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Periodically driven random quantum spin chains :

Real-Space Renormalization for Floquet localized phases

Cécile Monthus
Institut de Physique Théorique, Université Paris Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France

When random quantum spin chains are submitted to some periodic Floquet driving, the eigen-
states of the time-evolution operator over one period can be localized in real space. For the case of
periodic quenches between two Hamiltonians (or periodic kicks), where the time-evolution operator
over one period reduces to the product of two simple transfer matrices, we propose a Block-self-dual
renormalization procedure to construct the localized eigenstates of the Floquet dynamics. We also
discuss the corresponding Strong Disorder Renormalization procedure, that generalizes the RSRG-X
procedure to construct the localized eigenstates of time-independent Hamiltonians.

I. INTRODUCTION

The issue of thermalization in isolated quantum many-body systems, which has been much analyzed recently for
time-independent Hamiltonians (see the reviews [1, 2] and references therein), has been also studied for time-periodic
Hamiltonians [3–12] : the usual decomposition of the unitary dynamics in terms of the eigenmodes of the time-
independent-Hamiltonian is then replaced by the decomposition into the eigenmodes of the time-evolution-operator
over one period T within the Hilbert space of size N

U(T, 0) ≡ T e−i
∫

T

0
dtH(t) =

N
∑

n=1

e−iθn |un >< un| (1)

The phases θn ∈]− π,+π] characterizing the eigenvalues e−iθn of this unitary operator are often rewritten as

θn = T ǫn (2)

where the Floquet quasi-energies ǫn are only defined modulo 2π
T
. The time-evolution-operator U(T, 0) can be then

rewritten

U(T, 0) = e−iTHF (3)

as if it were associated to the time-independent Floquet Hamiltonian

HF =

N
∑

n=1

ǫn|un >< un| (4)

This construction in terms of the spectral decomposition of the evolution operator of Eq. 1 shows that the Floquet
Hamiltonian associated to a finite period T is usually very implicit in terms of the microscopic local degrees of freedom.
However in the limit of short period T → 0, the Floquet Hamiltonian is given by the high-frequency Magnus expansion
(see the review [13] and references therein)

HF ≃
T→0

Hav +H2 +H3 + ...

Hav =
1

T

∫ T

0

dtH(t)

H2 =
1

2T

∫ T

0

dt1

∫ t1

0

dt2[H(t1), H(t2)] (5)

where the leading term corresponds simply to the time-averaged Hamiltonian Hav, while all the other corrections
involve various commutators. Roughly speaking, this Magnus expansion is expected to converge as long as the phases
θavn = TEav

n associated to the time-averaged Hamiltonian Hav remain within the first Brillouin zone −π < θavn < π [4].
However, in a many-body quantum system involving N spins, the full bandwidth grows extensively Eav

max−Eav
min ∝ N ,

and the typical energies grows as Eav
typ ∝

√
N , so that the radius of convergence of the Magnus expansion T ≤ Tc(N)

shrinks to zero in the thermodynamic limit Tc(N → +∞) → 0 [4]. For generic non-integrable extensive systems driven
with a finite period T , the Magnus expansion thus breaks down and the Floquet dynamics leads to the Random Matrix
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Circular Ensemble statistics [4] for the Floquet phases θn that are uniformly distributed on ]− π,+π] : the existing
level repulsion can be interpreted as resulting from the strong mixing between the energy levels of the undriven system
that correspond to the same quasi-energy defined modulo 2π

T
[5]. However this general conclusion about thermalization

can be avoided in the presence of disorder if the Floquet eigenstates are localized in real space [14–24], in analogy with
the phenomena of Anderson Localization or Many-Body-Localization for time-independent random Hamiltonians. In
addition, when the Floquet eigenstates are localized in real space, they may display different types of order, like
Spin-Glass or Paramagnetic as for time-independent problems, but also new phases specific to the Floquet periodic
driving that involve for instance the period-doubling phenomenon for some degrees of freedom [21–24].
The aim of the present paper is to introduce real-space renormalization procedures for the Floquet localized eigen-

states of random quantum spin chains. The paper is organized as follows. In section II, we describe the model of
a random quantum spin chain submitted to periodic quenches between two Hamiltonians or to periodic kicks. In
section III, we derive the block real space renormalization rules for the parameters of the evolution operator over one
period. In section IV, we discuss the properties of these Block-RG rules, and describe the alternative Strong Disorder
RG procedure. Our conclusions are summarized in section V.

