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Abstract

T-branes are supersymmetric configurations described by multiple Dp-branes
with worldvolume flux and non-commuting vacuum expectation values for two
of the worldvolume scalars. When these values are much larger than the string
scale this description breaks down. We show that in this regime the correct
description of T-branes is in terms of a single Dp-brane, whose worldvolume
curvature encodes the T-brane data. We present the tale of the journey to
reach this picture, which takes us through T-dualities and rugby-ball-shaped
brane configurations that no eye has gazed upon before.
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1 Introduction

T-branes were first introduced [1] as special types of D7-brane vacuum configurations,
where the eigenvalues of the complex worldvolume scalar Φ fail to capture the physics of the
system (see also the earlier work [2]). As a consequence, the profile of Φ is always entangled
with a non-trivial worldvolume flux, and the spectrum of low-energy fluctuations typically
features an interesting variety of unconventional brane-model-building phenomena. T-
branes are not really special to D7-branes, but also exist for other Dp-branes (as follows
trivially from T-duality).

Since their introduction, there has been a stream of efforts on uncovering the pecu-
liarities of these supersymmetric vacua from multiple perspectives, and on investigating
their potential applications to string phenomenology [3–13]. There is however an aspect
of T-branes that so far has not been thoroughly investigated: The key feature of T-branes
is the presence of a non-trivial worldvolume scalar commutator [Φ,Φ†], hinting to possible
connections [1, 8] to other D-brane physics where non-Abelian effects become important,
such as the dielectric (Myers) effect [14] or the non-Abelian realization [15] of the Callan-
Maldacena monopole [16].

However, it is unclear what this connection is. Non-Abelian fields on Dp-branes nor-
mally give rise to dielectric D(p + 2)-brane charges [14, 15], and this happens when three
of their real worldvolume scalars have non-commuting expectation values. In contrast,
for T-branes only two scalars are non-commuting, which makes the connection tenuous.
Furthermore, for D7-branes the only possible dielectric dipole charge corresponds to D9-
branes. Since these branes are space-filling, they have infinite energy density from a D7
worldvolume perspective and therefore cannot be thought of as dielectric branes.

There is another way to phrase this problem. The Myers effect relates a non-Abelian
Dp-brane description of a system to a description in terms of an Abelian D(p + 2)-brane
that wraps a two-sphere and has worldvolume flux. The regimes of validity of the two
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descriptions are complementary. The non-Abelian description is valid when the commuta-
tors of the expectation values of the fields are small compared to the string scale, while the
Abelian D(p+ 2)-brane description is valid when these commutators are large (and hence
the curvature of the two-sphere wrapped by the D(p + 2)-brane is lower than the string
scale) [14,15]. As we explained above, for T-branes the naive Abelian description in terms
of dielectric branes is problematic. Therefore, we have no way to describe them when their
worldvolume fields are large and the non-Abelian picture breaks down. The goal of this
paper is to construct such a description.

The final result is that our Abelian description of the T-brane does not involve Dp-
branes polarizing into D(p+ 2)-branes, but rather a single curved Dp-brane, whose world-
volume curvature encodes the original flux (or equivalently the non-commutative) data
of the T-brane. Focusing (without loss of generality) on D7-branes, we explicitly show
that the easiest possible T-brane configuration preserving minimal supersymmetry in 5+1
dimensions corresponds to a single D7-brane with vanishing worldvolume flux, extended
along a specific holomorphic curve in the four remaining directions.1

To reach our result we make a detour through a T-dual type IIA system consisting
of D6-branes ending on a D8-brane, for which the relation between the non-Abelian [15]
and the Abelian [16] description is well understood. Our T-brane tale is schematically
depicted in Figure 1: We start with the traditional description of T-branes via Hitchin-like
equations for a stack of D7-branes, which relate the non-commuting worldvolume scalars
to a non-trivial worldvolume flux. We T-dualize this configuration along one of the D7
worldvolume directions aligned with the worldvolume flux; this transforms the T-brane
into a smeared stack of D6-branes satisfying Nahm-like equations.2 We then construct the
Abelian description of this system, in terms of a funnel-shaped D8-brane with a rugby-ball
cross-section and non-trivial worldvolume flux (which can be thought of as a stretched
Callan-Maldacena spike [16]). This description becomes more and more accurate as the
number of D6-branes increases. Our final step is to return to type IIB, by T-dualizing
this Abelian D8-brane back along the same direction. This results in a single D7-brane
extended along a two-dimensional holomorphic manifold, which we claim to be the correct
description of T-branes away from the non-Abelian regime. As an immediate consistency
check of our result, the fact that T-branes and D7-branes have compatible supersymmetries
is encoded in the holomorphicity of this two-dimensional manifold.

