respectively for 76 and 0 mol% of SiO 2 . This linear decrease of  iso results from a purely random substitution of Si by Al in the second coordination sphere of aluminium, which produces an approximate -3 ppm shift per substitution [START_REF] Florian | Elucidation of the Al/Si Ordering in Gehlenite Ca 2 Al 2 SiO 7 by Combined 29 Si and 27 Al NMR Spectroscopy/Quantum Chemical Calculations[END_REF] and is to be related to the bands' shifts also observed in the high frequency regions of the Raman spectra (vide supra). The evolution of the Al [5] population as a function of silica content (Figure 6b) for SAS glasses possesses a maximum (~4.5 % of five-fold aluminium) that is clearly observed between 42 and 50 mol% of SiO 2 . This maximum is shifted to lower silica content (33-42 mol%) for the CAS system, while for the MAS system it is difficult to assume the same trend since no data are available in the low-silica region.

In the SAS system, the proportion of Al [5] is lower than that observed in MAS and CAS glasses which is in a good agreement with previous studies on alkali, earth alkaline and rare earth aluminosilicates which show that the increase of the cation field strength directly correlates with an increase of the Al [5] population (Allwardt et al., 2005b;[START_REF] Florian | 27 Al NMR Study of the Structure of Lanthanum-and Yttrium-Based Aluminosilicate Glasses and Melts[END_REF][START_REF] Iftekhar | Glass Formation and Structure-Property-Composition Relations of the RE 2 O 3 -Al 2 O 3 -SiO 2 (RE = La, Y, Lu, Sc) Systems[END_REF][START_REF] Thompson | Non-stoichiometric non-bridging oxygens and five-coordinated aluminum in alkaline earth aluminosilicate glasses: Effect of modifier cation size[END_REF]. In this respect, the SrO-Al 2 O 3 -SiO 2 system has a behaviour similar to sodium aluminosilicate glasses which have a small to non-detectable amount of high coordinated Al species [START_REF] Stebbins | The structure and dynamics of alkali silicate liquids: A view from NMR spectroscopy[END_REF]Allwardt et al., 2005a,b). Contrarily to MAS and CAS systems, Al [6] is not detected in SrO-Al 2 O 3 -SiO 2 glasses apart from a couple of compositions for which it represents less than 0.5 % of the total intensity.

Influence of structural changes on macroscopic properties

It is well known that the SiO 2 glass network consists only of SiO 4 tetrahedra forming low-and high-membered rings (Figure 3a) hence S conf (T g ) is minimal in this case (Figure 8) and consists of a pure topological contribution [START_REF] Richet | Thermodynamics of silicate melts: configurational properties[END_REF]. Under substitution of SiO 2 by SrAl 2 O 4 the following changes take place. The number of particles in the system increases (two AlO 4 -units for one Sr 2+ cation), additional structural units (AlO 4 , AlO 5 ) appear in the system and tetrahedral rings start to include not only SiO 4 but also AlO 4 . As expected, the fragility (inset of Figure 1) increases with decreasing SiO 2 content. This proves that, when Al goes in tetrahedral position and substitutes Si, it produces Al-O-Al linkages which are weaker than Si-O-Si ones. In agreement with [START_REF] Angell | Relaxation in liquids, polymers and plastic crystals -strong/fragile patterns and problems[END_REF], the increase in fragility also well correlates with the increase in the C p,l /C p,g from 1.1 up to 1.2 where C p,l values were calculated from the partial heat capacity of the liquid from [START_REF] Richet | Heat capacity of aluminum-free liquid silicates[END_REF] and C p,g values were calculated from partial heat capacity of the glass for SiO 2 and Al 2 O 3 from [START_REF] Richet | Heat capacity of silicate glasses[END_REF] and for SrO from [START_REF] Robie | Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1bar Pressure and at Higher Temperatures[END_REF]. Starting from a pure topological contributions to the configurational entropy (5 J/mol•K for SiO 2 glass), some new topological and chemical contributions are added upon addition of SrAl 2 O 4 into SiO 2 leading to an increase of S conf (T g ) (Figure 8) and to a rapid drop in T g under introduction of small quantities of SrAl 2 O 4 into SiO 4 -based network. Going from 75 to 42 mol% of silica T g decreases gradually (Figure 2) as a consequence of an increasing melts fragility, increasing disorder in the system and increasing fraction of AlO 5 (reaching a maximum of 4.5 % at 42-50 mol% of SiO 2 ; see Figure 6b). Below 42 mol% of silica the melts' fragility continues to increase while the fraction of low-membered rings prevails and the AlO 5 content decreases down to 1.4 %. S conf (T g ) seems to reach a plateau around 21 J/mol•K in this region (Figure 8) and it is likely that different contributions to the configurational entropy start to compensate each other in this low-silica content region. For example, the number of particles continues to increase with addition of SrAl 2 O 4 , but at the same time the number of different structural units decreases (less SiO 4 and AlO 5 ). Considering the lack of the viscosity data (and hence values of S conf (T g )) for the compositions SA20.40, SA10.45 we can only assume that the observed increase in T g with further decrease in SiO 2 content is due to a progressive ordering of the system.

