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Dissipative random quantum spin chain with boundary-driving and bulk-dephasing :

magnetization and current statistics in the Non-Equilibrium-Steady-State

Cécile Monthus
Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France

The Lindblad dynamics with dephasing in the bulk and magnetization-driving at the two bound-
aries is studied for the quantum spin chain with random fields hj and couplings Jj (that can be
either uniform or random). In the regime of strong disorder in the random fields, or in the regime
of strong bulk-dephasing, the effective dynamics can be mapped onto a classical Simple Symmetric
Exclusion Process with quenched disorder in the diffusion coefficient associated to each bond. The
properties of the corresponding Non-Equilibrium-Steady-State in each disordered sample between
the two reservoirs are studied in detail by extending the methods that have been previously devel-
oped for the same model without disorder. Explicit results are given for the magnetization profile,
for the two-point correlations, for the mean current and for the current fluctuations, in terms of the
random fields and couplings defining the disordered sample.

In disordered quantum systems, the phenomenon of Anderson Localization (see the book [1] and references therein)
or its generalization with interactions called Many-Body-Localization ( see the recent reviews [2–7] and references
therein) is due to the coherent character of the unitary dynamics. When these systems are not isolated anymore but
become ’open’ [8], it is essential to understand whether the dissipation processes that tend to destroy the quantum
coherence are able to eliminate the localization phenomenon. This issue has been analyzed recently in the context of
random quantum spin chains following some Lindblad dynamics [9–16], where it is very important to distinguish the
various types of dissipation : if the dissipation occur only at the boundaries, the coherent dynamics in the bulk is
sufficient to maintain the localization properties, while if the dissipation occurs everywhere in the bulk via dephasing,
the localization phenomenon will be destroyed and it is interesting to characterize the properties of this dissipative
dynamics in the presence of disorder.
In the field of quantum spin chains without disorder, the Lindblad dynamics has been much studied to characterize

the non-equilibrium transport properties [9, 17–25] with many exact solutions [26–31]. The Lindblad framework for
quantum systems also allows to make the link with the field of non-equilibrium classical stochastic processes described
by Master Equations (see the review [32] and references therein) : for instance the relaxation properties can be
obtained from the spectrum of the Lindblad operator [33–37], the large deviation formalism has been used to access
the full-counting statistics [38–45], the additivity principle has been tested [46] and quantum fluctuation relations
have been derived [47].
In the present paper, our goal is to analyze the Lindblad dynamics of the XX quantum spin chain with random fields

and couplings that can be either uniform or random, in the presence of dephasing in the bulk and in the presence of
magnetization-driving at the two boundaries in order to generate a Non-Equilibrium-Steady-State carrying a current.
In the absence of bulk-dephasing, this model has been found to keep its localized nature with a step magnetization
profile and an exponentially decaying current with the system size [16]. In the presence of bulk-dephasing, we obtain
here that these localization properties are lost, as expected. We use the degenerate second-order perturbative approach
in the XX-couplings Jj developed previously either for strong bulk dephasing [33, 34] or for strong disorder in the
random fields [11]. The effective dynamics can be then mapped onto a classical Simple Symmetric Exclusion Process
with quenched disorder in the local diffusion coefficients. The methods that have been developed previously to study
this classical stochastic model without quenched disorder (see the review [32] and references therein) can be then
adapted to characterize the Non-Equilibrium-Steady-State in each disordered sample and to obtain explicit results
for the magnetizations, the correlations, and the two first cumulants of the integrated current.
The paper is organized as follows. In section I, we introduce the notations for the Lindblad dynamics with boundary-

driving and bulk-dephasing. In section II, we focus on the regime of strong-disorder in the random fields or on the
regime of strong dephasing where the effective dynamics corresponds to a classical exclusion process with random
diffusion coefficients on the links. The properties of the corresponding Non-Equilibrium-Steady-State in each disor-
dered sample are studied in the remaining of the paper, with explicit results for the magnetization profile and the
averaged current (section III), for the two-point correlations (section IV) and for the current fluctuations (section V).
Our conclusions are summarized in section VI.

http://arxiv.org/abs/1701.05090v1
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I. LINDBLAD DYNAMICS WITH BOUNDARY-DRIVING AND BULK-DEPHASING

A. Lindblad dynamics for the density matrix ρ(t)

In this paper, we consider the Lindblad dynamics for the density matrix ρ(t) of the quantum chain of N spins

∂ρ(t)

∂t
= −i[H, ρ] +DBulk[ρ(t)] +DLeft[ρ(t)] +DRight[ρ(t)] (1)

The Hamiltonian contains random fields hj and XX-couplings Jj (that can be either uniform or random)

H =

N
∑

j=1

[

hjσ
z
j + Jj(σ

x
j σ

x
j+1 + σy

j σ
y
j+1)

]

=

N
∑

j=1

[

hjσ
z
j + 2Jj(σ

+
j σ

−
j+1 + σ−

j σ+
j+1)

]

(2)

It is possible to add couplings Jz
j σ

z
i σ

z
j+1, but these couplings turn out to disappear at leading order in the strong-

dephasing approximation [33, 34] or in the strong-disorder approximation [11] that we will consider (see more details
in section IIA).
The Bulk-dephasing operator acting with some amplitudes γj (that can be taken uniform)

DBulk[ρ] =

N
∑

j=1

γj
(

σz
j ρσ

z
j − ρ

)

