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Abstract: We examine SL(2,Z) anomalies in ten and eight-dimensional supergravities, the

induced local counterterms and their realization in string theory. Composite connections play

an important rôle in the cancellation mechanism. At the same time their global properties

lead to novel non-trivial consistency constraints on compactifications.
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1 Introduction

The moduli space of supergravity theories with high enough supersymmetry has the structure

of a coset manifold (or of a product thereof), typically denoted by G/H. The numerator

denotes the U-duality group of the theory, whose discrete version GZ gives rise to an exact

symmetry (in fact, a superselection rule) after quantization, whereas the denominator (the

maximal compact subgroup ofG) is regarded as a gauge symmetry of the theory. In particular,

the supersymmetry variations of all fermionic fields, which are inert underG, involve the gauge

composite connection corresponding to H. The content of physical particles of the theory

is usually identified by fixing the gauge, thereby eliminating the redundant bosonic degrees

of freedom associated to H. In some cases, however, H contains a U(1) factor, which may

couple to fermions in a chiral fashion, a priori giving rise to a chiral anomaly.
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When the local symmetry is gauge fixed, the U-duality becomes non-linearly realized.

Moreover, the fermionic fields now transform under G. This transformation may still be

realized as a phase shift. Therefore, the gauge fixing translates the U(1) anomaly into a GZ
one, making the theory ill-defined [1]. This anomaly can be canceled by the addition of a

local counterterm with appropriate GZ-modular properties.

The easiest instance of such a phenomenon appears in maximal eight-dimensional (8D)

supergravity. The relevant part of the coset is given by SL(2,R)/U(1). The ensuing local

counterterm involves a modular function in the complex scalar parametrizing the coset and

provides a higher-derivative (∼ α′3) correction to the action. Similar behaviour is displayed

by 8D theories with 16 supercharges which have a more complicated coset structure.

The pure ten-dimensional (10D) type IIB supergravity does not have an anomaly in spite

of having SL(2,R)/U(1) coset. However the presence of seven-branes generates an SL(2,Z)
anomaly [2]. The fact that the anomaly is generated by seven-branes makes one wonder if

the counterterm is related to higher-curvature couplings on the seven-brane worldvolume.

In this paper we try to address the above question in the type IIB context. Moreover, we

examine this type of anomalies in various supergravity theories in eight dimensions, with both

maximal and minimal supersymmetry and with several choices of gauge group. The aim is to

compare the higher-derivative terms fixed by anomaly cancelation to the effective couplings

derived from the relevant string amplitudes. In some cases we find a perfect agreement of

the higher-derivative structure. In 8D, this happens for the maximal supergravity and for

the minimal one with SO(32) and E8 ×E8 gauge groups. For other gauge groups in 8D there

appear additional higher-derivative structures in the amplitude-induced effective couplings.

For the cases of 8D non-Abelian symmetry of rank 16, we give an interpretation of such new

structures in terms of massive states arising from the breaking of SO(32) or of E8 ×E8. The

details of such amplitude computations, crucial for this comparison, will appear separately in

[3], which fills some gaps in the existing literature on the one-loop five-point amplitudes.

Compactifications on Kähler manifolds of positive curvature and the role of composite

connections is another aspect explored in this paper. In fact, tadpole cancellation relates the

curvature of the composite connection to the curvature of the compactification space. Hence

the global properties of the former impact the consistency of lower-dimensional theories. In

particular, we note the importance of the massive states for the anomaly cancellation in

six-dimensional (6D) theories obtained from an S2 reduction of 8D minimal theories.

The outline of the paper is as follows. In section 2, we review the SL(2,Z) anomaly in 10D

type IIB theory with seven-branes, and investigate its possible relation to brane couplings.

Section 3 is devoted to the study of the SL(2,Z) anomaly in maximal 8D supergravity.

Section 4 does the same for minimally supersymmetric 8D theories with gauge groups SO(32),
E8 × E8, SO(16)2 and SO(8)4, and contains a detailed comparison with string amplitude

results. Global constraints on the composite connections are discussed in section 5. The

concluding section 6 outlines some implications for the consistency of compactifications to

lower-dimensional theories. Conventions and some technical details are collected in three

appendices.

– 2 –



2 The SL(2,Z) anomaly in type IIB supergravity

A very interesting instance of composite U(1) anomaly in supergravity theories arises already

in the 10D type IIB theory [2]. The purpose of this section is to briefly review its cancellation

mechanism, which will be common to all the anomalies discussed in this paper. Furthermore,

we will speculate on some suggestive implications this particular 10D anomaly appears to

have, especially concerning higher-derivative couplings on D7-brane worldvolumes.

2.1 The Green-Gaberdiel counterterm

The 10D type IIB theory has a global SL(2,R) symmetry. The SL(2,R) group manifold can

be parametrized by a complex scalar τ = τ1+ iτ2 (identified with the axio-dilaton field) taking

values in the upper half plane, and a real (angular) scalar 0 ≤ φ ≤ 2π, which is a pure-gauge

degree of freedom charged under the local symmetry group U(1) ⊂ SL(2,R). The scalar

manifold of the theory, i.e. the coset space SL(2,R)/U(1), is then usually described by the

following vielbein

V a
i = 1√

−2iτ2
(τ̄ e

−iφ τeiφ

e−iφ eiφ
) . (2.1)

Under a general SL(2,R) ×U(1) transformation, the vielbein V a
i transforms as

V ′a
i = AabV

b
j u

j
i , (2.2)

where A is the SL(2,R) matrix

A = (a b

c d
) , a, b, c, d ∈ R, ad − bc = 1, (2.3)

and u is

u = (e
−iΣ 0

0 eiΣ
) , 0 ≤ Σ ≤ 2π , (2.4)

which thus shifts φ as φ → φ + Σ. The composite U(1) connection is locally the SL(2,R)-
invariant combination

Qµ = ∂µφ −
∂µτ1

2τ2
, (2.5)

so that its U(1) field strength takes the local form

F = dQ = dτ ∧ dτ̄
4iτ2

2

. (2.6)

The two gravitini form a complex conjugate pair which carry charges ±1
2 under U(1), and the

two dilatini form a complex conjugate pair of opposite chirality and of charges ±3
2 . Due to

these chiral couplings, the theory may suffer from an anomaly for the U(1) gauge symmetry.

At the perturbative level, this anomaly can be detected from one-loop hexagon diagrams

containing at least one composite gauge field (2.5). Alternatively, it can be seen to descent
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from a 12-form anomaly polynomial, which, according to the rules summarized in appendix

A, takes the form:

P12 =
F 2

2π
[2X−

8 (R) + p1(R)
48

( F
2π

)
2

− 1

32
( F

2π
)

4

] , (2.7)

where we defined

X±
8 (R) = 1

192(2π)4
(trR4 ± 1

4
(trR2)2) , (2.8)

in terms of the 10D Einstein-frame curvature two-form R, and p1(R) = −1
2 trR

2/(2π)2 is

the first Pontryagin class. The absence of an F 0-term in the expression (2.7) is clearly due

to the well-known freedom of the type IIB theory from pure local gravitational anomalies.

Moreover, the absence of a linear term in F implies that the new U(1) anomaly vanishes for

a pure supergravity theory (i.e. without brane sources). Indeed, if no 7-brane is present, F

is an exact form and, because of its composite structure (2.6), it squares to zero. On the

contrary, when 7-branes are there, the expression (2.6) is only valid away from them, because

the background value of τ undergoes monodromies around such sources.