A similar behaviour has been already observed in the CaO-Al 2 O 3 -SiO 2 system, where the viscosities and glass transition temperatures first decrease with SiO 2 content decreasing down to 30 mol% and then increase with further decreasing SiO 2 [START_REF] Neuville | Etude des Propriétés Thermodynamiques et Rhéologiques des Silicates Fondus[END_REF]Neuville et al., 2004b). It is worth noticing that the maximum in Al [5] content (Figure 6b), observed for the composition SA42.29, corresponds to the minimum in T g (Figure 2). The same trend has been seen for the Ca tectosilicates
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where a maximum in Al [5] and a minimum in T g are observed for the composition CA33.33 (Neuville et al., 2004a(Neuville et al., ,b, 2006)). Thus, five-fold coordinated Al can be seen as having a similar role as Si [5] species in promoting the viscous flow [START_REF] Farnan | The nature of the glass transition in a silica-rich oxide melt[END_REF]. Such a participation of the AlO 5 units in the network mobility has been proposed by [START_REF] Poe | Structure and Dynamics in Calcium Aluminate Liquids: High-Temperature 27 Al NMR and Raman Spectroscopy[END_REF] for aluminate melts and more recently by [START_REF] Losq | The role of Al 3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts[END_REF] for aluminosilicate melts. In other words, since in both systems, SAS and CAS, the minimum in T g matches with the maximum in AlO 5 content we can conclude that minor species such as AlO 5 should significantly influence the transport mechanisms for the tectosilicate compositions (Neuville et al., 2008b).

CONCLUSION

Spectroscopic investigations of SrO-Al 2 O 3 -SiO 2 glasses were made using Raman, NMR and X-ray absorption spectroscopy in order to obtain information on short and medium range order on glass structure and correlate those to viscosity measurements close to the glass transition temperature.

All these experiments give a better knowledge on this ternary system, in particular:

-Al [5] is present in all studied glasses, though in quantities less that for Mg and Ca aluminosilicates with similar compositions. A maximum of approximately 4.5 % of five-fold aluminium environments has been found for the compositions around 40-50 mol% of SiO 2 .

-X-ray absorption spectroscopy indicates that the first coordination shell of strontium in tectosilicate glasses is close to that found in strontianite. This suggests a coordination number of Sr close to 9, which is higher than that of Mg and Ca for analogous compositions in MAS and CAS systems. A detailed analysis is underway and should allow us to shed light on Sr coordination in these compounds.

-Aluminium randomly replaces silicon in tetrahedral units when SrAl 2 O 4 added to silica leading to a linear shift of the high frequency Raman bands as well as of the average chemical shifts of Al [4] and Al [5] . Such linear trends and negative correlation between 27 Al NMR and Raman has been previously observed for Mg and Ca aluminosilicates. [START_REF] Urbain | Viscosity of liquid silica, silicates and alumino-silicates[END_REF] and viscosities for the intermediate compositions were estimated linearly from the end-members. Lines are only guide for the eye.

Figure 2. T g versus silica content. Points for SA10.45 and SA20.40 compositions were obtained using DTA. Error bars are less than the size of symbols except for SA10.45 and SA20.40 for which they were reasonably set at ±5 K level. Line is a guide for the eye. A dashed part of the line shows expected behaviour of T g curve in the region of 75-100 mol% of SiO 2 (no experimental data available for the SAS system). T g of 1473 K for vitreous silica is from [START_REF] Bruckner | Properties and structure of vitreous silica[END_REF]. (1982). Orange symbols correspond to Na tectosilicates [START_REF] Neuville | Role of aluminium in the silicate network: In situ, high-temperature study of glasses and melts on the join SiO 2 -NaAlO 2[END_REF], blue symbols correspond to Mg tectosilicates (Neuville et al., 2008a) and green symbols correspond to Ca tectosilicates (Neuville et al., 2004a). New data on Sr aluminosilicates are represented by red symbols. Lines are only guide for the eye.