(3)

tends to destroy off-diagonal elements with respect to the σz basis.
The Left-Magnetization-driving

DLeft[ρ] = Γ
1 + µ

2

(

σ+
1 ρσ

−
1 −

1

2
σ−
1 σ

+
1 ρ−

1

2
ρσ−

1 σ
+
1

)

+Γ
1− µ

2

(

σ−
1 ρσ

+
1 −

1

2
σ+
1 σ

−
1 ρ−

1

2
ρσ+

1 σ
−
1

)

(4)

tends to impose the magnetization (µ) on the first spin σ1. The Right-Magnetization-driving

DRight[ρ] = Γ′ 1 + µ′

2

(

σ+
Nρσ−

N −
1

2
σ−
Nσ+

Nρ−
1

2
ρσ−

Nσ+
N

)

+Γ′ 1− µ′

2

(

σ−
Nρσ+

N −
1

2
σ+
Nσ−

Nρ−
1

2
ρσ+

Nσ−
N

)

(5)

tends to impose the magnetization (µ′) on the last spin σN .
When µ 6= µ′, the dynamics will converge towards some stationnary non-equilibrium-steady-state that we wish to

study.

B. Ladder Lindbladian for the ket |ρ(t) >

The density matrix ρ(t) of the chain of N spins can be expanded in the σz basis

ρ(t) =
∑

S1=±1

...
∑

SN=±1

∑

T1=±1

...
∑

TN=±1

ρS1,..,SN ;T1,...,TN
(t)|S1, ..., SN >< T1, ..., TN | (6)

in terms of the 4N coefficients

ρS1,..,SN ;T1,...,TN
(t) =< S1, ..., SN |ρ(t)|T1, ..., TN > (7)

It is technically convenient to ’vectorize’ the density matrix of the spin chain [16, 34, 46, 48–50], i.e. to consider
that these 4N coefficients are the components of a ket describing the state of a spin ladder

|ρ(t) >=
∑

S1=±1

...
∑

SN=±1

∑

T1=±1

...
∑

TN=±1

ρS1,..,SN ;T1,...,TN
(t)|S1, ..., SN > ⊗|T1, ..., TN > (8)
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The Lindbladian governing the dynamics of the ket |ρ(t) >

∂|ρ(t) >

∂t
= L|ρ(t) > (9)

reads in this ladder formulation

L = −i
N
∑

j=1

[

hjσ
z
j + 2Jj(σ

+
j σ

−
j+1 + σ−

j σ+
j+1)

]

+ i
N
∑

j=1

[

hjτ
z
j + 2Jj(τ

+
j τ−j+1 + τ−j τ+j+1)

]

−

N
∑

j=1

γj
(

1− σz
j τ

z
j

)

+Γ

(

1 + µ

2
σ+
1 τ

+
1 +

1− µ

2
σ−
1 τ−1

)

−
Γ

2
+

Γµ

4
(σz

1 + τz1 )

+Γ′

(

1 + µ′

2
σ+
Nτ+N +

1− µ′

2
σ−
Nτ−N

)

−
Γ′

2
+

Γ′µ′

4
(σz

N + τzN ) (10)

C. Spectral Decomposition into eigenvalues and eigenstates

It is convenient to use the bra-ket notations to denote the Right and Left eigenvectors associated to the 4N

eigenvalues λn

L|λR
n > = λn|λ

R
n >

< λL
n |L = λn < λL

n | (11)

with the orthonormalization

< λL
n |λ

R
m >= δnm (12)

and the identity decomposition

1 =

4N−1
∑

n=0

|λR
n >< λL

n | (13)

The spectral decomposition of the Lindbladian

L =

4N−1
∑

n=0

λn|λ
R
n >< λL

n | (14)

yields the solution for the dynamics in terms of the initial condition at t = 0

|ρ(t) >=

4N−1
∑

n=0

eλnt|λR
n >< λL

n |ρ(t = 0) > (15)

The trace of the density matrix ρ(t) corresponds in the Ladder Formulation to

Trace(ρ(t)) =
∑

S1=±1

...
∑

SN=±1

ρS1,..,SN ;S1,...,SN
(t) =

∑

S1=±1

...
∑

SN=±1

< S1, .., SN |⊗ < S1, ..., SN |ρ(t) > (16)

The conservation of Trace(ρ(t)) by the dynamics means that the eigenvalue

λ0 = 0 (17)

is associated to the Left eigenvector

< λL
0 | =

∑

S1=±1

...
∑

SN=±1

< S1, .., SN |⊗ < S1, ..., SN | (18)

while the corresponding Right Eigenvector corresponds to the steady state towards which any initial condition will
converges

|ρ(t → +∞) >= |λR
0 > (19)

The other (4N − 1) eigenvalues λn6=0 with negative real parts describe the relaxation towards this steady state.
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II. EFFECTIVE LINDBLADIAN FOR STRONG DISORDER OR STRONG DEPHASING

A. Perturbation in the couplings Jj

In this section, we consider that the terms of the Lindbladian containing the couplings Jj

Lper = i

N−1
∑

j=1

2Jj(τ
+
j τ−j+1 + τ−j τ+j+1 − σ+

j σ
−
j+1 − σ−

j σ+
j+1) (20)

can be treated perturbatively with respect to the other terms of the Lindbladian that do not couple the rungs of the
ladder