From the anomaly polynomial (2.7) one deduces the anomalous phase variation of the

partition function

∆ = −∫ Σ [2X−
8 (R) + p1(R)

48
( F

2π
)

2

− 1

32
( F

2π
)

4

] F

2π
, (2.9)

which can clearly be cancelled by the addition of the following counterterm in the 10D action:1

Sφ = ∫ φ [2X−
8 (R) + p1(R)

48
( F

2π
)

2

− 1

32
( F

2π
)

4

] F

2π
. (2.10)

This formalism is notoriously redundant. However, upon fixing the gauge (say by setting

φ ≡ 0), symmetries will be realized non-linearly. Nevertheless, one can still describe the

transformation properties of all fermion fields as local phase shifts, by specifying their charge

under the U(1) gauge symmetry. This is achieved simply by exploiting the property of

the vielbein (2.1) to convert SL(2,R) indices into U(1) indices. The result is that, in the

gauge fixed theory, any field Ψ with charge q under the local U(1) will have the following

transformation under SL(2,R):

SL(2,R) ∋ ( a b
c d

) ∶ ΨÐ→ eiqΣ(τ)Ψ with Σ(τ) = −arg(cτ + d) . (2.11)

Therefore, in a gauge fixed formulation, one needs to add to the 10D action an appropriate

counterterm compensating for the non-trivial transformation of the fermion path integral

1Note that, contrary to [2], higher powers of F appear in Sφ. The assertion of [2] that F 2
= 0 is only true in

the absence of 7-branes. Only in this case the expression (2.6) is well defined. Otherwise F 2 is a form which

localizes on the 7-brane worldvolume. As we will reiterate later, in the absence of 7-branes the anomaly is

absent.
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measure under (2.11). The quantum theory is expected to be symmetric only under the

discrete subgroup SL(2,Z) ⊂ SL(2,R),2 and hence anomaly cancellation requires a Chern-

Simons-like counterterm with suitable modular properties3, such as

S(10) ⊃ i∫ ln(η(τ) j̄
1/12(τ̄)

η̄(τ̄) j1/12(τ)
) [2X−

8 (R) + p1(R)
48

( F
2π

)
2

− 1

32
( F

2π
)

4

] F

2π
. (2.12)

In the absence of 7-branes there is no anomaly and the above coupling is completely inert

under SL(2,Z): Indeed F = dQ globally and the integrand of (2.9) can be easily seen to

reduce to a total derivative.

In the presence of 7-branes, instead, F represents a non-trivial cohomology class. The

equations of motion for the background link this quantity to the metric of space-time as

F = − i
2
trR , (2.13)

so that the non-trivial vacuum profile for the axio-dilaton induces a non-trivial Ricci curvature.

The F 5-term in (2.12) would only contribute if we allow ⟨τ⟩ to vary over the whole 10D space.

In the language of F-theory such a situation would mean compactifying on an elliptically fibred

Calabi-Yau sixfold. While there is no reason to believe that this is inconsistent, we would

soon run into trouble due to the lack of a fundamental definition of F-theory. The cubic and

linear terms of (2.12), instead, are both present for instance in a compactification to 4D, and

it is an interesting question to find their F/M-theory lift. This lift should be written solely

in terms of gravitational invariants of the elliptic Calabi-Yau fourfold (in the same spirit of

[5]). Our present goal, however, is more modest. We restrict our attention to space-times of

the form M10 = M8 × S2, where ⟨τ⟩ is only allowed to vary on the 2-sphere, and study the

consequences of the F -linear part of the coupling (2.12), which is the only one that survives

in this case.

2.2 F-theory on K3 and 7-brane couplings

As is well known, F-theory compactifications on K3 are a class of type IIB vacua preserving

minimal supersymmetry in 8D and involving exactly 24 vortex-like sources (7-branes) localized

on the 2-sphere. It is also well known that not all of these 7-branes are mobile, due to certain

global obstructions which leave only at most 18 of them free to move around. It is amusing to

realize that the structure of the Green-Gaberdiel anomaly, reviewed in the previous section,

“knows” about these gravitational constraints, in a sense that we are now going to explain.

By a suitable choice of SL(2,Z) frame, one can choose the 18 dynamical sources to

be ordinary D7-branes which in a generic region of the moduli space give rise to a U(1)18

2Taking into account the action on fermions, the group SL(2,Z) should be replaced by a non-trivial Z2

extension thereof [4]. However, we will ignore this subtlety here, as our focus is on local gauge anomalies and

hence on loops which are not able to detect any global sign ambiguities.
3As explained in [2], anomaly cancellation is not enough to completely fix the modular function of the

counterterm. Here we adopt the choice proven in [2] to be consistent with compactications of the 8D theory.
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gauge group. The resulting 8D theory is an N = 1 supergravity coupled to 18 Maxwell

supermultiplets. The moduli space of this theory includes the coset
SO(2,18)

SO(2)×SO(18) , and the

couplings of the various fermions to the SO(2) are chiral [6]. The theory therefore suffers

from a local U(1) anomaly [1] whose cancellation mechanism is very much analogous to the

10D one previously reviewed. There is however a crucial difference with respect to the Green-

Gaberdiel anomaly: The 8D anomaly is not related to sources of monodromy for the moduli

fields, but it is there even in their absence. The reason is that the 8D anomaly polynomial is

a 10-form including a term linear in the composite field strength (and quartic in the Riemann

tensor), which need not vanish. We will have much more to say about this class of anomalies

in section 4, where we will analyze them for a variety of vacuum configurations with non-

Abelian gauge groups. We will assume absence of branch cuts for the 8D moduli, with the

exception of a few remarks in sections 5 and 6.

We leave the general discussion to section 4, where we list the fermionic fields of these

theories, together with their U(1) charges and chiralities. Here we just state the result for

the case at hand: Taking into account the contributions of the gravitino, the dilatino and the

18 gaugini, the ensuing anomaly is cancelled by adding the following counterterm to the 8D

effective action

S(8) ⊃ ∫ f(z, z̄) 1

32(2π)4
[11

15
trR4 − 1

12
(trR2)2] , (2.14)

where f(z, z̄) is a function of the moduli, collectively denoted by z, with the appropriate

modular properties to counterbalance the anomalous phase variation in the path integral.

Remarkably, the quartic polynomial in the 8D Riemann tensor appearing in (2.14) is exactly

reproduced by adding the contribution of 24 punctures to the polynomial (2.9) fixed by the

10D anomaly cancelation. More precisely, one first brings the 10D anomalous phase variation

down to 8D, by using the fact that F /2π integrates to −2 on the 2-sphere, and that all its

higher powers vanish. This is due to the relation (2.13), which means that −F /2π represents

the first Chern class of the tangent bundle of the string internal manifold [7]. Then one adds

a term due to the 24 punctures, as if each of them would contribute a dynamical gaugino of

charge 1/2. All in all one obtains:

4X−
8 (R) + 24 × 1

2
Â(M8)∣8−form = 1

32(2π)4
[11

15
trR4 − 1

12
(trR2)2] , (2.15)

where Â(M8) is the so-called A-roof genus, quoted in (A.2).

We would now like to point out another intriguing implication of the 10D SL(2,Z)
anomaly cancellation. We will indeed argue that the Green-Gaberdiel counterterm (2.12)

codifies the structure of higher-derivative R4 couplings on D7-brane worldvolumes in the

regime of strong string coupling4. The story is analogous to the one of R2 couplings on

D3-branes [10], whose expression for any value of the string coupling is dictated by the

4Note that R2 couplings on the D7-brane trivially extend to strong gs, as they induce D3-brane charge

which is S-duality invariant. See [8, 9] for their F/M-theory origin.
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cancelation of an SL(2,Z) anomaly of the N = 4 Maxwell theory living on the D3-brane.

Here, however, things are more involved, as D7-branes are not singlets under SL(2,Z). But

F-theory teaches us how to handle this problem: As long as gravitational effects are concerned,

at strong coupling the physics of D7-branes is completely codified by a non-Ricci-flat 10D bulk

geometry together with a non-trivial axio-dilaton profile. Therefore from this perspective it is

very reasonable to look at 10D SL(2,Z) anomaly cancelation to seek for the strong coupling

completion of R4 terms on D7-branes. In the following we provide strong evidence that the

counterterm (2.12) plays the role of such a completion.

To this end, we first take a weak string coupling limit gs = ⟨τ2⟩−1 → 0 of (2.12) and bring

the coupling down to 8D by using, as before, ∫S2 F /2π = −2 (all higher F -powers being zero).

We thus obtain:

2π∫ τ1X
−
8 (R) , (2.16)

where we have used that in this limit ln(η(τ) j̄
1/12(τ̄)

η̄(τ̄) j1/12(τ)
) → iπτ1

2 .