Along the way we find a novel, two-parameter family of D8-brane solutions with funnel
shape, whose cross-section is a generic tri-axial ellipsoid. For a particular limit of the
parameters, this family of vacua degenerates to the well-known Callan-Maldacena solution
with spherical cross-section [16]. This class of solutions is interesting in its own right, and
deserves further study. For example, it is likely that such general solutions will encode
more general T-brane configurations than the one we considered here, which corresponds

1Our result is reminiscent of brane recombination for T-branes [1, 9], but there is a crucial difference:
The effect we find is a large-N effect, which cannot be captured by a gauge that only retains the holmorphic
data (see Section 6 for further remarks).

2The duality between Hitchin’s and Nahm’s systems was recently exploited in [8] to investigate the
relationship between T-branes and D8/D6 systems with a Nahm pole.
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Figure 1: Summary of our construction.

to a one-parameter bi-axial ellipsoid (rugby ball) sub-class.
The organization of the paper follows the development of the tale. We start by briefly

reviewing in Section 2 the traditional presentation of T-branes, specifying the particular
context and vacuum configurations we will be focusing on. In Section 3 we discuss the first
T-duality and describe the vacuum solution in the non-Abelian language of D6-branes. In
Section 4 we describe the same physical system using the Abelian Born-Infeld action of
a funnel-shaped D8-brane with rugby-ball cross-section. Section 5 is the epilogue of the
tale, where we T-dualize the system back to the original duality frame and obtain the
description of the T-brane in terms of a curved D7-brane. This is the main result of this
paper. In Section 6 we make some concluding remarks and discuss our hopes for future
adventures. In Appendix A we construct the D8-brane solutions with generic tri-axial
ellipsoidal cross-section.

2 T-branes

Our T-brane tale starts in this section, where we introduce its main character: A specific
supersymmetric vacuum configuration of type IIB string theory preserving a quarter of
the original supercharges and six-dimensional Poincaré invariance. We refer to [1,7,17] for
background material relevant to the present discussion.

Consider type IIB string theory on R5,1×C2, where C2 is parametrized by coordinates
w, z, and a stack of N D7-branes placed at z = 0.3 The BPS conditions for the D7-branes

3The 5 + 1 space-time dimensions play no role in our tale, and will hence not be discussed.
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are given by a set of complex equations and a set of real ones, given respectively by

∂̄A Φ = 0 , (2.1a)

F + [Φ,Φ†] = 0 . (2.1b)

Here Φ is the Higgs field made from the two worldvolume scalars of the D7, which trans-
forms in the adjoint of the gauge group G = SU(N).4 When Φ is diagonal, its eigenvalues
give the transverse positions (in the z-plane) of the components of the D7 stack. The anti-
holomorphic covariant derivative in the w coordinate is ∂̄A ≡ ∂̄+[Aw̄, ·], and Aw̄ = −(Aw)†

is the anti-holomorphic part of an anti-Hermitian SU(N) gauge connection with (self-
adjoint) field strength F = ∂Aw̄ − ∂̄Aw + [Aw, Aw̄]. Equations (2.1) are known as the
Hitchin system [18].5

The vacuum solution we want to examine here is specified in terms of N − 1 real
functions on the complex w-plane: {fa}a=1,...,N−1. The Higgs field is a nilpotent N × N
matrix of the form6

Φ =


0 φ1

0 φ2 0
. . . . . .

0 0 φN−1

0

 , φa =
√
a(N − a) eCabfb/2 , (2.2)

with Cab the Cartan matrix of SU(N). The gauge field A is diagonal, with anti-holomorphic
part given by

Aw̄ = −1

2
∂̄faCa , (Ca)ij = δiaδaj − δi,a+1δa+1,j , (2.3)

where Ca are Cartan generators for SU(N). It is easy to verify that the above Ansatz
automatically satisfies the complex equations (2.1a). Since the gauge field strength takes
the form F = −∂∂̄faCa, the real equations (2.1b) translate into a Toda-like system of
second-order partial differential equations on the w-plane for the N − 1 functions fa [1]:

∂∂̄fa = a(N − a)eCabfb . (2.4)

This vacuum configuration does not describe a system of intersecting D7-branes, be-
cause Φ cannot be diagonalized. It is, instead, the easiest instance of a T-brane, where
the worldvolume flux and the non-commuting worldvolume scalars cannot be disentangled

4The field Φ should be regarded as a (1, 0)-form on the w-plane, as reflected in equations (2.1), but in
our non-compact setting, this is not essential. We also disregard the U(1) associated to the center of mass,
which decouples.