II. RANDOM QUANTUM SPIN CHAIN SUBMITTED TO PERIODIC QUENCHES OR KICKS

A. Periodic sudden quenches between two Hamiltonians

In this paper, we consider the periodic Hamiltonian H(t + T ) = H(t) of period T = T0 + T1 with the following
dynamics over one period

H(0 ≤ t ≤ T0) = H0 ≡ −
N−1
∑

n=1

Jnσ
z
nσ

z
n+1

H(T0 ≤ t ≤ T = T0 + T1) = H1 ≡ −
N
∑

n=1

hnσ
x
n (6)

The evolution operator during the period reads

U(t, 0) = e−itH0 = e

it

N−1
∑

n=1

Jnσ
z
nσ

z
n+1

for 0 ≤ t ≤ T0

U(t, T0) = e−i(t−T0)H1 = e

i(t− T0)

N
∑

n=1

hnσ
x
n

for T0 ≤ t ≤ T = T0 + T1 (7)

In particular, the evolution operator over one period

U cycle ≡ U(T, 0) = U(T = T0 + T1, T0)U(T0, 0) = e−iT1H1e−iT0H0 = e

iT1

N
∑

n=1

hnσ
x
n

e

iT0

N−1
∑

n=1

Jnσ
z
nσ

z
n+1

(8)

is explicit as the product of the two evolution operators associated to the two Hamiltonians (H0, H1). This type
of periodic sudden quenches between two Hamiltonians is thus much simpler technically than the general case of a
continuously-varying Hamiltonian where the evolution operator requires the time-ordering of Eq. 1. This explains why
this protocol of periodic quenches has been the most considered framework recently in the field of random quantum
spin chains [14, 15, 19, 21–24]

B. Periodically-kicked Quantum spin chain

The periodically kicked spin chain of Hamiltonian of period T0

H(τ) = H0 +Hkick

+∞
∑

m=−∞

δ(τ −mT0) (9)
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yields the cyclic evolution operator

U cycle = e−iHkicke−iT0H0 (10)

that coincides with Eq. 8 with the correspondence Hkick → T1H1. This equivalent formulation makes the link with
the literature on kicked quantum models which have a long history in the field of quantum chaos (see [3, 6, 8, 11] and
references therein).

C. New possible phases in Floquet systems

The evolution operator of Eq. 8 is directly related via analytic continuation to the Transfer Matrix of the two-
dimensional classical Ising model with columnar disorder known as the McCoy-Wu model. For the case without
disorder, this link has been recently discussed in the context of integrable Floquet systems [25]. However, the Floquet
dynamics involving phases introduces some differences with respect to statistical models involving real Boltzmann
weights.
Indeed, the identities for the elementary transfer matrices

eiT1hnσ
x

n = cos(T1hn) + i sin(T1hn)σ
x
n

eiT0Jnσ
z

n
σz

n+1 = cos(T0Jn) + i sin(T0Jn)σ
z
nσ

z
n+1 (11)

show that the couplings hn and Jn actually only appear via the cosinus and sinus of the phases T1hn and T0Jn, with
a periodicity of 2π. In addition, the consideration of the special values (0,±π

2 , π) yields the possibility of new phases
specific to the Floquet periodic driving [21–24]. For instance, if all the transverse fields hn take the same non-random
value, besides the usual Spin-Glass case corresponding to hn = 0

U cycle
hn=0 = e

iT0

N−1
∑

n=1

Jnσ
z
nσ

z
n+1

(12)

there exists a new π-Spin-Glass case corresponding to hn = π
2T1

U cycle
hn=

π

2T1

= iN

(

∏

n

σx
n

)

e

iT0

N−1
∑

n=1

Jnσ
z
nσ

z
n+1

(13)

where the states |S1, .., SN > in the σz basis are eigenstates over two periods, but not over one period as a consequence
of the global flip of all the spins (

∏

n σ
x
n).