Let us now compare (2.16) with the weak coupling expectation of the higher-derivative

couplings to the Ramond-Ramond axion τ1. To do that we have to compute the total D(-1)-

brane charge induced by the brane content of the theory. In a regime of weak coupling the 24

7-branes arrange themselves in 4 O7−-planes and 16 D7-branes plus 16 D7-images [11] (see

also [12]). Since an integral (mobile) D(-1)-brane charge is made up of a pair D(-1)/image-

D(-1) brane, we must compute it on the orientifold double cover of the 2-sphere. We use

the well known formulae for the induced brane charges [13–15], which for a single Dp-brane

(with trivial normal and gauge bundle) read ΓDp
−1 = 2π

√
Â(M8) and for a single O7−-plane

(with trivial normal bundle) read5 ΓO7
−1 = −16π

√
L̂(M8/4) (see appendix A for the relevant

definitions). In addition to that, there is a density of D3-brane charge which (if part ofM8 is

compactified) needs to be added to cancel the one induced by the 24 7-branes. This amounts

to p1(R)/2. Of course these D3-branes also induce D(-1)-brane charge and, if we take into

account that too, we obtain the following axion coupling:

∫ τ1 (32 × ΓD7
−1 + 4 × ΓO7

−1 + p1(R)
2

× ΓD3
−1 ) (2.17)

= 2π

192(2π)4 ∫ τ1 (32 × 1

32 × 15
[8trR4 + 5(trR2)2] − 4 × 1

16 × 15
[5(trR2)2 − 28trR4] − (trR2)2

2
)

= 2π

192(2π)4 ∫ τ1 (trR4 + 1

4
(trR2)2 − (trR2)2

2
)

= 2π∫ τ1X
−
8 (R) ,

i.e. exactly what is predicted by the 10D SL(2,Z) anomaly cancelation.

This remarkable match comes with an annoying puzzle which remains to be explained:

Why should the F-theory coupling (2.12) “know” about D3-branes, which do not backreact

5The symbol M8/4 means taking 1/4 of R, the curvature of the tangent bundle [16, 17].
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on the axio-dilaton. Notice that the D3-brane contribution, i.e. the last piece in the l.h.s. of

(2.17), just flips the sign of (trR2)2 in (2.8) from + to −. The sign flip could presumably be

explained in an alternative way, by a suitable redefinition of the Ramond-Ramond four-form

potential C4. Such a redefinition, at any value of the string coupling, should look like

C4 Ð→ C4 +
i α′2

192(2π)
ln(j(τ)

j̄(τ̄)
) trR2

(2π)2
, (2.18)

which respect the SL(2,Z) invariance of C4. Operating this redefinition adds an additional

contribution to the induced D(-1)-brane charge on D7-branes and explains the sign flip from

− to + when going to weak coupling, without relying on explicitly added D3-branes. We hope

to clarify this issue in the future.

3 The SL(2,Z) anomaly in D=8, N=2 supergravity

We now turn to the case of N = 2 supergravity in 8D, which is obtained, for instance, by

a T 2 compactification of the type IIB theory. We will discuss the structure of the anomaly

counterterm and match it with the higher-curvature terms inferred from string amplitudes.

Let U = U1 + iU2 be the complex structure and T = B89 + iVT 2 be the (complexified)

Kähler structure of T 2 respectively. The moduli space of the theory is

SL(2,R)
U(1)

× SL(3,R)
SO(3)

, (3.1)

where the first factor is parametrized by U .

The field content of this 8D theory is given by a graviton supermultiplet comprising

[6, 18]: 1 graviton, 2 gravitini (doublet under Spin(3) = SU(2)), 6 vectors, 2+4 dilatini

(doublet + quadruplet under Spin(3) = SU(2)), 7 real scalars, 3 2-forms and 1 3-form. The

U(1) charges of the gravitini, of the doublet of dilatini and of the quadruplet of dilatini are

respectively (they are all positive chiral): 1
2 , 3

2 and −1
2 . Finally, the 4-form field strength can

be split in self-dual and anti-self-dual part, carryiing charges 1 and −1 respectively under U(1)
[1, 18, 19]. Hence, using the index formulae in appendix A, the 10-form anomaly polynomial

is given by [19]

P10 =
F

2π
[2 × 1

2
Id=83/2 − 4 × 1

2
I1/2 + 2 × 3

2
I1/2 + 2 × Iform]

8−form
, (3.2)

where, in analogy to (2.6), F is the composite field strength built out of U . By the descent

method we thus deduce the following anomalous phase variation of the path integral

∆ = −12∫ Σ X−
8 (R) , (3.3)

where X−
8 (R) is defined in (2.8). As in section 2, gauge fixing translates the U(1) anomaly

into an SL(2,Z) anomaly, which we can cancel by introducing in the 8D action a counterterm
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of the form6

S
(8)
IIB ⊃ 12i∫ ln(η(U)

η̄(Ū)
)X−

8 (R) . (3.4)

In the case of type IIA compactified on T 2 we get by T-duality (T ↔ U)

S
(8)
IIA ⊃ 12i∫ ln(η(T )

η̄(T̄ )
)X−

8 (R) . (3.5)

The above terms (3.4) and (3.5) are consistent with string amplitude results. Indeed, if we

extract the CP-odd part of the 8D effective action from the string amplitude computations

of [20], we get exactly the higher-derivative structure of (3.4) and (3.5).

As a final remark, note that the terms (3.4) and (3.5) also have the correct properties in

the decompactification limit, in which we send the volume of T 2 to infinity. Indeed, while the

coupling (3.4) vanishes in this limit (see appendix C for the details), the one in (3.5) gives

rise to the well-known higher-curvature terms in type IIA/M theory [21, 22].7

4 The SL(2,Z) anomaly in D=8, N=1 supergravity

Let us now turn our attention to minimal supergravity in 8D and its possible anomaly coun-

terterms. We obtain this type of theories by compactifying the Heterotic theories (either

SO(32) or E8 × E8) down to 8D on a T 2. We will focus in particular on compactifications

where the gauge group, left unbroken, does not contain U(1) factors. For the various cases,

we will first compute the SL(2,Z) counterterm needed to cancel the anomaly; then, by com-

puting the relevant 5-point string amplitudes, we will be able to show that their leading

harmonic CP-odd part exactly reproduces the higher-derivative structure of the counterterm.

For compactifications which break the original SO(32) or E8 × E8 gauge group to G, addi-

tional higher-derivative structures arise from the amplitude, due to the contribution from the

massive vector-multiplets: We will show that such new structures fit nicely with the group

theory decomposition under SO(32) → G or E8 ×E8 → G.

4.1 Generalities

Generically, T 2 compactifications of the Heterotic theories have in their spectrum a gravity

multiplet comprising 1 graviton, 1 antisymmetric 2-form, 1 gravitino, 2 graviphotons, 1 di-

latino, 1 real scalar, and n vector multiplets comprising n photons, n gaugini and 2n real

scalars parametrizing the coset
SO(2,n)

SO(2)×SO(n) . For specific values of the Wilson lines, the un-

broken gauge group does not contain U(1) factors, and correspondingly we get only n = 2

6Throughout this paper we neglect possible, subtle moduli-independent shifts of the counterterms, like

those considered in [2].
7In fact, taking a radius of a single circle to infinity, one finds a nine-dimensional coupling A1X

−

8 (R), where

in IIA frame A1 = Bµ9dx
µ, and in IIB, A1 =

α′

R2
9
gµ9dx

µ, where R is the radius of the remaining circle. In IIB,

the coupling is subsequently suppressed in the ten-dimensional limit. In IIA/M-theory it eventually lifts to

B2X
−

8 (R) / C3X
−

8 (R), unifying the composite U(1) anomaly in 8D and M5-brane anomaly.
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abelian vector multiplets. Their complex scalars T,U are identified with Kähler and complex

structure of T 2 respectively, and parametrize the coset
SO(2,2)

U(1)×U(1) .

The fermions of the theory have chiral couplings to one of the U(1)’s of the coset [23].

Since in this type of compactifications there is an exchange symmetry8 between T and U , we

can discuss the ensuing SL(2,Z) anomaly in terms of either of these two moduli, and there

will be a corresponding counterterm involving the other modulus as well. The U(1) charges

of the gravitino (positive chirality), the dilatino (negative chirality) and the gaugini (positive

chirality) are all 1
2 (we are working with Weyl representations).