5 It is possible to couple this system to defects of the worldvolume effective theory, which show up
as a triple of adjoint-valued moment maps in the right hand side of (2.1). The latter can be physically
interpreted as vacuum expectation values of bifundamental matter fields localized on the points of C2

where the D7 stack intersects other 7-branes [7]. In this paper we will just consider an isolated stack of
D7-branes, and thus not allow for this possibility.

6We adopt the convention of summing over repeated indices and we work in units of 2πα′.
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and permeate the entire brane worldvolume. Indeed, as explained in [1], the solution de-
scribed above originates from the following constant nilpotent Higgs field in the so-called
“holomorphic” gauge7

Φh =


0 φh

1

0 φh
2 0

. . . . . .

0 0 φh
N−1

0

 , φh
a =

√
a(N − a) , (2.5)

where the superscript h stands for holomorphic. In the language of nilpotent orbits,
this solution corresponds to the principal orbit of the algebra sl(N,C), and hence com-
pletely breaks the gauge group. Although we will only be explicitly discussing this solu-
tion throughout the paper, the generalization to the other nilpotent orbits of sl(N,C) is
straightforward. The field Φh will in general have a Jordan block structure, which reflects
the partition of N associated to the given nilpotent orbit. We can then repeat for each
block a story analogous to the one we are about to tell for the single-block solution (2.5),
by simply replacing N by the size of the block.

To conclude this section, let us remark that, in our T-brane tale, the real BPS equations
(2.1b) are the ones that play the key role. Therefore, the physics we discuss cannot be
captured by working in the holomorphic gauge.

3 The D6 picture

In this section we would like to tell the first episode of our T-brane tale, which consists in
taking a T-duality in the w-plane of the configuration introduced in the previous section.
We will obtain a type IIA configuration of N coincident D6-branes with non-commuting
worldvolume scalars. To do that, we must first compactify one of the real directions of the
w-plane, and require all vacuum profiles to be independent of it. Therefore let w = σ + is
be a cylindrical coordinate, with s ' s + 2π the compact direction. Having an isometry
along s amounts to reducing the Toda-like system (2.4) to an easier set of second-order
ordinary differential equations:

f ′′a (σ) = 4a(N − a)eCabfb(σ) , (3.1)

where the symbol ′ denotes the derivative with respect to σ. Note that, if we write

fa(σ) ≡ a(N − a) log g(σ) , (3.2)

the N − 1 equations (3.1) collapse to a single one for g(σ):

d2

dσ2
log g(σ) = 4g2(σ) . (3.3)

7In this gauge, all non-holomorphic data, like the (1, 1) component of the field strength, are invisible,
and moreover the gauge connection can be gauged away. Supersymmetric vacua are thus simply specified
by a holomorphic Higgs field modulo complexified gauge transformations.
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The gauge field (2.3) is sent by T-duality to a D6 worldvolume scalar, which we call Φ3

and whose eigenvalues parametrize the position of the various components of the D6 stack
along the direction dual to s. Denoting Φ1 = Φ + Φ† and Φ2 = i(Φ† −Φ), we consider the
following Ansatz

Φ1(σ) = g(σ)Σ1 , Φ2(σ) = g(σ)Σ2 , Φ3(σ) = − g
′(σ)

2g(σ)
Σ3 , (3.4)

where Σi are generalized Pauli matrices, defined as Σ1 = Φh + Φh†, Σ2 = i(Φh† − Φh) and
Σ3 = diag(N + 1− 2m)m=1,...,N . The latter determine a N ×N representation of the su(2)
algebra, as they satisfy the relation [Σi,Σj] = 2iεijkΣk. It is immediate to see that, thanks
to (3.3), the worldvolume scalars (3.4) satisfy the so-called Nahm equations [19]:

d

dσ
Φi(σ) =

i

2
εijk[Φj(σ),Φk(σ)] , (3.5)

which are indeed the T-dual version of the Hitchin equations (2.1b).
As explained in [15], non-constant/non-commutative solutions of (3.5), just like those

of (3.4), represent 1/4 BPS vacuum configurations of a stack of D6-branes. Indeed, given
that this solution is static, one can immediately derive its energy from the full non-Abelian
DBI action of a stack of N D6-branes extended along σ. Remarkably, this energy density
can be expressed as the square root of a sum of perfect squares [20]:

E ∝
∫

dσ STr
√

(Φ′i − i
2
εijk[Φj,Φk])2 + (1 + i

2
εijkΦ′i[Φj,Φk])2

≥
∫

dσ STr (1 + i
2
εijkΦ

′
i[Φj,Φk]) , (3.6)

where STr denotes the symmetrized trace [21],[22],[14]. Thus any solution of (3.3)-(3.4)
sets the first square to zero and, as one expects for supersymmetric solutions, also satisfies
the full non-Abelian equations of motion [15].