Figure 5. Left: 1D 27 Al Quantitative 1 pulse MAS NMR of studied glasses. A shift to higher values of δ iso is clearly visible. Right: Deconvolution of the 27 Al NMR spectrum for SA50.25 using the GIM model [START_REF] Massiot | Modelling one-and two-dimensional solid-state NMR spectra[END_REF]. Black solid line is the original spectrum, red dashed line is the sum, blue solid line -the signal from AlO 4 sites, blue dashed line with asterisk -a spinning side band, green solid line -the signal from AlO 5 sites.

Figure 6a. Evolution of isotropic chemical shift δ iso of Al [4] and Al [5] for SAS (red), CAS (green, Neuville et al., 2004a) and MAS (blue, Neuville et al., 2008a) glasses. Error bars are less than symbols' size.

Figure 6b

. Population of Al [5] in SAS (red), CAS (green, Neuville et al., 2004a) and MAS (blue, Neuville et al., 2008a) glasses. Lines are only guide for the eye.

Figure 7. XANES spectra at the Sr K-edge for Sr tectosilicate glasses with a crystalline standard (SrCO 3 ).

Figure 8. S conf (T g ) as a function of SiO 2 content. Line is a guide for the eye. Error bars was set as ±5 % after [START_REF] Neuville | Viscosity and mixing in molten (Ca, Mg) pyroxenes and garnets[END_REF]. 

2. 5

 5 Nuclear magnetic resonance spectroscopy 27 Al NMR experiments were performed on an Avance III Bruker 850 MHz (20.0 T) spectrometer working at an 27 Al frequency of 195.5 MHz. Chemical shifts for 27 Al are referenced to a 1 M aqueous

  or to Si-O stretching involving oxygen motions in the Si-O-Si plane[START_REF] Mcmillan | A study of SiO 2 glass and supercooled liquid to 1950 K via hightemperature Raman spectroscopy[END_REF]. It decreases in intensity rapidly with decreasing silica content and moves to lower frequency. A band appearing in this region again for SA20.40 and more visibly for SA10.45 has a different nature and could possibly be related to a shift of the entire high-frequency envelope to lower frequency under substitution of SiO 2 by SrAl 2 O 4 .

-

  Viscosity and DTA measurements show the presence of a minimum in T g for the composition with 42 mol% of silica. With further addition of SrAl 2 O 4 T g increases slightly. Similar observations have been made for Ca tectosilicates. Calculated values of S conf (T g ) increases gradually while SiO 2 content decreases pointing to an increase of disorder in the system while replacing Si by Al in the glass network. A C C E P T E D M A N U S C R I P T

Figure 3a .

 3a Figure 3a. Uncorrected normalized Raman spectra of Sr tectosilicate glasses. SiO 2 spectrum corresponds to one of INF302 silica glass.

Figure 3b .

 3b Figure 3b. Boson peaks of uncorrected spectra of SAS glasses. The line shows a trend in the evolution of a Boson peak with changing composition.

Figure 4a .

 4a Figure 4a. Deconvolution of the high-frequency region of corrected and normalized Raman spectra of SAS glasses. Orange bands are related to T 2s vibrational mode, blue and green ones -to vibrations of Q 4, II and Q 4, I species, respectively.

Figure 4b .

 4b Figure 4b. Dependence of Raman shift of Gaussian bands on silica content obtained from fitting of the high-frequency region of Raman spectra. ◪ -T 2s vibrational mode, ■ -vibrations of Q 4, II species, ◩ -vibrations of Q 4, I species. Information on vitreous SiO 2 (black symbols) is from Mysen et al
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Table 1 .

 1 Chemical composition (in wt%)* and density (in g/cm 3 ) of studied glasses.

		SA75.12	SA63.18	SA57.21 SA50.25 SA42.29	SA33.33 SA26.37 SA20.40	SA10.45
	SiO 2	62.54(16) 48.59(21) 42.73(9) 36.15(3) 29.72(11) 22.55(15) 16.35(1) 12.96(10) 7.00(4)
	Al 2 O 3	18.01(9) 24.68(5) 27.36(10) 30.35(4) 33.37(3) 36.88(22) 39.67(8) 41.25(25) 46.08(10)
	SrO	19.45(12) 26.73(26) 29.91(19) 33.49(2) 36.91(8) 40.57(37) 43.98(7) 45.78(30) 46.92(29)
	Density 2.636(1) 2.837(3) 2.928(12) 3.024(1) 3.132(3) 3.211(2) 3.298(1) 3.359(2) 3.426(2)
	* Average of 5-10 analyses made with a Cameca SX100 electron microprobe for each glass at 15 kV
	and 10 nA with 90 s counting time.	

