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Motivated by the recent experimental report of a possible light-induced superconductivity in
K3C60 at high temperature [Mitrano et al., Nature 530, 451 (2016)], we investigate theoretical mech-
anisms for enhanced superconductivity in A3C60 fullerenes. We find that an ‘interaction imbalance’
corresponding to a smaller value of the Coulomb matrix element for two of the molecular orbitals in
comparison to the third one, efficiently enhances superconductivity. Furthermore, we perform first-
principle calculations of the changes in the electronic structure and in the screened Coulomb matrix
elements of K3C60 , brought in by the deformation associated with the pumped T1u intra-molecular
mode. We find that an interaction imbalance is indeed induced, with a favorable sign and magni-
tude for superconductivity enhancement. The physical mechanism responsible for this enhancement
consists in a stabilisation of the intra-molecular states containing a singlet pair, while preserving the
orbital fluctuations allowing for a coherent inter-orbital delocalization of the pair. Other perturba-
tions have also been considered and found to be detrimental to superconductivity. The light-induced
deformation and ensuing interaction imbalance is shown to bring superconductivity further into the
strong-coupling regime.

I. INTRODUCTION

Alkali-doped fullerenes A3C60 (A = K, Rb, Cs) are
a remarkable family of materials, which have the high-
est superconducting (SC) transition temperature among
molecular superconductors (Tc ∼40K) [1, 2]. Even
though the gap symmetry is s-wave, the mechanism of
SC has been the subject of much debate. [3–22]. Indeed,
the narrow bandwidth (W ∼0.5 eV), the intramolec-
ular Coulomb interaction (U ∼0.6 eV), and the typi-
cal frequency of the relevant intramolecular Jahn-Teller
phonons (ωph ∼0.1 eV) are comparable energy scales,
which raises questions about the validity of conventional
phonon-mediated SC mechanisms [3, 5, 23, 24]. The
experimental observation [25–35] of a Mott-insulating
phase close to the SC phase in Cs3C60 emphasizes the
importance of strong electronic correlations for these ma-
terials and of their interplay with SC. [36–38]

Recently, a remarkable experiment [39] by Mitrano et

al. reported a large enhancement in carrier mobility and
the opening of an optical gap when exciting K3C60 with
a mid-infrared femto-second light-pulse in the frequency
range 80 − 200 meV (19 − 48 THz). These observations
were interpreted as the signature of a light-induced SC
at temperatures (up to T ∼ 100 K) much higher than the
equilibrium Tc ∼ 20 K. This experiment raises a number
of intriguing questions. On the theory side, one of the
most pressing ones is whether there are indeed pertur-
bations of the system which could lead to enhanced SC.
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And if so, whether such perturbations are likely to be
induced by the mid-infrared excitation of Ref. 39. Pro-
viding some answers to these two questions is the main
purpose of this article.

In order to address these questions, we shall place
ourselves within the theoretical framework reviewed in
Ref. 3, which is one of the most successful ones at ex-
plaining the physical properties and SC of fullerenes.
This approach focuses on the set of three near-Fermi level
t1u electronic states derived from the lowest unoccupied
molecular orbitals. It furthermore recognizes two impor-
tant ingredients for the physics of these materials. First,
as pointed out early-on [24], the intra-molecular Jahn-
Teller phonons with Hg symmetry play a key role in the
pairing. This leads to a reversal of the sign of the ef-
fective intra-molecular exchange acting on the t1u states
(inverted Hund’s coupling) [16, 40]. Second, the intra-
molecular repulsion (Hubbard U) is comparable or larger
than the bandwidth. This was shown [17] by Capone et

al. to lead to a strong-coupling regime of the SC induced
by the inverted Hund’s coupling, near the Mott transi-
tion. This ‘inverted Hund’s coupling’ model [3] for the
SC of fullerenes (IHSC ) is introduced in more details in
Sec. II. Recently, an extensive first-principles study [19]
by Nomura et al., has been successful at reproducing
many properties of these materials and also validated the
qualitative premises of the IHSC model.