Let us examine the profile of the configuration given by (3.4). Note that, if we mul-
tiply both sides of equation (3.3) by 2(log g)′, we can easily realize that the combination√

(g′/g)2 − 4g2 must be a constant, which we call C and whose physical meaning will soon
be apparent. Equation (3.3) thus reduces to the first-order equation

g′(σ) = −g(σ)
√

4g2(σ) + C2 . (3.7)

Fixing the integration constant in such a way that the domain of definition of the solution
is σ > 0, we get

g(σ) =
C

2 sinh(Cσ)
. (3.8)

This scalar configuration describes a fuzzy funnel, in which the N D6-branes, which
are very close to each other at large σ, start expanding and eventually open up into a
D8-brane located at σ = 0. The cross-section of this funnel at fixed σ is a prolate ellipsoid
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of revolution (a rugby ball), which has two equal semi-axes (ρ) and a third longer semi-axis
(r), given by

ρ(σ) =

√
3Tr(Φ2

1 + Φ2
2)

2N
=
C
√
N2 − 1

2 sinh(Cσ)
,

r(σ) =

√
3Tr Φ2

3

N
=
C
√
N2 − 1

2 tanh(Cσ)
.

(3.9)

The rugby-ball ellipsoid becomes more and more like a basketball as we approach the D8-
brane, and the radius of this basketball blows up like 1/σ. On the contrary, near the core
of the funnel (for large σ), the small semi-axes, ρ, vanish exponentially, whereas the long
semi-axis, r, goes to the constant C

√
N2 − 1/2. This clarifies the meaning of C: Indeed,

looking at the profile of Φ3 in (3.4) for σ → +∞, we see that the N D6-branes are uniformly
distributed along the direction 3 (the T-dual of s), with spacing given asymptotically by
C. In the T-dual type IIB configuration of the previous section, a non-zero C corresponds
to a non-trivial asymptotic value of the Wilson line along s for the stack of D7-branes. In
the limit C → 0, our ellipsoid solution becomes the sphere solution of [15], with radius
ρ = r =

√
N2 − 1/(2σ), which collapses at the core of the funnel.

Finally, we can also calculate the energy density of this D6 configuration, by plugging
the solution (3.4) and (3.8) into (3.6). We find:

E(σ) ∝ N +
N(N2 − 1)C4

4 sinh4(Cσ)

(
1 +

2

3
sinh2(Cσ)

)
. (3.10)

For large σ, the non-commutative picture just outlined is the accurate description of
the physical system at hand, because the D6-branes are all very close to each other and
the physics is non-Abelian. However, if C is larger than the string scale, the W-bosons
are already massive at σ = ∞, the gauge group is broken to the Cartan, and no gluing
mode can condense to give rise to a T-brane. This is confirmed by the exponential fall-off
of the nilpotent profile of Φ for large C. Nevertheless, for very small values of C, the
off-diagonal degrees of freedom are approximately massless and can acquire a non-trivial
vacuum expectation value. We will encounter again the smallness condition for the constant
C when discussing validity regimes more systematically in Section 6.

4 The D8 picture

When the number of D6-branes and the vevs of the non-Abelian fields are very large,
the physics of the brane configuration considered in the previous section is captured by a
different system, consisting of a single funnel-shaped D8-brane with non-trivial worldvol-
ume gauge flux, F2 [15].8 Hence, this can be thought of as a type of Myers effect for the

8The Abelian and the non-Abelian brane pictures are equivalent in the large N limit (up to 1/N2

corrections), and their regimes of validity are somewhat complementary, with an overlap whose size grows
with N (for more details see Section 6).
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D6-branes, with the difference that what keeps the D6-branes polarized are the boundary
conditions, and not the bulk fluxes as in [14]. When all the non-commutative matrices in
(3.4) are equal, the corresponding Abelian D8-brane configuration is the Callan-Maldacena
solution [16], in which the boundary of the D6-branes ending on the D8-brane is viewed as
a magnetic source for the gauge field living on the D8. In this section we will present the
analogous construction for the more general ellipsoidal solution (3.9), and this is the next
episode of our T-brane tale.