Lunper =

N
∑

j=1

Lunper
j (21)

The Lindbladians associated to the rungs of the bulk j = 2, .., N − 1 read

Lunper
j = ihj(τ

z
j − σz

j )− γj
(

1− σz
j τ

z
j

)

(22)

while for the two end-spins, they contain the additional contribution of the boundary-driving

Lunper
j=1 = ih1(τ

z
1 − σz

1)− γ1 (1− σz
1τ

z
1 ) + Γ

(

1 + µ

2
σ+
1 τ

+
1 +

1− µ

2
σ−
1 τ−1

)

−
Γ

2
+

Γµ

4
(σz

1 + τz1 ) (23)

and

Lunper
j=N = ihN(τzN − σz

N )− γN (1− σz
N τzN ) + Γ′

(

1 + µ′

2
σ+
N τ+N +

1− µ′

2
σ−
Nτ−N

)

−
Γ′

2
+

Γ′µ′

4
(σz

N + τzN ) (24)

In the absence of boundary-drivings, this type of perturbation theory has been developed previously for the pure
XXZ chain without fields as a ’strong dissipation’ approximation [33, 34], and in XXZ-chain with random fields as a
’strong disorder’ approximation [11], in order to analyze the relaxation properties towards the trivial maximally mixed
steady-state. Note that in both cases, the Jz-coupling turns out to disappear at leading order in this perturbation
theory [11, 33], and this is why we have chosen to consider here the case Jz

i = 0 from the very beginning (Eq 2) in
order to simplify the presentation. In the following, we describe how the perturbation theory developed in [11, 33, 34]
has to be adapted to the presence of the boundary-drivings.

B. Spectral decomposition of Lunper
1

The four eigenvalues of the Lindbladian Lunper
1 of Eq. 23 and the corresponding Left and Right Eigenvectors written

in the basis (σz
1 , τ

z
1 ) are :

(0) The eigenvalue λ1,n=0 = 0 is associated to

< λL
1,n=0| =< ++ |+ < −− |

|λR
1,n=0 > =

1 + µ

2
|++ > +

1− µ

2
| − − > (25)

(1) The eigenvalue λ1,n=1 = −Γ is associated to

< λL
1,n=1| =

1− µ

2
< ++ | −

1 + µ

2
< −− |

|λR
1,n=1 > = |++ > −| − − > (26)

(2) The eigenvalue λ1,n=2 = −Γ
2 − 2γ1 + i2h1 is associated to

< λL
1,n=2| =< −+ |

|λR
1,n=2 > = | −+ > (27)

(4) The eigenvalue λ1,n=3 = −Γ
2 − 2γ1 − i2h1 is associated to

< λL
1,n=3| =< +− |

|λR
1,n=3 > = |+− > (28)
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C. Spectral decomposition of Lunper

N

Similarly, the four eigenvalues of the Lindbladian Lunper
N of Eq. 24 and the corresponding Left and Right Eigen-

vectors written in the basis (σz
N , τzN ) are :

(0) The eigenvalue λN,m=0 = 0 is associated to

< λL
N,m=0| =< ++ |+ < −− |

|λR
N,m=0 > =

1 + µ′

2
|++ > +

1− µ′

2
| − − > (29)

(1) The eigenvalue λN,m=1 = −Γ′ is associated to

< λL
N,m=1| =

1− µ′

2
< ++ | −

1 + µ′

2
< − − |

|λR
N,m=1 > = |++ > −| − − > (30)

(2) The eigenvalue λN,m=2 = −Γ′

2 − 2γN + i2hN is associated to

< λL
N,m=2| =< −+ |

|λR
N,m=2 > = | −+ > (31)

(4) The eigenvalue λN,m=3 = −Γ′

2 − 2γN − i2hN is associated to

< λL
N,m=3| =< +− |

|λR
N,m=3 > = |+− > (32)

D. Spectral decomposition of Lunper

j for j = 2, .., N − 1

The Lindbladian operator Lunper
j (Eq. 22) in the bulk j = 2, .., N − 1 is diagonal in the (σz

j , τ
z
j ) basis : the Left

and Right Eigenvectors are simply < Sj , Tj| and |Sj , Tj > with the eigenvalues

λj,Sj ,Tj
= ihj(Tj − Sj)− γj (1− Sj , Tj) (33)

So the vanishing eigenvalue is degenerate twice

λj,+,+ = λj,−,− = 0 (34)

while the two others eigenvalue read

λj,+,− = −2γj − i2hj

λj,−,+ = −2γj + i2hj (35)

E. Spectral decomposition of Lunper

The unperturbed Lindbladian of Eq 21 is the sum of the independent Lindbladians discussed above. So its eigen-
values are simply given by the sum of eigenvalues

λunper

(1,n);(j,Sj ,Tj);(N,m) = λ1,n +

N−1
∑

j=2

λj,Sj ,Tj
+ λN,m (36)

while the left and right eigenvectors are given by the corresponding tensor-products.
In particular the vanishing eigenvalue λunper = 0 is very degenerate, and the corresponding subspace of dimension

2N−1 is described by the projector

P0 =
∑

S2,...,SN−1

|λR
1,n=0 > ⊗N−1

j=2 |Sj , Tj = Sj > ⊗|λR
N,m=0 >< λL

1,n=0|⊗
N−1
j=2 < Sj , Tj = Sj |⊗ < λL

N,m=0| (37)
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F. Perturbation theory within the degenerate subspace associated to λunper = 0