Using the index formulae in appendix A, we find the following anomalous phase variation

of the path integral9

∆G = −∫
Σ

32(2π)4
[(248 + dimG) [ trR

4

360
+ (trR2)2

288
] − (trR2)2 + 1

6
trR2TrF 2 + 2

3
TrF 4] .

(4.1)

As in all previous cases, gauge fixing induces an SL(2,Z) anomaly, which is canceled by

a coupling in the 8D effective action of the type

S(8) ⊃ ∫ f(z, z̄)Y G
8 , (4.2)

where z is either T or U , f is a function with the appropriate modular properties required

by anomaly cancelation10, and we have defined

Y G
8 = 1

32(2π)4
[(248 + dimG) [ trR

4

360
+ (trR2)2

288
] − (trR2)2 + 1

6
trR2TrF 2 + 2

3
TrF 4] . (4.3)

By explicit calculation, we will show that the term (4.2) is reproduced in the CP-odd sector

of 5-point one-loop string amplitudes with 1 modulus and either 4 gravitons, or 4 gauge

bosons, or 2 gravitons and 2 gauge bosons. Because of this relationship to anomalies, this

term does not receive any further renormalization from higher string loops. We remark that

these counterterms do not lift to 10D in the decompactification limit, because the massless

particles responsible for the anomaly are different in the two theories.

In the following subsections we will explore the anomaly structure for the theories with

G = SO(32), E8 ×E8, SO(16)2 and SO(8)4.

8More precisely, these theories are invariant under the descrete group O(2,2,Z) = SL(2,Z)T ×SL(2,Z)U⋊Z2

to all orders in string perturbation theory [24] (see also [25]). In this paper we will not care about the T-duality

properties of the various couplings we discuss, but will only pay attention at their higher-derivative structure.
9All traces Tr with a capital T are in the adjoint representation of the group G.

10As in [2], anomaly cancellation does not uniquely fix the function f . A possible form of this function may

be given by f(z, z̄) = log η
24
(z)

η̄24(z̄)
+ log j(z)

j̄(z̄)
so that it cancels the SL(2,Z) variation and does not decompactify

to 10D as this anomaly term is local to 8D theory.
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4.2 SO(32) and E8 ×E8

In the cases of G = SO(32) and G = E8 ×E8 the 8-form polynomial in (4.3) takes the form

Y
SO(32)

8 = 1

32(2π)4
(31

15
trR4 + 19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4) , (4.4a)

Y E8×E8
8 = 1

32(2π)4
(31

15
trR4 + 19

12
(trR2)2 + 5trR2

2

∑
i=1

trF 2
i + 6

2

∑
i=1

(trF 2
i )2) , (4.4b)

where we have converted the traces in the adjoint into traces in the fundamental representation

(indicated by the lower-case symbol tr), using the formulae in (B.1).

Let us now compare the higher-derivative structures (4.4a), (4.4b) with the SO(32) and

the E8 × E8 5-point string amplitudes which have been calculated in [27, 28]. Here we just

give the results. For the details we refer to [3, 27, 28].
For the case G = SO(32), the amplitude gives rise to the following α′3 corrections in the

8D effective action11

SSO(32)amp = 1

192(2π)3 ∫
B89 (trR4 + 1

4
(trR2)2 + trR2trF 2 + 8trF 4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
GS

+ 1

4 × 192(2π)4 ∫
[ln(η

24(U)
η̄24(Ū)

)] ×

(31

15
trR4 + 19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
anomaly term for U

+ 1

4 × 192(2π)4 ∫
[ln(η

24(T )
η̄24(T̄ )

) − 4iπT1]

×(31

15
trR4 + 19

12
(trR2)2 + 5trR2trF 2 + 2(trF 2)2 + 16trF 4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
anomaly term for T

. (4.5)

In the above, the term in the first line, comes from the trivial orbit part of the Γ2,2 lattice in

the partition function of the Heterotic string compactified on T 2 (for the orbit decomposition

and related details of string 5-point amplitude, we refer to [3, 27]) and is in fact the T 2

reduction of the Green-Schwarz term of the 10D SO(32) Heterotic theory [26]

SGS =
1

192(2π)5α′
∫ B2 ∧ (trR4 + 1

4
(trR2)2 + trR2trF 2 + 8trF 4) . (4.6)

Remarkably, the remaining two terms in (4.5) involve an 8-form polynomial which exactly

matches the one in (4.4a) predicted by anomaly cancelation. As expected from T-duality, one

is the counterterm for the U modulus and the other is the counterterm for the T modulus.

Notice moreover, as already mentioned, that both this terms disappear in the decompactifi-

cation limit to 10D VT 2 → 0 (see appendix C for some details). This match is due to the fact

11Note that T = B89 + iVT2 .
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that the low-energy limit of the 5-point 1-loop string amplitude is the 1-loop amplitude in

supergravity, and that the IR divergence in the string loop amplitude manifests itself in the

quantum anomaly of the low-energy effective theory, detected from the UV divergence of the

supergravity 5-point 1 loop amplitude [29].

Similarly, for the case G = E8 ×E8 we find

SE8×E8
amp = 1

192(2π)3 ∫ B89 (trR4 + 1

4
(trR2)2 + trR2

2

∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2

∑
i=1

(trF 2
i )2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
GS term = Trivial orbit amplitude

+ 1

4 × 192(2π)4 ∫ [ln(η
24(U)
η̄24(Ū)

)] ×

(31

15
trR4 + 19

12
(trR2)2 + 5trR2

2

∑
i=1

trF 2
i + 6

2

∑
i=1

(trF 2
i )2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
anomaly term for U

+ 1

4 × 192(2π)4 ∫ [ln(η
24(T )
η̄24(T̄ )

) − 4iπT1]

×(31

15
trR4 + 19

12
(trR2)2 + 5trR2

2

∑
i=1

trF 2
i + 6

2

∑
i=1

(trF 2
i )2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
anomaly term for T

. (4.7)

Also in this case the trivial orbit part matches the T 2 reduction of the 10D E8 ×E8 Green-

Schwarz term [26]

SGS =
1

192(2π)5α′
∫ B2 (trR4 + 1

4
(trR2)2 + trR2

2

∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2

∑
i=1

(trF 2
i )2) ,

(4.8)

whereas the other two pieces reproduce the anomaly polynomial (4.4b) expected from anomaly

cancelation.

4.3 SO(16)2

We now consider 10D E8 ×E8 Heterotic string theory compactified on T 2 with the following

Wilson line configuration

Y 1
i = (04,

1

2

4

, 04,
1

2

4

), Y 2
i = (08, 08), i = 1,⋯,16, (4.9)

so that the gauge group is broken to SO(16) × SO(16) in 8D. One can of course rearrange

the 8 non-zero values of the Wilson lines so that one can start from the SO(32) gauge group

in 10D and again obtain SO(16) × SO(16) in 8D.

Adapting formula (4.3) to the adjoint representation (120,1) ⊕ (1,120) of SO(16)2 and

using the trace-conversion formulae (B.1) we can write the 8-form polynomial for the case
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G = SO(16)2 as follows

Y
SO(16)2

8 = 1

32(2π)4
(488

360
trR4 + 200

288
(trR2)2 + 7

3
trR2

2

∑
i=1

trF 2
i +

16

3

2

∑
i=1

trF 4
i + 2

2

∑
i=1

(trF 2
i )2) .

(4.10)

We will now compare this supergravity result with the string amplitude [3, 30]. To

this end it is convenient to decompose the string partition function in three SL(2,Z) orbits:

trivial, degenerate and non-degenerate (see [3] for the details). The final result is recorded

here for reader’s convenience

Atrivial = T1 (trR4 + 1

4
(trR2)2 + trR2

2

∑
i=1

trF 2
i − 2trF 2

1 trF
2
2 + 2

2

∑
i=1

(trF 2
i )2) , (4.11)

Adeg. =
1

96(2π)4
ln(η

24(U)
η̄24(Ū)

)(488

360
trR4 + 200

288
(trR2)2 + 7

3
trR2

2

∑
i=1

trF 2
i

+16

3

2

∑
i=1

trF 4
i + 2

2

∑
i=1

(trF 2
i )2) , (4.12)

Anon-deg. =
1

96(2π)4
[8iπT1 − ln(η

24(2T )
η̄24(2T̄ )

)](488

360
trR4 + 200

288
(trR2)2 + 7

3
trR2

2

∑
i=1

trF 2
i

+16

3

2

∑
i=1

trF 4
i + 2

2

∑
i=1

(trF 2
i )2)+ (4.13a)

+ 1

192(2π)4
[−4iπT1 + ln(η

24(2T )
η̄24(2T̄ )