Given the absence of any Ramond-Ramond background fields, the physics of our D8-
brane is entirely determined by its DBI action

SDBI ∝
∫

d6x

∫
dθdϕdσ

√
det {δ|D8 + F2} , (4.1)

where δ|D8 denotes the pull-back of the flat metric on the D8 worldvolume and the d6x
is the R5,1 measure. We will choose the following embedding of the D8 into space-time,
tailored to the rugby-ball ellipsoidal shape (3.9):

X1 = ρ(σ) sin θ cosϕ ,

X2 = ρ(σ) sin θ sinϕ ,

X3 = r(σ) cos θ ,

X4 = σ ,

(4.2)

where X i are space-time coordinates, and θ , ϕ , σ are worldvolume coordinates. The
non-commutative coordinates Φ1,Φ2,Φ3 of the D6 picture have as commutative analogs
X1, X2, X3 respectively. We also restrict to a worldvolume flux corresponding to uniformly
distributed D6 charge

F2 =
N

2
sin θ dϕ ∧ dθ . (4.3)

With (4.2) and (4.3), we can compute the 3× 3 matrix appearing in (4.1):

δ|D8 + F2 =


ρ2 cos2 θ + r2 sin2 θ −N

2
sin θ sin θ cos θ(ρρ′ − rr′)

N
2

sin θ ρ2 sin2 θ 0

sin θ cos θ(ρρ′ − rr′) 0 1 + ρ′ 2 sin2 θ + r′ 2 cos2 θ

 . (4.4)

The determinant of (4.4) splits into a sum of three perfect squares, and setting two of
them to zero (as we did for (3.6)) gives the minimum-energy conditions for this system:

ρ′ = − 2

N
ρ r ,

r′ = − 2

N
ρ2 .

(4.5)
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These first-order differential equations are solved by:

ρ(σ) =
CN

2 sinh(Cσ)
,

r(σ) =
CN

2 tanh(Cσ)
.

(4.6)

The shape of this D8-brane is sketched in Figure 2.
As expected, the expressions (4.6) agree with those in eq. (3.9), up to 1/N2 terms9.

Likewise, one can compute the energy density of the system and find agreement with the
D6 picture, eq. (3.10), to the same level of approximation:

E(σ) ∝ N +
C4N3

4 sinh4(Cσ)

(
1 +

2

3
sinh2(Cσ)

)
, (4.7)

where we recognize the D6 contribution in the term linear in N and the D8 contribution
in the term cubic in N . In fact, the C-dependence of the second piece is illusory, as it
disappears when integrating over σ with a very small cutoff ε to avoid the divergence:

E|D8 ∼
(
N

ε

)3

. (4.8)

In contrast to the D6 picture, the D8 picture is supposed to accurately describe the physics
of this system in the region of space where both semi-axes are very large, and thus the
curvature of the D8-brane is low in string units (see the discussion in Section 6).

Let us close this section by noting that the Ansatz (4.2) for the D8 embedding can
be generalized further to a tri-axial ellipsoidal shape. To the best of our knowledge, all
these supersymmetric solutions with ellipsoidal symmetry are new in the literature and
interesting in their own right. More details about them, including their BPS equations
and solutions thereof, are given in Appendix A, which thus contains the derivation of (4.6)
as a particular limit.

5 . . . and back again

Having derived the D8-brane shape in the previous section, we are approaching the epilogue
of our T-brane tale: We return to type IIB by T-dualizing the Abelian D8-brane config-
uration back along the X3 direction. The result will be a single D7-brane with vanishing
worldvolume flux, extended along a specific holomorphic curve in C2.

As emphasized in Section 4, the D8 picture is reliable when the semi-axes (4.6) are very
large in string units. Expanding the rugby-ball solution in this region of space (small σ),
we obtain ρ ≈ r ≈ N/2σ.

9More precisely ∆ρ/ρ ∼ O(1/N2), and the same for r.
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Figure 2: Sketch of the D8 shape. The length of the line at σ =∞, along X3, is CN .

In order to see the fate of our funnel-shaped D8-brane after T-duality along X3, the
first step is to change coordinates on the D8 worldvolume, trading θ for X3. Remebering
that ρ ≈ r, the matrix (4.4) becomes

δ|D8 + F2 ≈


1

1−(X3/ρ)2
N
2ρ

−ρ′ X3/ρ
1−(X3/ρ)2

−N
2ρ

ρ2(1− (X
3

ρ
)2) Nρ′

2ρ
X3

ρ

−ρ′ X3/ρ
1−(X3/ρ)2

−Nρ′

2ρ
X3

ρ
1 + ρ′ 2

1−(X3/ρ)2

 . (5.1)

Even though this D8 configuration displays no isometry along X3, it is not hard to see
that the determinant of the above matrix, and thus the DBI dynamics of the system, does
not depend on X3. In order to be able to T-dualize this solution, we zoom in on the
equator of the rugby ball, θ = π/2, which eliminates the X3 dependence of (5.1), and
thus is equivalent to approximating the rugby ball with a cylinder. The profile ρ = ρ(σ)
is unaffected by this operation, because the equation of motion remains the same. Very
roughly, this happens because, at each fixed σ, the local D8 charge contributions on the
X1,2-plane above the equator cancel out the corresponding ones below the equator.