The main finding of this article is that a perturbation
which efficiently enhances SC indeed exists. This per-
turbation consists of an ’interaction imbalance’, in which
the intra-molecular Coulomb repulsion is larger by an
amount dU > 0 in one of the t1u orbitals, as compared
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to the two others. For example, at dU/U ≃ 0.2, the SC
gap, order parameter, and critical temperature are in-
creased by large amounts (a factor of 3.5, 1.6, and 1.8,
respectively). We furthermore demonstrate, using first
principle calculations, that the THz pumping of the mid-
infrared T1u structural mode considered in Ref.39 indeed
leads to such a perturbation with a favorable sign dU > 0,
and estimate the amplitude of the corresponding SC en-
hancement. Such an interaction imbalance was indeed
discussed in Ref. 39, in relation also to previous work in
which modulation of U by light-excitation of organic ma-
terials was demonstrated.[41] However, the effect of this
perturbation on SC was not investigated theoretically.

Obviously, the theoretical analysis presented here is an
equilibrium one, while the observation made in Ref.39 re-
sults from an out-of-equilibrium pump-probe experiment.
As such, our work is a first step towards a full under-
standing of the experimental results. The main message
is that the light-induced perturbation could indeed drive
the system into a more strongly-coupled SC regime.

II. INVERTED-J COUPLING MODEL AND
SYMMETRY-BREAKING PERTURBATIONS

A. Inverted-Hund model and strongly-correlated
superconductivity

Let us briefly recall the key ingredients enter-
ing the IHSC model for the superconductivity of
A3C60 fullerenes, which will be used throughout this
article (see Ref. 3 for a review). The model focuses
on the three bands originating from the molecular ⁀1u
states. The intra-molecular Coulomb repulsion U associ-
ated with these states is comparable to their bandwidth
U/W >∼ 1, so that the system is in the regime of strong
correlations (consistent with the proximity of a Mott in-
sulating state).

The Hg Jahn-Teller (JT) modes play an important role
in the pairing and superconductivity. Their frequency is
a significant fraction of the bandwidth (ωph/W ∼ 0.2).
Because of this, and of strong correlations, conventional
Migdal-Eliashberg theory does not apply.[42] In the sim-
plest version of the model, the phonon degrees of free-
dom are integrated out, leaving a purely electronic model
for the three ⁀1u states. The distinctive feature of this
model is that the effective Hund’s coupling Jinv apply-
ing to these states has an inverted (antiferromagnetic)
sign, in contrast to the conventional purely electronic
Hund’s coupling: Jinv = JH + JJT < 0. The local (intra-
molecular) interactions applying to the ⁀1u states thus
take the conventional Kanamori form:

Hint = (U − 3Jinv )
N̂(N̂ − 1)

2
− 2Jinv

~S2 − Jinv

2
~L2(1)

to which one should of course add the kinetic energy term

(inter-molecular hopping):

H0 =
∑

kσα

εkd†
kσαdkσα (2)

Here, ~S and ~L are the spin and orbital angular momen-
tum operators associated with the three orbitals, labelled
by α (see e.g. Ref.43).

For future reference, we note that the Kanamori in-
teraction (Eq.1) can be rewritten[43] as Hint = Hnn +
Hsf +Hph in which Hnn involves only density-density in-
teractions, Hsf is a spin-flip term and the ‘pair-hopping’
term Hph. Hph transfers a singlet pair from one orbital
to another one, namely:

Hnn = U
∑

α

n̂α,↑n̂α,↓

+ (U − 2Jinv )
∑

α6=β

n̂α,↑n̂β,↓

+ (U − 3Jinv )
∑

α<β,σ

n̂α,σn̂β,σ

Hsf = −Jinv

∑

α6=β

d†
α,↑dα,↓d†

β,↓dβ,↑

Hph= Jinv

∑

α6=β

d†
α,↑d†

α,↓dβ,↓dβ,↑ (3)

The rationale for Jinv < 0 is that the JT modes dy-
namically lift the degeneracy of the three states, hence
favoring the S = 1/2, L = 1 local configuration when
three electrons occupy the ⁀1u molecular orbital (half-
filled shell, as appropriate for A3C60 ). This is in con-
trast to the S = 3/2, L = 0 configuration favored by
the electronic Hund’s coupling. The six-fold degener-
ate S = 1/2, L = 1 configuration basically consists in
one singlet pair occupying any of the three orbitals, and
a third lone electron in one of the two remaining ones
(see Sec. V A). Through the intra-molecular pair-hopping
term Hph, this pair is delocalised between any of the
three orbitals, and these orbital fluctuations promote
SC [19, 22].