) − ln(η
24(T )
η̄24(T̄ )

)]×

× [256( trR
4

360
+ (trR2)2

288
) + 8

3
trR2

2

∑
i=1

trF 2
i −

16

3

2

∑
i=1

trF 4
i + 4

2

∑
i=1

(trF 2
i )2] . (4.13b)

The above expressions translate into the following α′3 corrections to the 8D effective

action

SSO(16)
amp = ∫ [N1Atrivial +N2Adeg. +N3Anon-deg.] , (4.14)

with appropriate normalization factors N1, N2, N3. As usual, the trivial orbit term (4.11) is

the same as the T 2 reduction of the Heterotic Green-Schwarz term, as can be most easily seen

by starting from the E8×E8 one in (4.8). The degenerate orbit term (4.12) and the first piece

of the non-degenerate orbit term (4.13a) involve exactly the same 8-form polynomial dictated

by anomaly cancelation (4.10).12 Finally, the second piece of the non-degenerate orbit term

12Note that the modular coefficients in front do not appear to have the correct modular properties to

cancel the corresponding anomalous SL(2,Z) phase variations, but this is only an artefact of having split the

amplitude in three different orbits and of having adopted appropriate renormalization schemes [27].
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(4.13b) is the contribution from the massive vector multiplets in the (128,1) ⊕ (1,128)

representation of SO(16)2, as can be verified using the trace formulae (B.3a), (B.3b).

One can of course make a totally analogous analysis starting from SO(32), and using the

branching rules (B.4) and the trace formulae (B.5).

4.4 SO(8)4

The last case we analyze is the 8D N=1 theory with G = SO(8)4, which can again be obtained

from either Heterotic string theory compactified on T 2 with appropriate Wilson lines along

the two 1-cycles of the torus. Adapting formula (4.3) to the adjoint representation of SO(8)4

and using the trace-conversion formulae (B.1), the 8-form polynomial for the case G = SO(8)8

gets the relatively simple form

Y
SO(8)4

8 = 1

32(2π)4
(trR4 + 1

4
(trR2)2 + trR2

4

∑
i=1

trF 2
i + 2

4

∑
i=1

(trF 2
i )2) . (4.15)

Before moving to the string amplitude, we note that the expression (4.15) has a very

interesting rewriting

Y
SO(8)4

8 = 1

32(2π)4
[(trR4 − 1

4
(trR2)2) + 1

2

4

∑
i=1

(1

2
trR2 + 2trF 2

i )
2

] . (4.16)

In (4.16) we recognize the first piece as (proportional to) the M5-brane anomaly polynomial

X−
8 (R), that we already met in the type IIB context in section 2 (see (2.8)). The second piece

of (4.16), on the other hand, being a sum of squares, strongly suggests that an Hořava-Witten-

like mechanism is at work here [35]. We hope to come back to this intriguing observation in

the future.
Let us now compare our supergravity result with the string amplitude computation [3,

31, 34]. To this end we again decompose the string partition function in three SL(2,Z) orbits:
trivial, degenerate and non-degenerate (details can be found in [3, 31]) with the final result:

Atrivial = T1 (trR4 + 1

4
(trR2)2 + trR2

4

∑
i=1

trF 2
i (4.17a)

−2trF 2
1 trF

2
3 − 2trF 2

1 trF
2
4 − 2trF 2

2 trF
2
4 − 2trF 2

2 trF
2
3 + 4trF 2

1 trF
2
2 + 4trF 2

3 trF
2
4 + 2

4

∑
i=1

(trF 2
i )2) ,
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Adegenerate +Anon-degenerate =

1

96(2π)4
[8iπT1 − ln(η(2T )

η̄(2T̄ )
) + ln(η

24(U)
η̄24(Ū)

)] [trR4 + 1

4
(trR2)2 + trR2

4

∑
i=1

trF 2
i + 2

4

∑
i=1

(trF 2
i )2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T and U anomaly terms

(4.17b)

+ 1

96(2π)4
[8iπT1 − ln(η(2T )

η̄(2T̄ )
) + ln(η

24(U)
η̄24(Ū)

)] × (4.17c)

[128( trR
4

360
+ (trR2)2

288
) + 4

3
trR2

4

∑
i=1

trF 2
i +

4

3
(4

4

∑
i=1

trF 4
i + 3trF 2

1 trF
2
2 + 3trF 2

3 trF
2
4 )]
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. (4.17h)

The trivial orbit term (4.17a) is the same as the T 2 reduction of the Heterotic Green-Schwarz

term, as can be most easily seen by starting from the E8 × E8 one in (4.8). The higher-

derivative structure (4.15) dictated by anomaly cancelation shows up in the term (4.17b).

The next three terms (4.17c), (4.17d), (4.17e) are respectively the contributions from massive

vector-multiplets in the representations (8,8,1,1) ⊕ (1,1,8,8), (8,8,1,1)′ ⊕ (1,1,8,8)′ and

(8,8,1,1)′′ ⊕ (1,1,8,8)′′ of SO(8)4 (see appendix B for the notation). This can again be

verified most easily starting from E8 ×E8, and using the branching rule (B.7) and the trace

formulae (B.9). Finally, the last three terms (4.17f), (4.17g), (4.17h) are due to orbifold shifts,

which are generated in the elliptic genus due to the particular combination of Wilson lines.
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5 Global constraints

In the remainder of this paper, we will mostly be interested in studying compactifications of

the previously discussed 8D theories on a complex (Kähler in fact) manifold X, generally with

non-vanishing first Chern class. Regardless of supersymmetry, these theories have a composite

U(1) connection. As for 10D type IIB, the field strength of the latter will be related to the

curvature of the spacetime via an equation analogous to (2.13). This equation, together with

the fact that the spacetime fermions are charged under the U(1) in question, leads to global

constraints and interesting possibilities for possible compactification manifolds.

For the N=2 theory, ironically the general case is simpler: When the duality group is the

full SL(2,R)×SL(3,R) there is an unambiguous choice of the composite U(1) connection and

the whole story closely follows that of 10D IIB theory.13 However, one may choose to focus

on the T-duality subgroup only,14 i.e. on SL(2,R) × SL(2,R). Following section 3, we will

be thinking of the 8D theory as arising form torus reduction of type IIB theory, and take U

to be the complex structure modulus and T the complexified Kähler modulus. At this point,

one may use this accidental second composite U(1), and formulate the global constraints in

terms of their sum.15 Notably the tadpole condition analogous to the 7-brane one in type IIB

theory becomes

c1(TX) + [F (U, Ū)] + [F (T, T̄ )] = 0 , (5.2)

which is just the direct generalization of the equation (2.13) written in cohomology. Note

that when looking at possible compactifications on manifolds with nontrivial c1, requiring

that either F (U, Ū) or F (T, T̄ ) (or both) are non-trivial in cohomology is a matter of choice.

Different choices are a priori consistent and correspond to different backgrounds. We will

return to these in section 6.

Let us now turn to N=1 theories. Let the 8D gauge group be U(1)n × G, where G

is a product of semisimple groups (with rank(G) = 18 − n). The coset in question is now

SO(2, n,R)/SO(n)×U(1), and we denote the curvature of the composite connection by FQ =
F (zi, z̄i), with zi (i = 1, ..., n) being the complex moduli of the n abelian vector multiplets.

13One may of course think abut the geometrisation of the SL(3,R)/SO(3) and the ensuing U-folds, but this

is outside of the scope of our discussion.
14We choose the perturbative SL(2,R) subgroup of SL(3,R) just for concreteness, but the same discussion

should apply to other choices of SL(2,R) subgroups.
15It is instructive to look at eight-dimensional supersymmetry transformations of the fermions. For example,

the gravitino variation is given by

δψµ = [∇µ −
i

4

∂µU1

U2
γ9

+
1

4
Qabµ T

ab
] ε , (5.1)

where T ab are SO(3) generators, and the explicit form of the composite connection Qabµ as obtained by a

reduction from type IIB theory, can be found in [36]. It is not hard to see that breaking SO(3) to U(1) will

make the fermionic derivatives symmetric in the two composite connections. There is however an important

difference: Only one of the two U(1) connections comes with γ9, i.e. a chiral (anomalous) coupling. The other

fermionic variations display similar features.
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The general expression for FQ is complicated and, contrary to the N = 2 case, it does not

split into a sum of individual terms of the schematic form dzi ∧ dz̄i/(Im(zi))2. This remains

true even in the absence of Wilson lines (i.e. n = 2), and is related to the fact that in N = 1

the coset does not split as opposed to the higher-supersymmetric case.