One may worry that zooming in on the equator discards information regarding the ends
of the rugby ball. In fact, one could have raised a similar objection at the first step of
the tale, where we T-dualized the D7 stack but considered D6-branes spread over a finite
interval of the T-duality direction.10 However, in the D6 picture, the type IIB T-brane

10Since we T-dualized at the level of the equations of motion, we did not discuss this issue at that stage.
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data should be captured just by the D6-branes in the middle of the interval (where there
is an approximate isometry along the T-duality direction), and not by the D6-branes near
the boundaries. Zooming in on the equator implements this in the Abelian D8 picture.

Therefore we are led to consider a D8-brane whose shape is sketched in Figure 3 and
whose defining data are the following

ρ =
N

2σ
,

Fϕ 3 = ∂ϕA3 = −N
2ρ

= −σ .
(5.2)

T-dualizing the above configuration along X3 is straightforward: We obtain a D7-brane
with no worldvolume flux and with shape determined by the following pair of equations in
the four-dimensional ambient space parametrized by ρ, ϕ, σ, X̃3:

ρ =
N

2σ
,

ϕ = −X̃
3

σ
.

(5.3)

where X̃3, which the potential A3 is mapped to, denotes the coordinate T-dual to X3.

Figure 3: Sketch of the D8 shape after zooming into a small neighborhood of the equator.

In order to make supersymmetry manifest, we can translate the two real equations
(5.3) into a single complex holomorphic one. Consider an ambient C2 parametrized by the
complex coordinates

Z = ρ eiϕ ,

W = σ eiX̃
3/σ .

(5.4)
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Note that the coordinate Z is identical to the z used in Section 2, whereas W differs from
the w of Section 2. However, for σ � 1, W ≈ σ + iX̃3 = w, where we identified X̃3 ≡ s.
Using (5.3) and (5.4), our D7-brane can then be seen to wrap the holomorphic curve

ZW =
N

2
. (5.5)

A three-dimensional plot of this shape is displayed in Figure 4.

Figure 4: Three-dimensional profile of the D7-brane after T-duality, in which |Z| and |W |
are plotted and rotated on the diagonal. The size of the minimal circle is proportional to
N .

We have therefore reached an alternative description of our starting T-brane configu-
ration (2.2), whereby the flux data of the latter is now encoded in the curvature of the
worldvolume surface (5.5), whose Ricci scalar is given by

R = −256N2 σ6

(N2 + 4σ4)3
. (5.6)

Remarkably, even if our derivation of (5.5) was performed in the regime of small σ, where
the Ricci curvature of the D8-brane is small, our final D7-brane configuration never suffers
from a large-curvature problem. Indeed, as manifest from (5.6), working at large N is
enough to guarantee that our D7-brane has a small curvature for all values of σ. Thus α′

corrections are negligible, which suggests that our Abelian picture of the T-brane could
give a correct description of the physics even for small vevs of the non-Abelian fields. We
plan to investigate this exciting possibility in the future.

6 Discussion

In this paper we have considered a specific class of T-brane solutions with 5+1-dimensional
Poincaré invariance, realized as a particular set of eight-supercharge vacua on a stack of
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D7-branes with non-commuting worldvolume scalars and non-trivial worldvolume flux. We
have worked in a local patch of the internal part of the D7-brane worldvolume and of its
transverse space, thus decoupling gravitational effects and neglecting all issues related to
compactification.

The class of T-branes we have focused on is specified by an integer partition of N ,
the number of D7-branes composing the stack. When N is large, we have found a novel
description of the T-brane corresponding to the maximal partition, consisting of a single
D7-brane with no worldvolume flux, wrapping the smooth holomorphic curve ZW = N/2
in C2. One can trivially extend our construction to a generic partition of N , {ni}i=1,...,k.
When all the ni are large, our new description will consist of k fluxless D7-branes wrapping
the curves {ZW = ni/2}i=1,...,k. In particular, we observe an enhancement of the preserved
gauge group when two or more ni coincide, which is consistent with the original T-brane
description. The maximal partition that we have analyzed corresponds to a vacuum which
breaks the SU(N) gauge symmetry completely.

We have achieved our result by making a detour through type IIA string theory, and
relating the T-branes to certain supersymmetric systems of Dp-branes ending on D(p+ 2)-
branes that give rise to rugby-ball-shaped bion cores.