Within the degenerate subspace of dimension 2N−1 associated to λunper = 0, the effective dynamics is described by
the operator obtained by the second-order perturbation formula [11, 33, 34]

W ≡ L
(2dorder)
λunper=0 = P0L

per(1 − P0)
1

0− Lunper
(1− P0)L

perP0 (38)

The action of the perturbation Lper of Eq. 20 on the Left-Eigenvectors

< λL
1,n=0|⊗

N−1
j=2 < Sj = ηj , Tj = ηj |⊗ < λL

N,m=0|L
per

= i2J1
(

δη2=+ − δη2=−e
−s
) (

< λL
1,n=3|⊗ < S2 = −, T2 = +|− < λL

1,n=2|⊗ < S2 = +, T2 = −|
)

⊗N−1
j=3 < Sj = ηj , Tj = ηj |⊗ < λR

N,m=0|

+i

N−2
∑

k=2

2Jkδηk+1=−ηk
< λL

1,n=0|⊗
k−1
j=2 < Sj = ηj , Tj = ηj |

(< Sk = ηk, Tk = −ηk|⊗ < Sk+1 = −ηk, Tk+1 = ηk|− < Sk = −ηk, Tk = ηk|⊗ < Sk+1 = ηk, Tk+1 = −ηk|)

⊗N−1
j=k+2 < Sj = ηj , Tj = ηj |⊗ < λL

N,m=0|

+i2JN−1 < λR
1,n=0|⊗

N−2
j=2 < Sj = ηj , Tj = ηj | ⊗

(

δηN−1=+ − δηN−1=−

) (

< SN−1 = +, TN−1 = −|⊗ < λL
N,m=2|− < SN−1 = −, TN−1 = +|⊗ < λL

N,m=3|
)

(39)

and on the right eigenvectors

Lper |λR
1,n=0 > ⊗N−1

j=2 |Sj = η′j , Tj = η′j > ⊗|λR
N,m=0 >

= i2J1

(

δη′

2
=+

1− µ

2
− δη′

2
=−e

s 1 + µ

2

)

(

|λR
1,n=3 > ⊗|S2 = −, T2 = + > −|λR

1,n=2 > ⊗|S2 = +, T2 = − >
)

⊗N−1
j=3 |Sj = η′j , Tj = η′j > ⊗|λR

N,m=0 >

+i

N−2
∑

k=1

2Jkδη′

k+1
=−η′

k
|λR

1,n=0 > ⊗k−1
j=2 |Sj = η′j , Tj = η′j >

(|Sk = η′k, Tk = −η′k > ⊗|Sk+1 = −η′k, Tk+1 = η′k > −|Sk = −η′k, Tk = η′k > ⊗|Sk+1 = η′k, Tk+1 = −η′k >)

⊗N−1
j=k+2|Sj = η′j , Tj = η′j > ⊗|λR

N,m=0 >

+i2JN−1|λ
R
1,n=0 > ⊗N−2

j=2 |Sj = η′j , Tj = η′j >

(

δη′

N−1
=+

1− µ′

2
− δη′

N−1
=−

1 + µ′

2

)

(

|SN−1 = +, TN−1 = − > ⊗|λR
N,m=2 > −|SN−1 = −, TN−1 = + > ⊗|λR

N,m=3 >
)

(40)

determine the intermediate unperturbed states that appear in the perturbative formula of Eq. 38. Using the corre-
sponding unperturbed eigenvalues of Eq. 36 that appear in the denominators, one finally obtains that the effective
operator W reads in terms of Pauli matrices

W = D1,2

(

1 + µ

2
σ+
2 +

1− µ

2
σ−
2 −

1− µσz
2

2

)

+

N−2
∑

k=2

Dk,k+1

(

σ+
k σ

−
k+1 + σ−

k σ+
k+1 −

1− σz
kσ

z
k+1

2
)

)

+DN−1,N

(

1 + µ′

2
σ+
N−1 +

1− µ′

2
σ−
N−1 −

1− µ′σz
N−1

2

)

(41)

where we have introduced the notations

Dk,k+1 ≡
4J2

k(γk + γk+1)

(γk + γk+1)2 + (hk − hk+1)2
for k = 2, .., N − 2

D1,2 ≡
4J2

1 (Γ + 4(γ1 + γ2))
(

Γ
2 + 2(γ1 + γ2)

)2
+ 4(h1 − h2)2

DN−1,N ≡
4J2

N−1(Γ
′ + 4(γN−1 + γN ))

(

Γ′

2 + 2(γN−1 + γN )
)2

+ 4(hN−1 − hN)2
(42)
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The above approach is consistent if the parameters Dk,k+1 obtained by the second-order perturbation theory are
indeed small, i.e. in particular in the limit of strong bulk dephasing even in the absence of disorder [33, 34] or in the
limit of strong disorder in the random fields [11].