We will still use U and T for complex stricture and complexified Kähler moduli of T 2

respectively. The main difference from N=2 comes for the fact that there are two different

tadpole conditions relating F (U, Ū) and F (T, T̄ ) to c1(TX). These conditions can be derived

just by thinking about 10D Heterotic strings on elliptically fibered Calabi-Yau manifolds. The

first comes from restricting the Calabi-Yau condition of triviality of the canonical bundle to

the base via the adjunction formula. The second can most easily be seen as a restriction

of the Heterotic Bianchi Identity to the base. Denoting the 10D spacetime (an elliptically

fibered space) as M , the base of the fibration as X and the gauge bundle as E, the Bianchi

Identity can be written as

1

2
p1(TM) − c2(E) − η(NS5) = 0 , (5.3)

where η(NS5) is the class of the full NS5-brane content. The two conditions on X are then

12c1(TX) + c1(Ẽ) + 12[F (T, T̄ )] = 0 , (5.4a)

c1(TX) + [F (U, Ū)] = 0 , (5.4b)

where Ẽ is the Abelian part of the 8D gauge group, and, analogously to 7-branes in type

IIB, we have defined [F (T, T̄ )] = η(NS5)/12. As we will see shortly, the interplay of (5.4a)

and (5.4b) imposes constraints on the choices of allowed backgrounds. For non-geometric

backgrounds one may replace [F (U, Ū)] in (5.4b) by another two-form. However this condi-

tion is generally different from (5.4a), and omitting it leads to anomalous (1,0) theories when

compactified on P1.

This situation appears to be somewhat different form the previous cases where one could

relate c1(TX) directly to the full composite field strength FQ. But this is indeed true also

here. We recall that Kähler manifolds with non-vanishing c1 may be non-spin. As complex

manifolds these however always admit a Spinc structure. As can be seen e.g. from (5.1), the

spinors are “charged” with respect to the composite U(1), that makes them well defined.16

In our normalisations this translates into the statement that the phase picked by the spinor

upon parallel transport along a closed path is integer, i.e.

1

2
(c1(TX) + [FQ]) = α ∈H2(X,Z) . (5.5)

In theories with 32 supercharges in 10D and in 8D the two classes are just equal and α = 0,

yielding respectively (2.13) and (5.2). Here, however, since we are mostly concerned with

the two-moduli case in the 8D N=1 theory, equations (5.4b) and (5.4a) should suffice for the

purposes of our next section.

16Note that in the 8D N=2 case, restricting the SO(3) composite connection to U(1) also produces well-

defined spinors. In this sense the roles of T and U are symmetric.
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6 Discussion and outlook

The interest in studying eight-dimensional theories is due to the fact that they allow construc-

tion and better understanding of more general lower-dimensional string (generally speaking,

non-geometrical) backgrounds. For example, the torsional heterotic backgrounds realized as

principal torus fibrations over K3 do not have good 10D large volume limits, whereas such

limit exist in eight dimensions. “Geometric constructions of non-geometric strings” à la [37]

are another example of how advantageous the 8D descriptions can be.

N=2 theory. Here two equally nice ways of putting the theory on a manifold with c1(TX) ≠ 0

correspond to taking respectively F (T, T̄ ) = 0 or F (U, Ū) = 0 in (5.2). Consider the simplest

choice of a Kähler manifold, X = P1, yielding six-dimensional backgrounds. The tadpole

condition (5.2) becomes ∫X F (U, Ū) = −2 or ∫X F (T, T̄ ) = −2 for these respective choices.

From the point of view of the IIB theory, the first choice appears to be “geometric”, and it

is in fact just a K3 compactification of the type IIB strings, while the second is not. The

second choice is however geometric for IIA, and corresponds to K3 compactification of type

IIA strings; conversely the non-trivial F (U, Ū) is not geometrically realized in type IIA theory.

Indeed, one would not be getting 6D (0,2) and (1,1) theories from IIA and IIB respectively

by means of (geometric) compactification on any manifold. An immediate way of seeing why,

in spite of the symmetry of (5.2), the two choices result in so markedly different theories in

six dimensions is to track the SL(2,R)U and SL(2,R)T charges of different fields in the N=2

supergravity. The symmetry between the two is very much broken here.17 The bosonic field

content is given by

g, B2, φ, (AT2 , AT0 ), ((A+
3)U , AU1 ), AU,T1 , U, T ,

where the U and T superscripts indicate with respect to which SL(2,R) the given field

transforms (as a doublet). When F (T, T̄ ) = 0 or F (U, Ū) = 0, the p-formATp orAUp respectively

is treated as a pair of neutral p-forms. When F (U, Ū) = 0, the doublet of self-dual three-forms

simply becomes a single unconstrained three-form field.

In fact both of these choices can be seen as a 8D theory with 24 five-branes (just as

F-theory can be thought of as IIB with seven-branes). For non-trivial T modulus these five-

branes are the branes of type IIB, i.e. they carry vector multiplets, while for non-trivial U

these are the IIA five-branes carrying (2,0) tensor multiplets.

Let us first look at the F (U, Ū) = 0 case. In the F-theory context, the mechanism

explaining how 24 branes yield only twenty lower dimensional vectors transforming under

SO(2,18) is explained in [38]. Here the rôle of NS and RR two-forms is played by AT2 . Four

more 6D fields come from two neutral vector fields of the 8D N=2 theory and A3 (a vector

17The quantum properties of the two SL(2,R) are also very different, resulting in different quantum prop-

erties of the 6D (1,1) and (0,2) theories. The former requires Green-Schwarz-like terms to cancel via inflow

chiral string anomalies. The latter is instead completely anomaly free, and has no anomalous higher-derivative

couplings.
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and a three-form which has as many degrees of freedom). These four fields transform under

O(2,2) and complete the six-dimensional vectors, giving rise to an (1,1) theory with 20 vector

multiplets and symmetry group SO(4,20). One can verify that each of the 20 vectors in the

vector multiplets is accompanied by a quartet of scalars as required by supersymmetry.

For the F (T, T̄ ) = 0 case, the key field is (A+
3)U . The mechanism of [38] applies with

a shift by one in the rank of the fields. Instead of vectors, one finds SO(2,18) tensors. To

complete the picture for the non-trivial U modulus, we recall that in eight dimensions there

are three neutral two-form tensor fields AT2 ,B2, which give rise to three pairs of self-dual and

anti-self-dual tensors in six. The resulting (0,2) theory has indeed 21 tensor multiplets and a

symmetry group SO(5,21). Once more, one may verify that as required by supersymmetry,

each of the 21 anti-self-dual tensors comes with five scalars.

Further examples are beyond the scope of our paper. However, it would be interesting to

develop a similar picture for both non-trivial moduli on X = P1 with ∫X F (U, Ū) +F (T, T̄ ) =
−2, or for higher-dimensional manifolds X.

N=1 theory. The one-sentence summary of the results of our paper is that the eight-

dimensional string amplitudes can be represented as conterterms to the composite U(1)
anomaly plus contributions from massive states. We will now point out the crucial im-

portance of this massive sector for the consistency of the lower-dimensional backgrounds. In

fact, we will argue that the failure to account for these states properly, i.e. as instructed by

string theory, lands the generic 8D N=1 theories in the swampland.

Let us take for the moment the supergravity point of view. Given the eight-dimensional

gauge group in the form U(1)n×G, where G is a product of semisimple groups (with rank(G) =
18 − n), one would be just coupling this matter to the supergravity in the adjoint. The

supergravity will be anomalous under the composite U(1) but a local counterterm can be

devised to cancel this anomaly. As we have seen in section 4, for any choice of G other than

E8 × E8 or SO(32) this conterterm will be different with respect to the effective coupling

computed from string amplitudes. In fact, by adding some massive states and integrating

these out, one can generate different corrections to the counterterms. The question is if these

different (a priori infinitely many) choices are allowed. Ostensibly, all these eight-dimensional

theories with proper counterterms are consistent. If however one demands that the theory

is consistent on any admissible 8D background, the vast majority of these will be ruled out.