Throughout our T-brane tale, we have disregarded the backreaction of all D-branes on
the bulk geometry, by tuning the string coupling constant gs such that gsN � 1. This
weak coupling limit has no effect on the funnel shapes we have discussed, because they are
determined by the interplay between the D6 and D8 tensions, and hence are independent
of gs [16].

We have argued that our Abelian description of the T-brane is the correct one when
vevs of the non-Abelian fields and flux densities are large in string units, and hence the
non-Abelian description [1], based on equation (2.1b), breaks down.

Indeed, in the T-dual type IIA description, the Abelian and the non-Abelian pictures
have complementary regimes of validity. However, as pointed out in [15], these two regimes
are expected to overlap, in a region whose size grows as N increases. To see this for
our rugby-ball D6-D8 funnels, we have to analyze when higher-order variations of the
worldvolume fields are much smaller than first-order variations, which are the only ones
captured by the DBI action. For the non-Abelian physics of the D6-branes, this condition
is

|Φ′′i | � |Φ′i| , ∀ i = 1, 2, 3 . (6.1)

Using the explicit solution (3.4) and (3.8), it is easy to express this as an upper bound for
the larger semi-axis: r � N . Since, at σ = ∞, r approaches a non-zero minimal value,
rmin ∼ CN , the non-Abelian description is consistent when C � 1. We thus recover a
condition that we guessed on physical grounds at the end of Section 3. The Abelian D8
picture is valid when (in string units)∣∣∣∣d2σ

dρ2

∣∣∣∣� ∣∣∣∣dσdρ

∣∣∣∣ , ∣∣∣∣d2σ

dr2

∣∣∣∣� ∣∣∣∣dσdr
∣∣∣∣ . (6.2)

By inspecting the solution (4.6), we easily see that both these conditions are satisfied so
long as ρ � CN , which gives a lower bound for the smaller semi-axis. Therefore the
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quantity CN should not be too large, in order not to spoil the D8 picture. Thus, when
C is of order 1/N , both the Abelian and the non-Abelian descriptions are valid, and the
overlap is proportional to N .11

Based on this analysis, one would expect that our Abelian description of the T-brane
is not only valid for very large non-Abelian vevs and flux densities (when the non-Abelian
description breaks down), but also when these vevs are small and the non-Abelian descrip-
tion is reliable. In fact, the regime of validity of the Abelian T-brane description appears
to extend over the whole non-Abelian regime of validity: This is because for large N the
curvature (5.6) is low for the whole range of σ and there is no worldvolume flux. We believe
that this remarkable phenomenon deserves a deeper understanding.12

As mentioned in the Introduction, our Abelian description of T-branes is reminiscent
of brane recombination for T-branes associated to “reconstructible” Higgs fields13 [1]. Our
Higgs field (2.2) is non-reconstructible, and if one tries to carry over the brane recombina-
tion analysis of [1], one finds a highly singular configuration [9]. The effect that we find in
this paper is a large-N effect, which cannot be captured in a gauge where one keeps only
the holomorphic data, as done in [1,9]. It would be interesting to understand if there is any
connection between the effect we find and brane recombination, and whether our solution
can be thought of as the smoothing out of the singular “brane-recombination” shape of [9]
by non-holomorphic physics.

The main result of this paper raises the obvious question of whether there is a direct
way of deriving our Abelian description of T-branes without the need of following an in-
direct path, like in Figure 1. A positive answer would open up a plethora of new research
directions. For example, it would allow one to explore more complicated T-brane solu-
tions, such as those involving non-constant holomorphic functions in the (holomorphic)
Higgs field (2.5). It would also be very exciting, especially in light of possible phenomeno-
logical applications, to extend our derivation to four-dimensional T-brane vacua with four
supercharges, possibly containing non-trivial monodromies.

Acknowledgements
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A Funnel shapes for the D8-branes

In this appendix, we would like to describe a class of 1/4 BPS solutions consisting of funnel-
shaped D8-branes whose cross-section is a generic tri-axial ellipsoid. They naturally arise
as solutions of the Abelian DBI dynamics of a single D8-brane with magnetic flux. To
the best of our knowledge they are new in the literature, and reduce to the long-known
spherical solution of [16] for a particular choice of parameters. The more general bi-axial
ellipsoid solutions (rugby balls), relevant for this paper and presented in Section 4, can be
recovered as a limit of these most general solutions.

Let us start with the following tri-axial Ansatz for the embedding of a D8-brane with a
worldvolume parametrized by θ, ϕ, σ, into a flat Euclidean ambient space with coordinates
X1, . . . , X4:

X1 = r1(σ) sin θ cosϕ ,

X2 = r2(σ) sin θ sinϕ ,

X3 = r3(σ) cos θ ,

X4 = σ .