Similarly, if all the couplings Jn take the same non-random value, besides the usual Paramagnetic case corresponding
to Jn = 0

U cycle
Jn=0 = e

iT1

N
∑

n=1

hnσ
x
n

(14)

there exists a new 0π-Paramagnetic case corresponding to Jn = π
2T0

U cycle
Jn=

π

2T0

= iNe

iT1

N
∑

n=1

hnσ
x
n N
∏

n=1

(σz
nσ

z
n+1) = iNe

iT1

N
∑

n=1

hnσ
x
n

σz
1σ

z
N (15)

where the states in the σx basis are eigenstates over two periods, but not over one period as a consequence of the flip
of the two end spins σz

1σ
z
N .

D. Discussion

The two examples above of the π-Spin-Glass and of the 0π-Paramagnet [21–24] show that the description of the full
general case where T1hn and T0Jn can be random anywhere on ] − π,+π] requires the discussion of many separate
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cases to identify the degrees of freedom submitted to the period doubling phenomenon. In the following, to simplify
the discussion, we will thus focus on the case without any period doubling where the random elementary phases
remain in the sector

−π
4
≤ T1hn ≤ π

4

−π
4
≤ T0Jn ≤ π

4
(16)

In the limit of short period T → 0 where all these phases become infinitesimal, the averaged Hamiltonian of the
Magnus expansion of Eq. 5 for the protocol of Eq. 6

Hav =
1

T

∫ T

0

dtH(t) = −
N−1
∑

n=1

J tav
n σz

nσ
z
n+1 −

N
∑

n=1

htavn σx
n (17)

corresponds to the quantum Ising chain with the random couplings

J tav
n ≡ T0Jn

T
(18)

and the random transverse fields

htavn ≡ T1hn
T

(19)

The construction of its ground state by Daniel Fisher [26] via the Strong Disorder RG approach (reviewed in [27])
has been extended into the RSRG-X procedure in order to construct the whole set of excited eigenstates of various
random quantum spin chains in their localized phases [28–32]. Another possibility to construct the whole set of
eigenstates is the Block Self-Dual Renormalization procedure [33] that generalizes the Fernandez-Pacheco procedure
to construct the ground state of the pure chain [34, 35] (see also the extensions to higher dimensions [36–38] or other
models [39–42]) and of the random chain [43–46]. In the next section, our goal is to extend the idea of this Block
Self-Dual Renormalization procedure to the evolution operator of the Floquet dynamics when the elementary phases
are finite in the sector of Eq 16 instead of infinitesimal (Eq. 17). The corresponding Strong Disorder RG procedure
will be discussed in section IVB.

III. BLOCK SELF-DUAL RENORMALIZATION PROCEDURE

In this section, we describe how the idea of the Block Self-Dual Renormalization procedure [33–35, 43–46] concerning
the random quantum Ising chain of Eq. 17 can be adapted to the evolution operator of the Floquet dynamics of Eq.
8.

A. Transfer matrices associated to even-odd couplings and fields

To keep the duality between couplings and transverse fields during the renormalization, it is convenient to separate
even and odd couplings and fields within the evolution operator (see [47] for the case without disorder in the language
of the transfer matrix for the two-dimensional classical Ising model)

U cycle = e

iT1
∑

n

h2nσ
x
2n

e

iT1
∑

n

h2n−1σ
x
2n−1

e

iT0
∑

n

J2n−1σ
z
2n−1σ

z
2n

e

iT0
∑

n

J2nσ
z
2nσ

z
2n+1

(20)

in order to introduce

M = e

iT1
∑

n

h2n−1σ
x
2n−1

e

iT0
∑

n

J2n−1σ
z
2n−1σ

z
2n

(21)

and

N = e

iT0
∑

n

J2nσ
z
2nσ

z
2n+1

e

iT1
∑

n

h2nσ
x
2n

(22)
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Then Eq. 20 can be rewritten as

U cycle = e

−iT0
∑

n

J2nσ
z
2nσ

z
2n+1

NMe

iT0
∑

n

J2nσ
z
2nσ

z
2n+1

(23)

so that the evolution over p cycles

U(pT, 0) = [U(T, 0]p = e

−iT0
∑

n

J2nσ
z
2nσ

z
2n+1

(NM)p e

iT0
∑

n

J2nσ
z
2nσ

z
2n+1

(24)

involves the alternate product of the matrices N and M up to boundary terms.