By taking the eight-dimensional spacetime to beM6 ×P1, one can show in a large number of

cases that all massive completions of D=8 N=1 supergravity with U(1)n ×G matter except

for those obtained from string theory turn out to give rise to anomalous (0,1) theories in six

dimensions.

All our eight-dimensional examples have matter in U(1)2×G, with rank(G) = 16, so these

will be our main focus here. However we can make some general statements on constraints

imposed by (5.4a) and (5.4b) on string backgrounds.

For n = 2, the Abelian factor Ẽ is missing. Hence, only compactification with c1(TX) = 0
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or non-geometric compactifications are possible.18 Equation (5.4b) allows to build a K3 space

over X = P1, whereas equation (5.4a) tells that only NS5-branes participate in cancelling the

curvature contribution in the Bianchi Identity. In fact there are 24 of them.

In order to have a geometric Heterotic realisation of D=8 N=1 theory on X = P1, i.e.

a K3 compactification, n ≥ 3 is required. Indeed taking [F (T, T̄ )] = 0, one needs nontrivial

Ẽ in order to satisfy (5.4a). The geometric compactification then should correspond to

only [F (U, Ū)] ≠ 0. Other choices are possible, and these will again lead to non-geometric

compactifications. We hope to return to other cases in a forthcoming publication.19

Returning to the n = 2 case, we can check that for E8 ×E8, the choice ∫X F (T, T̄ ) = −2

leads to an anomaly free (0,1) theory in six-dimensions. Indeed, each five-brane carries a

tensor and a hypermultiplet [43], and the six-dimensional anomaly factorization condition

244 = N(NS5)(29 + 1) − dim(G) + 20 (6.1)

is satisfied for dim(G) = 496 and N(NS5) = 24. The 20 on the r.h.s. is the contribution from

20 neutral hypermultiplets. Note that we have chosen to write the standard factorization

condition in terms of the number of five-branes N(NS5) rather than of tensor multiplets

(there are 25 of these). The complete anomaly polynomial is in fact given by

I ∝ 2(trR2)2 + 5trR2(trF 2
1 + trF 2

2 ) + 6((F 2
1 )2 + (F 2

2 )2) , (6.2)

which can be easily rewritten as a sum of 25 factorized terms (as required by [44]). For

SO(32), each five-brane brings along an USp(2) factor with a hyper in bi-fundamental [45],

resulting in a factorization condition

244 = N(NS5)(32 − 2) − dim(G) + 20 . (6.3)

It can also be checked that trF 4
SO(32) cancels out and the anomaly polynomial factorises.

For G = SO(16)2 and G = SO(8)4 again N(NS5) = 24 is required, and there are 20 neutral

hypermultiples arising form K3, so the formula (6.1) should formally work. It does however

only if vectors in bi-fundamental representations exactly in the form as they appear in sec. 4

are included. Hence we see that the correct, i.e. string theoretic, massive completion in eight

dimensions, is necessary in order to obtain an anomaly free six-dimensional compactification.

In fact we have checked that this applies also for theories with n ≥ 3, which are outside the

scope of this paper.20 Massive states that appear in T 2 compactifications to eight-dimensions,

must become massless when the torus degenerates to yield an elliptically fibered K3. It

18We will call a background geometric, if it can be realized as a compactification on an internal manifold X

with non-trivial instanton configurations, but without any extra objects. In particular, Heterotic compactifi-

cations with NS5-branes are labeled here as non-geometric.
19Different aspects of non-geometric backgrounds using this set-up for low n have been discussed recently

in [39–42].
20Here one also gets hypermultiples charged under the six-dimensional gauge group, equally crucial for the

anomaly cancellation mechanism to work.
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is worthwhile to understand how this works in detail. It appears that G = SO(16)2 and

G = SO(8)4 should admit a double realization, either with 25 tensor multiplets or with 24

USp(2) gauge fields and hypers in bi-fundamentals. Of course the two versions match once

these theories are put on a circle. To the best of our knowledge the six-dimensional theories

with G = SO(16)2 or G = SO(8)4 gauge groups have not been much discussed in the literature.

Let us end by a comment about the six-dimensional Green-Schwarz term. One can see

it arising form integrating the ten-dimensional one on K3 (using the constraints imposed by

the Bianchi Identity) as in [46]. The contribution comes only from terms that nicely factorise

into internal and external parts as

B ∧XGS
8 → B ∧ [(atrR2

0 + btrF 2
0 ) ∧ trR2 + (ctrR2

0 + dtrF 2
0 ) ∧ trF 2] . (6.4)

Here R0 and F0 are the internal Riemann and gauge field strengths, and a, b, c, d are nu-

merical coefficients. This form is suggestive of non-vanishing four-point amplitudes in eight

dimensions involving e.g. the B-field, a composite U(1) factor and two gravitons. Once more

the correct massive sector is important in getting the low-energy contribution matching the

six-dimensional Green-Schwarz coupling.

Eight-dimensional N=1 theories hold keys to large classes of interesting string back-

grounds, most of which cannot be seen as ordinary compactifications of ten-dimensional string

theories. We have argued here, that the study of composite connections and their anomalies

may provide useful insights and constraints in constructing these backgrounds.
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A Index polynomials

In this Appendix, we list the anomaly polynomials used throughout this article, along with
some Chern-Simons forms and their gauge variation forms which come into play during the
process of descent [47, 48]. All the polynomials are defined on a manifold Md of d = 2r real
dimensions and the rank of the anomaly polynomial is d + 2, so that we get the anomalous
phase variation as an integral over a 2r-form. But first we give the formalism for the gauge
theory: This is important because the reference we are following [48] uses the anti-hermitian
generators for the gauge group, while to compute the U(1) anomalies it is useful to work with
hermitian generators, as this makes the charges real.

Table 1: Gauge theory dictionary

Quantities of gauge group G Anti-hermitian convention [48] Hermitian convention Relation

Generators Ta ta iTa = ta
Transformation of field φ

in a rep. of G δvφ = −vφ δεφ = iεφ iv = ε; va = εa
Gauge connection A′ = AaT a A = Aata iA′ = A;Aa = Aa

Gauge connection variation δA′ = dA′ + [A′, v] δA = dε − i[A, ε]
Gauge field-strength F ′ = FaT a F = Fata iF ′ = F ;Fa = Fa
Gauge field-strength F ′ = dA′ +A′ ∧A′ F = dA − iA ∧A

F variation δF ′ = [F ′, v] δF = −i[F, ε]
Covariant derivative D = d +A′ D = d − iA

If ∆ is the anomalous phase variation and I2r+2 the anomaly polynomial, the descent

equations are given by:

∆ = δΓM = −∫ Q1
2r,

I2r+2 = dI2r+1,

δI2r+1 = dQ1
2r.

The following anomaly polynomials are used throughout the paper:

1. Spin-1/2 fermion anomaly polynomial:

I1/2 = (2π) × [Â(Md)] × [ch(−iF )] , (A.1)

where

Â(Md) = 1 + 1

12 (4π)2
trR2 + 1

(4π)4
[ 1

360
trR4 + 1

288
(trR2)2]

+ 1

(4π)6
[ 1

5670
trR6 + 1

4320
trR4 trR2 + 1

10368
(trR2)3]

+ . . . (A.2)

and

ch(−iF ) = ∑
k=0

1

k!(2π)k
TrF k. (A.3)
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2. Gravitino (Spin-3/2) anomaly polynomial:

Id3/2 = (2π) × [Â(M)][Tr(e
iR
2π ) − 1] × [ch(−iF )]

= (2π) × [ch(−iF )]

× [(d − 1) + d − 25

12 (4π)2
trR2 + 1

(4π)4
(d + 239

360
trR4 + d − 49

288
(trR2)2)

+ 1

(4π)6
(d − 505

5670
trR6 + d + 215

4320
trR4 trR2 + d − 73

10368
(trR2)3)

+ . . . ] . (A.4)

3. Self-dual form:

Iform = (2π) × [L̂(Md)] × [−x
4
] , (A.5)

where

x =
⎧⎪⎪⎨⎪⎪⎩

1 if the base fermions are Weil or Majorana,

1/2 if the base fermions are Majorana-Weil
(A.6)

and

L̂(Md) = 1 − 1

6 (2π)2
trR2 + 1

(2π)4
(− 7

180
trR4 + 1

72
(trR2)2)

+ 1

(2π)6
(− 31

2835
trR6 + 7

1080
trR4 trR2 − 1

1296
(trR2)3)

+ . . . (A.7)

Finally, the Chern-Simons forms and descents are:

1. TrF = dQ1, Q1 = TrA, δQ1 = TrdΣ(x), Q1
2 = TrΣ(x).

2. TrF 2 = dQ3, Q3 = Tr(A ∧ F − i1
3A

3), δQ3 = TrdΣ(x)(dA), Q1
4 = TrΣ(x)(dA).