The basic reason for which SC is driven into the
strong-coupling regime (hence leading to high Tc) in
this model is the following [3, 17]. As the Mott tran-
sition is approached, charge fluctuations are suppressed
and the quasiparticle bandwidth is renormalized by the
Brinkman-Rice phenomenon [44] down to ZW with Z
the quasiparticle spectral weight. In contrast, the Jinv

interaction does not couple to the charge sector, but only
to the spin and orbital sectors, and hence this interaction
is basically unrenormalized. As a result, the effective at-
tractive coupling Jinv /ZW becomes large and the SC
enters the strong-coupling regime. As U/W is increased
from the weak-coupling regime, the SC gap, Tc and the
SC order parameter increase. The latter decreases again
as the Mott transition is approached, following a dome-
like behavior (see Fig. 10 in Appendix).

Simplified as it may be, several observations provide a
justification to the IHSC model as a minimal model for



3

the SC of A3C60 fullerenes. The spin gap corresponding
to the transition between low-spin S = 1/2,L = 1 and
high-spin S = 3/2,L = 0 configurations (∼ 5Jinv ∼ 0.1
eV, see Sec.V A) is indeed observed in nuclear magnetic
resonance experiments [45, 46]. Also, a recent first-
principle investigation[19] treating electronic correlations
according to (1) but explicitly taking into account JT
phonon modes turns out to quantitatively describe the
phase diagram of A3C60 materials as a function of unit-
cell volume.

B. Symmetry-breaking perturbations: U-imbalance
and crystal-field splitting

Our strategy in this article is to consider perturbations
of the Hamiltonian (1,2) and to identify which perturba-
tions can lead to an enhancement of superconductivity.
We consider specifically two kinds of perturbations, of
which both break the symmetry between ⁀1u orbitals.

The first one (‘U -imbalance’) is a perturbation that
modifies the intra-molecular Coulomb energy U for two
of the orbitals (conventionally chosen to be x and y) as
compared to the third one:

HdU = −dU(n̂x,↑n̂x,↓ + n̂y,↑n̂y,↓) (4)

For dU > 0, the Coulomb energy becomes smaller for
these two orbitals, while it becomes larger for dU < 0.
As we shall see, these two signs of the perturbation lead
to very different effects on SC.

The second perturbation (‘crystal-field’) is a splitting
between the molecular energy levels of the x, y orbitals
and that of the z-orbital, hence lifting the degeneracy of
the ⁀1u triplet at the one-electron level:

HCF = hCF (n̂x + n̂y) (5)

In contrast to the U -imbalance case, this commutes with
Lz: [HCF, Lz] = 0. This perturbation was also consid-
ered recently in Ref. 47. As shown there (see also Ap-
pendix. 2), hCF > 0 and hCF < 0 are equivalent in the
presence of particle-hole symmetry.

In Sec. IV, we motivate the study of these two
perturbations above from first-principle studies of
K3C60 subject to a THz pump exciting the T1u struc-
tural mode. The reader is thus directed to this section
for physical motivations of these perturbations.

C. Methods and Observables

We solve the IHSC model in the presence of the
perturbations above using dynamical mean-field theory
(DMFT, for a review see e.g. Ref.48). For simplicity, the
non-interacting density of states (DOS) associated with
the dispersion εk is chosen to be a semi-circular with
width W . This corresponds to a Bethe lattice in the

limit of infinite coordination, for which DMFT becomes
exact.

In order to solve the model in the superconducting
phase, we introduce a Nambu spinor Ψ†

α ≡ (d†
α↑, dα↓)

for each orbital α = x, y, z. For the chosen semi-circular
DOS, the dynamical mean-field G (Weiss function)[48]
entering the impurity model is then given by the self-
consistency condition:

Ĝ−1
α (iωn) = iωn1 + µτz − (

W

4
)2τzĜα(iωn)τz (6)

In this expression, we have used Nambu matrix notations
(with τz the Pauli matrix), Ĝα(τ) ≡ −〈T Ψα(τ)Ψ†

α(0)〉
denotes the local (on-site) Green’s function in matrix
form, and the ωn are Matsubara frequencies. The chem-
ical potential µ is adjusted to insure an occupancy of
three electrons per site.