B. Spectral analysis of the matrix M

The matrix M of Eq. 21 commutes with all σz
2n. As a consequence, the matrix elements in the σz basis can be

factorized into independent one-spin problems for the odd spins σ2n−1

< S′
1, ..., S

′
N |M|S1, ..., SN >=

N

2
∏

n=1

δS′

2n
,S2n

< S′
2n−1|eiT1h2n−1σ

x

2n−1eiT0J2n−1σ
z

2n−1S2n |S2n−1 > (25)

So for each value S2n = ±1, one has to diagonalize the two-by-two matrix concerning the single quantum spin σ2n−1

M2n−1;S2n
= eiT1h2n−1σ

x

2n−1eiT0J2n−1S2nσ
z

2n−1 =
[

cos(T1h2n−1) + i sin(T1h2n−1)σ
x
2n−1

]

eiT0J2n−1S2nσ
z

2n−1

=

(

cos(T1h2n−1)e
iT0J2n−1S2n i sin(T1h2n−1)e

−iT0J2n−1S2n

i sin(T1h2n−1)e
iT0J2n−1S2n cos(T1h2n−1)e

−iT0J2n−1S2n

)

(26)

It is convenient to introduce the notations

r2n−1 ≡ 1
√

1 + tan2(T1h2n−1)
sin2(T0J2n−1)

η2n−1 ≡ sgn

(

tan(T1h2n−1)

sin(T0J2n−1)

)

(27)

The two eigenvalues are independent of the value of S2n = ±1 and are complex-conjugate on the unit circle

λ±2n−1 = cos(T1h2n−1)

[

cos(T0J2n−1)± i
sin(T0J2n−1)

r2n−1

]

= e±iα2n−1 (28)

The right and left eigenvectors associated to λ+2n−1 read

|λ+R
2n−1(S2n) > = e−

iT0J2n−1

2
S2n

√

1 + r2n−1S2n

2
|S2n−1 = + > +η2n−1e

iT0J2n−1

2
S2n

√

1− r2n−1S2n

2
|S2n−1 = − >

< λ+L
2n−1(S2n)| = e

iT0J2n−1

2
S2n

√

1 + r2n−1S2n

2
< S2n−1 = +|+ η2n−1e

−
iT0J2n−1

2
S2n

√

1− r2n−1S2n

2
< S2n−1 = −|

while the right and left eigenvectors associated to λ−2n−1 read

|λ−R
2n−1(S2n) > = −η2n−1e

−
iT0J2n−1

2
S2n

√

1− r2n−1S2n

2
|S2n−1 = + > +e

iT0J2n−1

2
S2n

√

1 + r2n−1S2n

2
|S2n−1 = − >

< λ−L
2n−1(S2n)| = −η2n−1e

iT0J2n−1

2
S2n

√

1− r2n−1S2n

2
< S2n−1 = +|+ e−

iT0J2n−1

2
S2n

√

1 + r2n−1S2n

2
< S2n−1 = −|

with the orthonormalization relations

1 =< λ+L
2n−1(S2n)|λ+R

2n−1(S2n) >

1 =< λ−L
2n−1(S2n)|λ−R

2n−1(S2n) >

0 =< λ−L
2n−1(S2n)|λ+R

2n−1(S2n) >

0 =< λ+L
2n−1(S2n)|λ−R

2n−1(S2n) > (29)
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so that the two-by-two matrix of Eq. 26 for the spin σ2n−1 can be rewritten as the spectral decomposition

M2n−1;S2n
= λ+2n−1|λ+R

2n−1(S2n) >< λ+L
2n−1(S2n)|+ λ−2n−1|λ−R

2n−1(S2n) >< λ−L
2n−1(S2n)| (30)

For the pair (σ2n−1, σ2n), there are thus two degenerate states associated to λ+2n−1 = eiα2n−1 and two degenerate

states associated to λ−2n−1 = e−iα2n−1 with the spectral decomposition

M2n−1 = eiα2n−1

∑

S2n=±1

|λ+R
2n−1(S2n) > ⊗|S2n >< λ+L

2n−1(S2n)|⊗ < S2n|

+e−iα2n−1

∑

S2n=±1

|λ−R
2n−1(S2n) > ⊗|S2n >< λ−L

2n−1(S2n)|⊗ < S2n| (31)