3. TrF 3 = dQ5, Q5 = Tr(A ∧ F 2 − 1
2A

3F + 1
10A

5), δQ5 = TrdΣ(x)(dAdA − i1
2dA

3), Q1
6 =

TrΣ(x)(dAdA − i1
2dA

3).

B Trace formulae and branching rules

In this Appendix, we record the conversion rules of the adjoint traces Tr to fundamental

traces tr, according to the standard convention of [49, 50]:
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TrF 2
SO(N) = (N − 2) trF 2

SO(N) , (B.1a)

TrF 2
E8

= 30 trF 2
E8
, (B.1b)

TrF 4
SO(N) = (N − 8) trF 4

SO(N) + 3 (trF 2
SO(N))

2 , (B.1c)

TrF 4
E8

= 1

100
(TrF 2

E8
)2 = 9 (trF 2

E8
)2 . (B.1d)

As E8 does not have a vector representation, it is standard to define its trace trF 2
E8

in

“fundamental” by using that of the group SO(32) so that they have uniform expressions in

the Green-Schwarz term of both 10D Heterotic theories [26].

We also mention here the group theory branching rule of the adjoint representation,

which is useful to interpret the various effective couplings arising from the amplitudes. For

the breaking E8 ×E8 → SO(16)2 we have

248 ⊕ 248 = (120,1) ⊕ (1,120)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
adjoint rep. of SO(16)2

⊕ (128,1) ⊕ (1,128)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

spinor rep. of SO(16)2

. (B.2)

For the (128,1) ⊕ (1,128) representation, the trace-conversion formulae are

tr128F
2
1 + tr128F

2
2 = 16trF 2

1 + 16trF 2
2 , (B.3a)

tr128F
4
1 + tr128F

4
2 = 6(trF 2

1 )2 + 6(trF 2
2 )2 − 8trF 4

1 − 8trF 4
2 . (B.3b)

For the breaking SO(32) → SO(16)2 we have

496 = (120,1) ⊕ (1,120)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
adjoint rep. of SO(16)2

⊕ (16,16)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

cospinor rep. of SO(16)2

. (B.4)

For the (16,16) representation, the trace-conversion formulae are

tr(16,16)F
2 = 16trF 2

1 + 16trF 2
2 , (B.5a)

tr(16,16)F
4 = 16trF 4

1 + 16trF 4
2 + 6trF 2

1 trF
2
2 . (B.5b)

For the breaking E8 → SO(8)2 we have

248 = (28,1) ⊕ (1,28)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
adjoint rep. of SO(8)2

⊕ (8,8)
²

bifundamental rep. of SO(8)2

⊕ (8,8)′

´¹¹¹¹¸¹¹¹¹¹¶
spinor rep. of SO(8)2

⊕ (8,8)′′

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
cospinor rep. of SO(8)2

. (B.6)

Thus the complete decomposition E
(1)
8 → SO(8)(1) × SO(8)(2) plus E

(2)
8 → SO(8)(3) ×

SO(8)(4) gives

248⊕ 248 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28) (B.7)

⊕ (8,8,1,1)⊕ (1,1,8,8)

⊕ (8,8,1,1)′ ⊕ (1,1,8,8)′

⊕ (8,8,1,1)′′ ⊕ (1,1,8,8)′′.
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The breaking SO(32) → SO(8)(1) × SO(8)(2) × SO(8)(3) × SO(8)(4) gives instead:

496 =(28,1,1,1)⊕ (1,28,1,1)⊕ (1,1,28,1)⊕ (1,1,1,28)

⊕ (8,8,1,1)⊕ (1,1,8,8)

⊕ (8,1,8,1)⊕ (1,8,1,8)

⊕ (1,8,8,1)⊕ (8,1,1,8). (B.8)

From the decomposition (B.7) we see that E
(1)
8 → SO(8)(1)×SO(8)(2) plus E

(2)
8 → SO(8)(3)×

SO(8)(4) has a preferred trF 2
1 trF

2
2 and trF 2

3 trF
2
4 mixing. T-duality exchanges the spinor

and co-spinor representation with the bi-fundamental representations and this fact appears

in the string 1-loop elliptic genus as orbifold shifts [32], which gives mixed couplings of

the type trF 2
1 trF

2
3 and trF 2

1 trF
2
4 etc., even if one starts with the decomposition E

(1)
8 →

SO(8)(1) × SO(8)(2) and E
(2)
8 → SO(8)(3) × SO(8)(4).

Finally, the trace-conversion formulae for the various representations involved in the

breaking to SO(8)4 are summarized as:

tr(8,8)F
2 = 8trF 2

1 + 8trF 2
2 , (B.9a)

tr(8,8)F
4 = 8trF 4

1 + 8trF 4
2 + 6trF 2

1 trF
2
2 , (B.9b)

tr(8,8)′F
2 = tr(8,8)′′F 2 = 8trF 2

1 + 8trF 2
2 , (B.9c)

tr(8,8)′F
4 = tr(8,8)′′F 4 = 3(trF 2

1 )2 + 3(trF 2
2 )2 + 6trF 2

1 trF
2
2 − 4trF 4

1 − 4trF 4
2 . (B.9d)

C Modular functions and decompactification limit

In this Appendix, we gather the necessary definitions of the modular functions which have

been used in the article:

The Dedekind Eta function:

η(τ) = q1/24
∞

∏
n=1

(1 − qn), (C.1)

satisfying

η(−1/τ) =
√
−iτη(τ). (C.2)

The Leech j-function:

j = E3
4

η24
= 1

q
+ 744 +⋯ , (C.3)

where E4 is the 4-th Eisenstein series defined by

E4 =
1

2

4

∑
a=2

θ8
a = 1 + 240

∞

∑
n=1

n3qn

1 − qn
. (C.4)
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The following modular properties are used in fixing the SL(2,Z) anomalous phase variation

in the anomaly counter-terms:

log η(τ + 1) = log η(τ) + i π
12
, (C.5)

log η(−1

τ
) = log η(τ) − iπ

4
+ log τ

2
(C.6)

j(τ + 1)
j̄(τ̄ + 1)

= e−4iπ j(τ)
j̄(τ̄)

, (C.7)

(j(−1/τ)
j̄(−1/τ̄)

)
1/12

= −(j(τ)
j̄(τ̄)

)
1/12

. (C.8)

We now briefly discuss the large volume and decompactification limits. The large volume

limit in case of a T 2 compactification means taking the torus volume VT 2 →∞. However the

complex structure U = U1+ iU2 remains fixed. We recall that the compact space-time torus is

formed by compactifying the 8th and 9th space dimensions for which we have the following

metric

Gij = ( g88 g89
g89 g99 ) =

V

U2
( 1 U1

U1 ∣U ∣
2 ) . (C.9)

In the decompactification limit, we will take VT 2 → ∞ and moreover impose orthonormality

of the 8th and the 9th directions, i.e.

U2 =
V

g88
→ 1 , U1 =

g89

g88
→ 0 . (C.10)

A useful summary of the q-expansion and the relevant limits of the different modular functions

of T and U that have been used in expressions for the higher-derivative couplings:

log∣η(T )∣2 = −πT2

6
− [θ(T ) + θ̄(T̄ )], (C.11)

θ(τ) = q + 3q2

2
+⋯, q = e2iπτ , (C.12)

lim
τ→i∞

θ(τ) = 0, lim
V→∞

log∣η(T )∣2 = −πT2

6
, (C.13)

log
η(T )
η̄(T̄ )

= iπT1

6
− [θ(T ) − θ̄(T̄ )], (C.14)

lim
V→∞

(log η(T )
η̄(T̄ )

− iπT1

6
) = 0. (C.15)

U = U1 + iU2 → i, q(U) → e−2π, (C.16)

log∣η(U)∣2 → const, (C.17)

log
η(U)
η̄(Ū)

= iπU1

6
→ 0. (C.18)
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