G. Summary : mapping onto a classical exclusion process with disorder

Let us now summarize the output of the above calculations. The ket |ρ(t) > of the spin ladder of length N with
an Hilbert space of dimension 4N has been projected onto the ket |P (t) > of a spin chain of (N − 1) spins with an
Hilbert space of dimension dimension 2N−1 that represent the the diagonal elements

< S2, .., SN−1|P (t) >=< λL
1,n=0|⊗

N−1
j=2 < Sj , Tj = Sj |⊗ < λL

N,m=0|ρ(t) > (43)

The Lindbladian that was acting on the ket |ρ(t) > has been projected onto the effective operator W of Eq. 41
that governs the dynamics of the ket |P (t) >

∂|Pt >

∂t
= W |Pt > (44)

The spectral decomposition

W =

2N−1−1
∑

n=0

wn|w
R
n >< wL

n | (45)

that allows to rewrite the solution of the dynamics as

|Pt >=
2N−1−1
∑

n=0

ewn |wR
n >< wL

n |Pt=0 > (46)

has the same properties as the spectral decomposition of the Lindbladian : the vanishing eigenvalue wn=0 = 0 is
associated to the Left Eigenvector

< wL
n=0| =

∑

S2,..,SN−1

< S2, .., SN−1| (47)

that encodes the conservation of probability

∑

S2,..,SN−1

< S2, .., SN−1|Pt >= 1 (48)

while the corresponding Right Eigenvector |wR
n > corresponds to the non-equilibrium steady state towards which any

initial condition converges

|Pt→+∞ >= |wR
n=0 > (49)

The other modes n 6= 0 describe the relaxation towards this steady state.
In [11, 33, 34], the operator W of Eq. 41 was written as minus the quantum Heisenberg ferromagnetic Hamiltonian

−W = Heff =

N−1
∑

k=1

Dk,k+1

(

1− ~σk.~σk+1

2

)

(50)

to derive various consequences. In our present case, we will keep the writing of Eq. 41 and interpret it as a classical
Master Equation describing a Simple Symmetric Exclusion Process with quenched disorder in the local diffusion
coefficients Dk,k+1 (Eq 42). The pure Simple Symmetric Exclusion Process with uniform Dk,k+1 = 1 is one of the
standard model in the field of non-equilibrium classical systems (see the review [32] and references therein). The
effects of quenched disorder on totally or partially asymmetric exclusion models have been analyzed in [51–55]. In
our present case, it is very important to stress that the disorder is in the local diffusion coefficients Dk,k+1, but that
the symmetry between the jumps from k to (k + 1) or from (k + 1) to k is maintained.
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H. Dynamics of observables

As a final remark, let us mention how one can study the dynamics of observables. The average at time t of the
observable associated to the operator A

< A >t=
∑

S2,..,SN−1

< S2, .., SN−1|A|Pt >=< wL
n=0|A|Pt > (51)

evolves in time according to the dynamical equation

∂ < A >t

∂t
=< wL

n=0|AW |Pt >=< wL
n=0|[A,W ]|Pt >=< [A,W ] >t (52)

where the commutator has been introduced using the property < wL
n=0|W = 0 of the Left eigenvector. In the

following sections, we analyze the properties of the non-equilibrium-steady-state (NESS) in each disordered sample,
via the magnetizations, the correlations and the statistics of the current.

III. LOCAL MAGNETIZATIONS AND LOCAL CURRENTS

A. Dynamics of the local magnetizations

The dynamics of the magnetization on site j is described by Eq. 52 for A = σz
j

∂ < σz
j >t

∂t
=< [σz

j ,W ] >t=< Ij−1,j − Ij,j+1 >t (53)

that involves the current operators associated to the bonds (j, j + 1)

Ij,j+1 = −[σz
j , Dj,j+1

(

σ+
j σ

−
j+1 + σ−

j σ+
j+1

)

] = 2Dj,j+1

(

σ−
j σ+

j+1 − σ+
j σ

−
j+1

)

(54)

From the definition of the average in Eq. 51, one obtains that the average of the current simplifies into

< Ij,j+1 >t =
∑

S2,..,SN−1

< S2, .., SN−1|Ij,j+1|Pt >

= 2Dj,j+1

∑

S2,..,SN−1

< S2, .., SN−1|
(

σ−
j σ

+
j+1 − σ+

j σ
−
j+1

)

|Pt >

= 2Dj,j+1 <

(

1 + σz
j

2

)(

1− σz
j+1

2

)

−

(

1− σz
j

2

)(

1 + σz
j+1

2

)

>t

= Dj,j+1 <
(

σz
j − σz

j+1

)

>t (55)

i.e locally on each bond, the averaged current is proportional to the difference of magnetizations with a prefactor
given by the local diffusion coefficient Dj,j+1.

B. Current in the Non-Equilibrium-Steady-State

In the non-equilibrium steady state, the magnetizations

µj ≡< σz
j >ness (56)

and the currents

Ij,j+1 ≡< Ij,j+1 >ness = Dj,j+1(µj − µj+1) (57)

are constrained by the conservation of the current along the chain (Eq 53)

I = Ij,j+1 = Dj,j+1(µj − µj+1) (58)
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Since the magnetization are fixed at the two boundaries

µ1 = µ

µN = µ′ (59)

the current I is simply obtained from the sum of the differences of magnetizations along the chain

µ− µ′ =

N−1
∑

i=1

(µi − µi+1) = I

N−1
∑

i=1

1

Dj,j+1
(60)

leading to

I =
µ− µ′

N−1
∑

i=1

1

Dj,j+1

(61)

The denominator reads more explicitly in terms of the initial variables (Eq 42)

N−1
∑

k=1

1

Dk,k+1
=

(

Γ
2 + 2(γ1 + γ2)