The full matrix M obtained by the product over all pairs

M =

N

2
∏

n=1

M2n−1 =

N

2
∏

n=1





∑

τ2n−1=±1

eiτ2n−1α2n−1

∑

S2n=±1

|λτ2n−1R

2n−1 (S2n) > ⊗|S2n >< λ
τ2n−1L

2n−1 (S2n)|⊗ < S2n|



 (32)

is a transfer matrix of size 2N × 2N . Its 2
N

2 eigenvalues are labelled by the sequence of N
2 indices τ2n−1 = ±1

M (τ1,..,τ2n−1,..) = e

i

N

2
∑

n=1

τ2n−1α2n−1

(33)

Each of these eigenvalues is degenerate 2
N

2 times. One basis of the corresponding degenerate subspace is given by the
sequence of the N

2 values S2n of the even spins, with the right and left eigenvectors given by the tensor-products

|M (τ1,..,τ2n−1,..)R
S2,..,S2n...

>= ⊗
N

2

n=1|λ
τ2n−1R

2n−1 (S2n) > ⊗|S2n >

< M
(τ1,..,τ2n−1,..)L
S2,..,S2n...

| = ⊗
N

2

n=1 < λ
τ2n−1L

2n−1 (S2n)|⊗ < S2n| (34)

In the next section, the matrix N will be taken into account to lift this degeneracy and obtain the effective
renormalized couplings and fields for the even spins once the odd spins have been eliminated.

C. Matrix N between two matrices M

Let us now focus on the matrix elements of the matrix of Eq. 22

N = e

iT0
∑

n

J2nσ
z
2nσ

z
2n+1

e

iT1
∑

n

h2nσ
x
2n

(35)

within the degenerate subspace associated to each eigenvalue (Eq. 33) and the corresponding basis of eigenvectors
(Eq. 34). These matrix elements factorize into

< M
(τ1,..,τ2n−1,..)L
S2,..,S2n...

|N |M (τ1,..,τ2n−1,..)R
S′

2
,..,S′

2n
...

>

=

N

2
∏

n=1

[

< λ
τ2n−1L
2n−1 (S2n)|eiT0J2n−2S2n−2σ

z

2n−1 |λτ2n−1R
2n−1 (S′

2n) >< S2n|eiT1 h2nσ
x

2n |S′
2n >

]

(36)

so we need

< S2n|eiT1h2nσ
x

2n |S′
2n > =< S2n| [cos(T1h2n) + i sin(T1h2n)σ

x
2n] |S′

2n >

= cosh(T1h2n)δS2n,S
′

2n
+ i sin(T1h2n)δS2n,−S′

2n
(37)

and

< λ
τ2n−1L

2n−1 (S2n)|eiT0J2n−2S2n−2σ
z

2n−1 |λτ2n−1R

2n−1 (S′
2n) >

=< λ
τ2n−1L

2n−1 (S2n)|
[

cos(T0J2n−2) + i sin(T0J2n−2)S2n−2σ
z
2n−1

]

|λτ2n−1R

2n−1 (S′
2n) > (38)
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Using the explicit expressions of the left and right eigenvectors given in the previous subsection, one obtains respec-
tively for equal spins S2n = S′

2n

< λ
τ2n−1L

2n−1 (S2n)|eiT0J2n−2S2n−2σ
z

2n−1 |λτ2n−1R

2n−1 (S′
2n = S2n) >= cos(T0J2n−2) + i sin(T0J2n−2)r2n−1τ2n−1S2n−2S2n (39)

and for opposite spins

< λ
τ2n−1L

2n−1 (S2n)|eiT0J2n−2S2n−2σ
z

2n−1 |λτ2n−1R

2n−1 (S′
2n = −S2n) >

=
√

1− r22n−1 [cos(T0J2n−2) cos(T0J2n−1)− sin(T0J2n−2) sin(T0J2n−1)S2n−2S2n] (40)

Putting everything together, the matrix elements within a degenerate subspace

< M
(τ1,..,τ2n−1,..)L
S2,..,S2n...

|N |M (τ1,..,τ2n−1,..)R
S′

2
,..,S′

2n
...