Table 2 .

 2 Viscosity measurements performed on Sr aluminosilicate glasses. Viscosity is in log(Pa•s) and temperature is in K.

	SA75.12		SA63.18		SA50.25 a	SA42.29		SA33.33		SA26.37
	T	η	T	η	T	η	T	η	T	η	T	η

Table 3 .

 3 T g and VFTH parameters (A, B, T 1 ) retrieved from the fitting of low-temperature viscosity data. m is fragility of melts. C p,g , C p,l , Cp conf and Adam-Gibbs parameters (A e , B e , S conf (T g )) determined from the viscosity data presented in Figure1. See explanation in the text on how the values of C p,g and C p,l were obtained. T g , T 1 , T 0 are in K; C p,g , C p,l , C p conf , B e are in J/mol; A e is in log(Pa•s), S conf (T g ) is in J/(mol•K).

		SA75.12	SA63.18	SA50.25 SA42.29 SA33.33	SA26.37	SA20.40 SA10.45
	T g	1169.2	1159.8	1154.1	1153.0	1153.1	1158.1	1185.8*	1214.0*
	A	-5.7944	-14.0710	-6.3440	-8.1320	-9.8495	-20.3770	-	-
	B	10614.0	18048.0	7771.7	9314.8	10226.0	21514.0	-	-
	T 1	572.7	467.5	730.4	690.3	685.1	493.6	-	-
	m	34.9	43.7	49.9	50.2	53.8	56.4	-	-
	C p,g	77.21	79.58	82.18	83.80	85.56	87.11	88.59	90.91
	C p,l	88.97	92.46	96.22	98.57	101.14	103.49	106.32	110.64
	C p conf	11.77	12.88	14.04	14.77	15.58	16.38	17.73	19.73
	A e	-2.6425	-2.6278	-3.1003	-3.4952	-3.4188	-3.1614	-	-
	10 5 B e	1.9656	2.2416	3.0132	3.8054	3.9249	3.6818	-	-
	S conf (T g )	11.48	13.21	17.29	21.30	22.06	20.96	-	-
	T 0	384	647	699	690	742	806	-	-

* T g value was obtained from DTA measurements

Table 4 .

 4 Gaussian bands' positions (V i , cm -1 ) and areas (A i , a.u.) obtained from the deconvolution of the high-frequency region of the Raman spectra.

		SA75.12 SA63.18 SA57.21 SA50.25 SA42.29 SA33.33 SA26.37 SA20.40 SA10.45
	V 1	990.1	956.0	936.5	935.2	934.2	923.4	836.9	831.1	813.7
	V 2 1099.7	1038.3	1012.5	1003.7	988.9	958.0	939.7	935.4	926.2
	V 3 1181.9	1139.8	1117.4	1106.0	1096.0	1046.0	1014.6	1013.1	1007.3
	A 1	30.4	23.9	17.2	25.6	22.5	3.2	1.6	4.6	7.6
	A 2	50.3	73.5	93.6	102.0	101.9	96.2	72.2	65.5	42.0
	A 3	8.8	23.2	31.8	25.0	13.3	25.7	40.8	27.6	15.8

Table 5 .

 5 27 Al MAS NMR parameters obtained from the deconvolution of the spectra using a Czjzek model. δ iso is isotropic chemical shift (in ppm) and C Q is quadrupolar coupling constant (in MHz).Figure captionsFigure1. Viscosity curves of studied glasses as a function of reciprocal temperature. Lines are VFTH fits. Error bars are less than symbols' size. Inset: viscosity data for Sr aluminosilicates plotted versus T g /T, representing melt's fragility. High-temperature data for SA75.12, SA50.25 and SA26.37 are reproduced from

	Population is in %.								
		SA75.12 SA63.18 SA57.21 SA50.25 SA42.29 SA33.33 SA26.37 SA20.40 SA10.45
	δ iso									
	AlO 4	60.3	62.8	64.1	66.2	68.3	71.3	74.1	76.0	77.8
	AlO 5	32.1	34.2	35.0	39.0	40.3	40.0	39.5	41.1	43.4
	C Q									
	AlO 4	7.31	7.29	7.00	7.32	7.41	7.45	7.81	8.11	7.53
	AlO 5	7.82	7.83	7.13	8.65	8.67	7.62	6.39	6.93	6.81
	Population									
	AlO 4	97.8	97.1	97.7	95.7	95.5	96.9	98.0	97.8	98.6
	AlO 5	2.2	2.9	2.3	4.3	4.5	3.1	2.0	2.2	1.4
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