)2
+ 4(h1 − h2)

2

4J2
1 (Γ + 4(γ1 + γ2))

+

(

Γ′

2 + 2(γN−1 + γN )
)2

+ 4(hN−1 − hN )2

4J2
N−1(Γ

′ + 4(γN−1 + γN ))

+
N−2
∑

k=2

(γk + γk+1)
2 + (hk − hk+1)

2

4J2
k (γk + γk+1)

(62)

In the limit of large size N → +∞, this sum will grow extensively in the size N

N−1
∑

k=1

1

Dk,k+1
∝

N→+∞
N

(

1

Dk,k+1

)

+O(N
1
2 ) (63)

as long as the disorder-averaged value of the inverse of the local diffusion coefficient converges

(

1

Dk,k+1

)

=

(

(γk + γk+1)2 + (hk − hk+1)2

4J2
k (γk + γk+1)

)

< +∞ (64)

Then the current of Eq. 61 will decay as 1/N as in the usual Fourier-Fick law.

C. Magnetization profile in the Non-Equilibrium-Steady-State

The corresponding magnetization profile reads (Eq 58)

µj =

µ





N−1
∑

k=j

1

Dk,k+1



+ µ′

(

j−1
∑

k=1

1

Dk,k+1

)

N−1
∑

k=1

1

Dk,k+1

(65)

that generalizes the usual linear profile of the pure case without disorder

µpure
j =

µ(N − j) + µ′(j − 1)

(N − 1)
(66)
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IV. TWO-POINT CORRELATIONS

A. Dynamics of the two-point correlations

For the two-point correlation

Ci,j(t) ≡< σz
i σ

z
j >t (67)

the dynamical equation (Eq 52) reads for i < j − 1

∂Ci,j(t)

∂t
=< [σz

i σ
z
j ,W ] >t

=< (Ii−1,i − Ii,i+1)σ
z
j >t + < σz

i (Ij−1,j − Ij,j+1) >t

= Di−1,i(Ci−1,j(t)− Ci,j(t))−Di,i+1(Ci,j(t)− Ci+1,j(t))

+Dj−1,j(Ci,j−1(t)− Ci,j(t))−Dj,j+1(Ci,j(t)− Ci,j+1(t)) (68)

and for two neighbors

∂Ci,i+1(t)

∂t
=< [σz

i σ
z
i+1,W ] >t=< Ii−1,iσ

z
i+1 >t − < σz

i Ii+1,i+2 >t

= Di−1,i(Ci−1,i+1(t)− Ci,i+1(t))−Di+1,i+2(Ci,i+1(t)− Ci,i+2(t)) (69)

B. Two-point correlation in the Non-Equilibrium-Steady-State

In the Non-Equilibrium-Steady-State, the correlations have to satisfy linear interpolation formula for fixed j

Ci,j =

C1,j

(

j−2
∑

k=i

1

Dk,k+1

)

+ Cj−1,j

(

i−1
∑

k=1

1

Dk,k+1

)

j−2
∑

k=1

1

Dk,k+1

for 1 ≤ i ≤ j − 1 (70)

and for fixed i

Ci,j =

Ci,i+1





N−1
∑

k=j

1

Dk,k+1



+ Ci,N

(

j−1
∑

k=i+1

1

Dk,k+1

)

N−1
∑

k=i+1

1

Dk,k+1

for i+ 1 ≤ j ≤ N (71)

where the correlation between two neighbors have to satisfy

Ci,i+1 =

C1,i+1

(

N−1
∑

k=i+1

1

Dk,k+1

)

+ Ci,N

(

i−1
∑

k=1

1

Dk,k+1

)

(

N−1
∑

k=1

1

Dk,k+1

)

−
1

Di,i+1

(72)

The correlations with the fixed boundary-spins σz
1 = µ and σz

N = µ′ can be obtained from the magnetization profile
of Eq. 65

C1,j = µµj = µ

µ





N−1
∑

k=j

1

Dk,k+1



 + µ′

(

j−1
∑

k=1

1

Dk,k+1

)

N−1
∑

k=1

1

Dk,k+1

(73)
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and

Ci,N = µ′µi = µ′

µ

(

N−1
∑

k=i

1

Dk,k+1

)

+ µ′

(

i−1
∑

k=1

1

Dk,k+1

)

N−1
∑

k=1

1

Dk,k+1

(74)

Putting everything together, one finally obtains the connected correlation function for i < j

Cc
i,j ≡ Ci,j − µiµj (75)

= −(µ− µ′)

(

i−1
∑

k=1

1

Dk,k+1

)





N−1
∑

k=j

1

Dk,k+1





(

N−1
∑

k=1

1

Dk,k+1

)2















µ

Di,i+1

(

N−1
∑

k=1

1

Dk,k+1
−

1

Di,i+1

) −
µ′

Dj−1,j

(

N−1
∑

k=1

1

Dk,k+1
−

1

Dj−1,j

)















This formula generalizes the known expressions for the connected correlations in the pure case Dk,k+1 = 1 [56, 57]

[Cc
i,j ]

pure = −(µ− µ′)2
(i− 1)(N − j)

(N − 1)2(N − 2)
(76)

The important property is that any non-equilibrium case µ 6= µ′ is characterized by correlations that are weak in
amplitude but long-ranged (see the review [32] and references therein).
For two neighbors, Eq. 75 simplifies into

Cc
i,i+1 ≡ Ci,i+1 − µiµi+1 = −(µ− µ′)2

(

i−1
∑

k=1

1

Dk,k+1

)(

N−1
∑

k=i+1

1

Dk,k+1

)

Di,i+1

(

N−1
∑

k=1

1

Dk,k+1

)2(
N−1
∑

k=1

1

Dk,k+1
−

1

Di,i+1

)

(77)

This result will be useful in the next section to compute the fluctuations of the integrated current.