(A.1)

We also take a worldvolume gauge field strength, F2 = N
2

sin θdϕ ∧ dθ, that is uniform14.
The worldvolume flux and the pull-back of the metric give the 3× 3 matrix:

δ|D8 + F2 =(
cos2 θ

(
r22 sin2 ϕ + r21 cos2 ϕ

)
+ r23 sin2 θ − 1

2
sin θ

(
N +

(
r21 − r

2
2

)
cos θ sin(2ϕ)

)
sin θ cos θ

(
r2r

′
2 sin2(ϕ) + r1r

′
1 cos2 ϕ− r3r′3

)
1
2
sin θ

(
N +

(
r22 − r

2
1

)
cos θ sin(2ϕ)

)
sin2 θ

(
r21 sin2 ϕ + r22 cos2 ϕ

)
sin2 θ

(
r2r

′
2 − r1r

′
1

)
sinϕ cosϕ

sin θ cos θ
(
r2r

′
2 sin2 ϕ + r1r

′
1 cos2 ϕ− r3r′3

)
sin2 θ

(
r2r

′
2 − r1r

′
1

)
sinϕ cosϕ sin2 θ

(
r′2

2 sin2 ϕ + r′1
2 cos2 ϕ

)
+ cos2 θr′3

2 + 1

)
.

This results in a DBI Lagrangian density, whose square can be written as a sum of four
perfect squares:

L2
DBI ∝ sin2 ϕ

(
N

2
− r′1r2r3 sin2 θ cos2 ϕ− r1r

′
2r3 sin2 θ sin2 ϕ− r1r2r

′
3 cos2 θ

)2

+ (sin2 θ cosϕ)2

(
1

2
Nr′1 + r2r3

)2

+ (sin2 θ sinϕ)2

(
1

2
Nr′2 + r1r3

)2

+ (sin θ cos θ)2

(
1

2
Nr′3 + r1r2

)2

,

(A.2)

which makes it easy to extract the BPS equations as minimum-energy conditions

r′i+1 = − 2

N
ri+2ri+3 , with i ≡ i+ 3 . (A.3)

14Solutions with non-uniform F2 can in principle also be constructed. See [24] for some examples
involving D2-branes.
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These equations can be disentangled to give the following system:

r2
1 − r2

2 −
(
NC2

2

)2

= 0 ,

r2
1 − r2

3 −
(
NC3

2

)2

= 0 ,

r′1 +
2

N

√
r2

1 −
(
NC2

2

)2
√
r2

1 −
(
NC3

2

)2

= 0 ,

(A.4)

where C2 and C3 are integration constants. The only differential equation left in (A.4) has
the solution

r1 =
N

2
C2 sn

(
C3 (σ − C1)

∣∣∣∣∣
(
C2

C3

)2
)
, (A.5)

where “sn” is the Jacobi sine elliptic function and C1 is the remaining integration constant
[25]. This function has poles at

2m1K + (2m2 + 1)iK ′ , (A.6)

where mi are integers, K = K(k) and K ′ = K(1− k), where K is the Elliptic K function
and k = (C2/C3)2. This is only one pole, because the function has a period given by
4m1K + 2m2iK

′, and it is odd under shifts of the argument by 2m1K. Hence, by defining
C4 = −C1 + iK ′/C3, we have the following leading behavior at σ ≈ C4:

r1 =
N

2(σ − C4)
+O(σ − C4) . (A.7)

This pole represents a D8-brane which, without loss of generality, we can place at σ = 0,
by fixing C4 = 0. The expression for r1 can now be written as

r1 =
NC3

2 sn

(
C3σ

∣∣∣∣(C2

C3

)2
) . (A.8)

This expression is generally periodic, and describes periodically reoccurring D8-branes.
However, there are two limits in which the period becomes infinite:

lim
C2→0

r1 =
NC̃3

2 sinh(C̃3σ)
,

lim
C2→C3

r1 =
NC3

2 tanh(C3σ)
,

(A.9)

where C̃2
3 = −C2

3 . The first limit requires C3 to be purely imaginary, while in the second
limit C3 is real. From (A.4) we can see that the first limit leads to r1 = r2 ≤ r3, hence
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the tri-axial ellipsoid is reduced to the rugby ball discussed in Section 4. The other limit
is equivalent, but with r1 ≥ r2 = r3.

The first limit is the one used in Section 4, with C3 = C, r1 = r2 = ρ and r3 = r. Its
small-σ behavior is given in (A.7), while for large σ we have

r → N

2
C ,

ρ→ NCe−Cσ .
(A.10)

The limit C → 0 reproduces the spherical shape of [15,16]

r = ρ =
N

2σ
. (A.11)
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