>

=

N

2
∏

n=1

cosh(T1h2n) cos(T0J2n−2)[δS2n,S
′

2n
(1 + i tan(T0J2n−2)r2n−1τ2n−1S2n−2S2n)

+iδS2n,−S′

2n

√

1− r22n−1 tan(T1h2n) (cos(T0J2n−1)− tan(T0J2n−2) sin(T0J2n−1)S2n−2S2n)] (41)

are equivalent at leading order to the matrix elements of the renormalized matrix

NR = e

iT0
∑

n

JR
2nσ

z
2nσ

z
2n+2

e

iT1
∑

n

hR2nσ
x
2n

(42)

where the renormalized couplings JR
2n between even spins (σ2n, σ2n) are given by

tan(T0J
R
2n−2,2n) = τ2n−1 tan(T0J2n−2)r2n−1

= τ2n−1
tan(T0J2n−2)| tan(T0J2n−1)|

√

tan2(T0J2n−1) + tan2(T1h2n−1) + tan2(T1h2n−1) tan
2(T0J2n−1)

(43)

while the renormalized transverse fields hR2n on the even spins are given by

tan(T1h
R
2n) = tan(T1h2n) cos(T0J2n−1)

√

1− r22n−1

=
tan(T1h2n)| tan(T1h2n−1)|

√

tan2(T0J2n−1) + tan2(T1h2n−1) + tan2(T1h2n−1) tan
2(T0J2n−1)

(44)

IV. ANALYSIS OF THE RENORMALIZATION RULES

A. Block Self-dual RG rules

Let us summarize the output of the previous section : once all the odd spins have been eliminated, the Floquet
dynamics of the even spins is described by the evolution operator of Eq. 42 with the renormalized couplings and fields
satisfying Eqs 43 and 44

tan(T0J
R
2n−2,2n) = τ2n−1

tan(T0J2n−2)| tan(T0J2n−1)|
√

tan2(T0J2n−1) + tan2(T1h2n−1) + tan2(T1h2n−1) tan
2(T0J2n−1)

tan(T1h
R
2n) =

tan(T1h2n)| tan(T1h2n−1)|
√

tan2(T0J2n−1) + tan2(T1h2n−1) + tan2(T1h2n−1) tan
2(T0J2n−1)

(45)

This defines a closed mapping between the tangents of the phases associated to (T0Jn) and (T1hn), up to the signs
τ2n−1 = ±1 that label the emergent local integrals of motions associated to the pairs (2n− 1, 2n).
The corresponding order of the eigenstates can be analyzed via the ratios

ρn ≡ | tan(T0Jn−1)|
| tan(T1hn)|

(46)
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that satisfy the very simple multiplicative rule

ρR2n ≡ | tan(T0JR
2n−2,2n)|

| tan(T1hR2n)|
=

| tan(T0J2n−2) tan(T0J2n−1)|
| tan(T1h2n−1) tan(T1h2n)|

= ρ2n−1ρ2n (47)

Equivalently, their logarithms satisfy the additive rule

log ρR2n = log ρ2n−1 + log ρ2n (48)

The location of the critical point between the paramagnetic Phase (where the renormalized ratios ρR flow towards
zero) and the Spin-Glass Phase (where the renormalized ratios ρR flow towards infinity) is thus given by the following
criterion in terms of the disorder average denoted by the overline

Criticality : 0 = log ρn = log | tan(T0Jn)| − log | tan(T1hn)| (49)

In addition, the renormalization rule of Eq. 48 yields that the critical point corresponds to an Infinite Disorder
Fixed Point with the activated exponent ψ = 1/2, the typical correlation exponent νtyp = 1/2 and the averaged
correlation exponent νav = 1/2 exactly as for the Fernandez-Pacheco self-dual procedure for the time independent
random quantum Ising chain [43–46].