V. CURRENT FLUCTUATIONS

For the Simple Symmetric Exclusion Process without disorder, the current fluctuations have been studied in [58].
In particular, the variance of the integrated current can be obtained from conservation rules [58]. In this section, we
describe how this method can be adapted in the presence of disorder.

A. Integrated current Qk on a given link

In order to keep the information on the integrated current Qk on the link (k, k + 1) during [0, t], we need to
decompose the ket at time t into a sum over the possible values of Qk

|Pt >=
∑

Qk

|Pt(Qk) > (78)

and to write the dynamics of these components

∂|Pt(Qk) >

∂t
= W+

k |Pt(Qk − 2) > +W−
k |Pt(Qk + 2) > +(W −W+

k −W−
k )|Pt(Qk) > (79)

where W is the full operator of Eq. 41, and where the contributions corresponding to the increase or the decrease of
the integrated current Qk are

W+
k = Dk,k+1σ

−
k σ+

k+1

W−
k = Dk,k+1σ

+
k σ

−
k+1 (80)
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In particular, the average of the integrated current

< Qk >t=
∑

Qk

Qk

∑

S2,..,SN−1

< S2, .., SN−1|Pt(Qk) > (81)

evolves according to (using the probability conservation
∑

S2,..,SN−1
< S2, .., SN−1|W = 0)

∂ < Qk >t

∂t

=
∑

S2,..,SN−1

< S2, .., SN−1|



W+
k

∑

Qk

Qk(|Pt(Qk − 2) > −|Pt(Qk) >) +W−
k

∑

Qk

Qk(|Pt(Qk + 2) > −|Pt(Qk) >)





=
∑

S2,..,SN−1

< S2, .., SN−1|(2(W
+
k −W−

k )
∑

Qk

|Pt(Qk) >

=< 2Dk,k+1(σ
−
k σ+

k+1 − σ+
k σ

−
k+1) >t=< Ik,k+1 >t (82)

i.e. one obtains the average of the current operator of Eq. 54 as it should.
The average of the square

< Q2
k >t=

∑

Qk

Q2
k

∑

S2,..,SN−1

< S2, .., SN−1|Pt(Qk) > (83)

evolves according to

∂ < Q2
k >t

∂t

=
∑

S2,..,SN−1

< S2, .., SN−1|



W+
k

∑

Qk

Q2
k(|Pt(Qk − 2) > −|Pt(Qk) >) +W−

k

∑

Qk

Q2
k(|Pt(Qk + 2) > −|Pt(Qk) >)





=
∑

Qk

∑

S2,..,SN−1

< S2, .., SN−1|
(

4(W+
k +W−

k ) + 4(W+
k −W−

k )Qk

)

|Pt(Qk) >

= 4Dk,k+1 < (σ−
k σ+

k+1 + σ+
k σ

−
k+1) >t +2 < Ik,k+1Qk >t (84)

The first term can be written in terms of the two-point magnetization-correlation (using Eq. 51 and Eq. 55)

< (σ−
k σ+

k+1 + σ+
k σ

−
k+1) >t =

∑

S2,..,SN−1

< S2, .., SN−1|
(

σ−
k σ

+
k+1 + σ+

k σ
−
k+1

)

|Pt >

=<

(

1 + σz
k

2

)(

1− σz
k+1

2

)

+

(

1− σz
k

2

)(

1 + σz
k+1

2

)

>t

=<
1− σz

kσ
z
k+1

2
>t (85)

The second term of Eq. 84 involves the correlation between the current Ik,k+1 and the integrated current Qk. Since
Eq. 82 yields

∂ < Qk >2
t

∂t
= 2 < Qk >t

∂ < Qk >t

∂t
= 2 < Qk >t< Ik,k+1 >t (86)

one obtains from the difference with Eq. 84 that the dynamics of the fluctuation of the integrated current Qk involves
the connected correlation the current Ik,k+1 and the integrated current Qk

Fk(t) ≡
∂(< Q2

k >t − < Qk >2
t )

∂t
= 2Dk,k+1 < (1− σz

kσ
z
k+1) >t +2(< Ik,k+1Qk >t − < Ik,k+1 >t< Qk >t)(87)

Using again Eq. 51 and Eq. 55, one may rewrite Eq. 84 in terms of connected correlations between the integrated
current Qk on the link (k, k + 1) and the magnetizations (σz

k, σk+1) of the two spins connected to the link

Fk(t) = 2Dk,k+1 < (1− σz
kσ

z
k+1) >t

+2Dk,k+1

[

(< σz
kQk >t − < σz

k >t< Qk >t)− (< σz
k+1Qk >t − < σz

k+1 >t< Qk >t)
]

(88)
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For the special cases of the boundary links k = 1 and k = N − 1 involving the fixed spins σz
1 → µ and σz

N → µ′,
this simplifies into

F1(t) = 2D1,2(1− µ < σz
2 >t)

+2D1,2 [0− (< σz
2Q1 >t − < σz

2 >t< Q1 >t)] (89)

and k = N − 1

FN−1(t) = 2DN−1,N(1− < σz
N−1 >t µ

′)

+2DN−1,N

[

(< σz
N−1QN−1 >t − < σz

N−1 >t< QN−1 >t)− 0
]

(90)

B. Comparison of the fluctuations on the different links

The integrated currents Qk−1 and Qk on two neighboring links (k− 1, k) and (k, k+1) are closely related since the
total change of magnetization of the spin σk between them is given by their difference

σz
k(t)− σz

k(t = 0) = Qk−1 −Qk (91)

In particular, since this difference remains bounded, the fluctuations Fk(t) introduced above will become independent
of k and independent of time in the steady-state reached at large time

Fk(t) ≃
t→+∞

F (92)

and the goal is to compute this limit from observables in the steady-state.
From the structure of the system (Eqs 88, 89, 90), it is clear that Eq 91 will allow to simplify the following sum

N−1
∑

k=1

Fk(t)

2Dk,k+1
=

N−1
∑

k=1

< (1 − σz
kσ

z
k+1) >t

+

N−1
∑

k=2

(< σz
k(Qk −Qk−1) >t − < σz

k >t< (Qk −Qk−1) >t)

= 1 +
N−1
∑

k=2

< σz
k >2

t −
N−1
∑

k=1

< σz
kσ

z
k+1 >t

+

N−1
∑

k=2

(< σz
k(t)σ

z
k(t = 0) > − < σz

k(t) >< (σz
k(t = 0) >) (93)

C. Fluctuation F in the Non-Equilibrium-Steady-State

In the large-time limit t → +∞, the time-auto-correlation of the last line of Eq. 93 can be neglected, so that the
common value F of the fluctuations (Eq. 92) can be computed from the knowledge of the magnetization and the
two-point correlation in the steady state

F

2

(

N−1
∑

k=1

1

Dk,k+1

)

= 1 +

N−1
∑

k=2

< σz
k >2

ness −

N−1
∑

k=1

< σz
kσ

z
k+1 >ness (94)

In terms of the magnetizations µj (Eq. 65) with the boundary conditions µ1 = µ and µN = µ′ and of the connected
two-point correlation Cc

i,i+1 (Eq. 77), the fluctuation F reads

F

2

(

N−1
∑

k=1

1

Dk,k+1

)

= 1−
µ2 + (µ′)2

2
+

1

2

N−1
∑

i=1

(µi − µi+1)
2 −

N−1
∑

i=1

Cc
i,i+1 (95)
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Using the difference of magnetizations on consecutive spins (Eq. 58) in terms of the current I of Eq. 61, the first sum
simplify into

1

2

N−1
∑

i=1

(µi − µi+1)
2 =

I2

2

N−1
∑

i=1

1

D2
i,i+1

=
(µ− µ′)2

2

(

N−1
∑

k=1

1

Dk,k+1

)2

N−1
∑

i=1

1

D2
i,i+1

(96)

while the sum of the connected correlation of Eq. 77 reads

−

N−1
∑

i=1

Cc
i,i+1 =

(µ− µ′)2

(

N−1
∑

k=1

1

Dk,k+1

)2

N−2
∑

i=2

(

i−1
∑

k=1

1

Dk,k+1

)(

N−1
∑

k=i+1

1

Dk,k+1

)

Di,i+1

(

N−1
∑

k=1

1

Dk,k+1
−

1

Di,i+1

) (97)

so that the final result for the fluctuation F reads in terms of the boundary magnetizations (µ, µ′) and in terms of
the random diffusion coefficients Dk

F =
2− µ2 − (µ′)2
(

N−1
∑

k=1

1

Dk,k+1

) +
(µ− µ′)2

(

N−1
∑

k=1

1

Dk,k+1

)3















N−1
∑

i=1

1

D2
i,i+1

+ 2

N−2
∑

i=2

(

i−1
∑

k=1

1

Dk,k+1

)(

N−1
∑

k=i+1

1

Dk,k+1

)

Di,i+1

(

N−1
∑

k=1

1

Dk,k+1
−

1

Di,i+1

)















(98)

VI. CONCLUSION

In this paper, we have studied the Lindblad dynamics of the XX quantum chain with random fields hj in the
presence of two types of dissipative processes, namely dephasing in the bulk and magnetization-driving at the two
boundaries. We have focused on the regime of strong disorder in the random fields [11], or in the regime of strong bulk-
dephasing [33, 34], where the effective dynamics can be mapped via degenerate second-order perturbation theory in the
couplings Jj onto a classical Simple Symmetric Exclusion Process with quenched disorder in the diffusion coefficient
associated to each bond. We have then studied the properties of the corresponding Non-Equilibrium-Steady-State in
each disordered sample between the two reservoirs by extending the methods that have been previously developed
for the same model without disorder. We have given explicit results for the magnetization profile, for the two-point
correlations, for the mean current and for the current fluctuations in terms of the random fields and couplings defining
the disordered sample.
As expected, these results are completely different from the transport properties of the same model in the absence

of bulk dephasing [16], where the quantum coherence of the bulk dynamics maintains the localized character via a
step-magnetization profile and an exponentially decaying current with the system size [16].
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