B. Strong Disorder RG procedure

Since the Block Self-dual RG rules discussed above points towards an Infinite Disorder Fixed Point, the critical
properties are expected to be described exactly in the asymptotic regime by the appropriate Strong Disorder RG rules
[26, 27]. Here one does not need to do new computations, since one can derive them as a special limit from the block
self-dual RG rules given above. The idea is that one wishes to eliminate only one degree of freedom at each step
(instead of the N

2 odd spins in parallel) with the following procedure :
(i) one chooses the maximum among the variables (| tan(T0Jn)|, | tan(T1hn)|)
(ii) if the maximum corresponds to | tan(T1hn0

)|, the corresponding spin σn0
is removed and replaced by the

renormalized coupling between its two neighbors

tan(T0J
R
n0−1,n0+1) ≃ τn0

tan(T0Jn0−1)| tan(T0Jn0
)|

| tan(T1hn0
)| (50)

that can be obtained from the rules of Eq. 45 for the case n0 = 2n− 1 within the approximation for the denominator
√

tan2(T0J2n−1) + tan2(T1h2n−1) + tan2(T1h2n−1) tan
2(T0J2n−1) ≃ | tan(T1h2n−1)|.

(iii) if the maximum corresponds to | tan(T0Jn0
)|, one replaces the pair (σn0

, σn0+1) by a single renormalized spin
with the renormalized transverse field

tan(T1h
R
n0+1) ≃ tan(T1hn0+1)| tan(T1hn0

)|
| tan(T0Jn0

)| (51)

that can be obtained from the rules of Eq. 45 for the case n0 = 2n− 1 within the approximation for the denominator
√

tan2(T0J2n−1) + tan2(T1h2n−1) + tan2(T1h2n−1) tan
2(T0J2n−1) ≃ | tan(T0J2n−1)|.

C. Limit of small period T = T0 + T1 → 0

In the limit of small period T → 0, the tangents can be linearized and read in terms of the averaged couplings of
Eq. 18 and 19 of the averaged Hamiltonian of the Magnus expansion of Eq. 17

tan(T0Jn) ≃ T0Jn = TJ tav
n

tan(T1hn) ≃ T1hn = Thtavn (52)

The RG rules of Eq. 45 then become in the limit T → 0

J tavR
2n−2,2n = τ2n−1

J tav
2n−2|J tav

2n−1|
√

(J tav
2n−1)

2 + (htav2n−1)
2

htavR2n =
htav2n |htav2n−1|

√

(J tav
2n−1)

2 + (htav2n−1)
2

(53)
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These rules coincide with the Fernandez-Pacheco self-dual procedure for the time independent random quantum Ising
chain [43–46].
In this limit of small period T → 0, the criticality condition of Eq. 49 yields the usual criterion [26, 27, 48] for the

quantum Ising chain of Eq. 17

Criticality : 0 = log |T0Jn| − log |T1hn| = log |J tav
n | − log |htavn | (54)

V. CONCLUSION

In this paper, we have considered a model of periodic quenches between two random quantum spin chain Hamil-
tonians, where the time-evolution operator over one period reduces to the product of two simple transfer matrices.
We have proposed to construct the corresponding localized eigenstates via some Block-self-dual renormalization pro-
cedure. We have also discussed the alternative Strong Disorder Renormalization procedure, that generalizes the
RSRG-X procedure to construct the localized eigenstates of time-independent Hamiltonians. For the specific model
that we have considered, we have obtained that the transition between Spin-Glass and Paramagnetic eigenstates is
described by the Fisher Infinite Disorder Fixed Point [26, 27], whose location is determined by Eq. 49 that replaces
the usual criterion of Eq. 54 concerning the time-independent random quantum Ising chain.
Our main conclusion is that this idea of real-space renormalization to characterize the localized eigenstates of the

Floquet dynamics in random systems provides an interesting alternative point of view with respect to the usual Magnus
expansion. This approach can be applied to other models and to higher dimensions d > 1. Indeed for time-independent
random Hamiltonians, the real-space renormalization approach has been extended to higher-dimensions, both within
the Strong Disorder framework [49–59], or within the Block self-dual framework [43, 44] : the renormalization rules
cannot be solved explicitly anymore, but they can be implemented numerically on large systems. The localized phases
of Floquet dynamics for random spin models in d > 1 could thus be studied similarly via the numerical application
of the real-space renormalization rules.
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