We solved the DMFT quantum impurity problem us-
ing the hybridisation expansion continuous-time quan-
tum Monte Carlo (CTQMC) solver[49], as implemented
in the TRIQS library[50, 51]. It should be noted that,
in order to properly sample the SC phase, four-operators
insertions are essential in Monte-Carlo updates.[52, 53]

In order to characterize the SC phase, we focus in par-
ticular on the following observables.

• The orbitally-resolved pairing amplitude P α
sc and

total SC order parameter Psc (summed over all or-
bitals), obtained from the off-diagonal component
of the Green’s function in Nambu matrix form:

P α
sc = G12

α (τ = 0+) , Psc =
∑

α=x,y,z

G12
α (τ = 0+) (7)

• The quasiparticle spectral weight for each orbital,
Zα, defined from the diagonal component of the
retarded self-energy:

Zα =

[

1 −
∂ReΣ11

ret,α

∂ω
|ω=0

]−1

(8)

In practice, this can be accurately approximated
at low temperature from the first Matsubara fre-
quency:

Zα ≃
[

1 − ImΣ11
α (iω0)
ω0

]−1

(9)

• From the low-frequency expansion of the Nambu
Green’s function, we see that the dispersion of
the α-orbital quasiparticles in the SC state read
: ωα

±(k) = ±Zα

√

(εk − µ)2 + (Σ12
α (0))2. Hence the

SC gap for orbital α is given by:

∆α = ZαΣ12
α (0) ≃ ZαΣ12

α (iω0) (10)

• The SC critical temperature Tc was estimated
by stabilizing a SC solution for several differ-
ent temperatures, and fitting the corresponding
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temperature-dependence of the order parameter to
a mean field-form Psc(T ) = C

√
Tc − T for three

temperatures closest to the boundary of the SC
phase.

The parameters in all the following will be chosen in ac-
cordance with values determined in previous work[54, 55]
as appropriate for the description of K3C60 . Unless
stated otherwise, we take U = W and Jinv = −0.04 W .
Most of the results below are displayed at the lowest
temperature we have studied in the SC phase, namely
T = 0.005W . For K3C60, the t1u bandwidth is of order
W ≃ 0.50 eV and hence U = 0.50 eV, Jinv = −20 meV.

III. RESULTS

In this section, we present our main findings regarding
the effect of the above perturbations on superconductiv-
ity.

A. Imbalanced Coulomb interaction

Fig.1 (a) displays the superconducting order parame-
ter and orbitally-resolved gaps as a function of the imbal-
ance dU/U . A negative imbalance dU < 0 (i.e. having a
larger Coulomb repulsion on two orbitals as compared to
the third one) is detrimental to SC. In contrast, a posi-
tive imbalance (smaller repulsion on two of the orbitals)
leads to a remarkable enhancement of superconductivity.
The largest enhancement of the total SC order parameter
Psc is found at dU/U ≃ 0.2, at which Psc is enhanced by
a factor of ∼ 1.6 over its value for the degenerate case
(dU = 0), while the SC gap for the x, y orbitals is en-
hanced by a factor of ∼ 3.5 and the critical temperature
by a factor of ∼ 1.8 (see Fig.3 for summary) !

We note that such a large enhancement cannot be ob-
tained by an overall increase of U/W for all of the or-
bitals, which would correspond to an isotropic volume
control of the material[31]. Indeed, the chosen value
U/W = 1 is already quite close to U/W ≃ 1.2 at which
Psc is maximum, and only a very small enhancement of
Psc can be obtained by increasing U/W (see also Fig.3).

Indeed, orbital differentiation is crucial to the effect,
as seen from the orbitally-resolved gaps displayed in
Fig.1(a) and from the orbital occupancies in Fig.1(b).
Upon increasing dU/U , the SC gap associated with the
two orbitals (x, y) having a smaller U increases mono-
tonically up to ∼ 0.07W at dU/U = 0.40. In contrast,
∆z has a maximum and quickly decreases to a small
value. Correspondingly, the occupancy of the x, y or-
bitals increases and that of the z-orbital decreases, reach-
ing limiting values at large dU/U . These limiting values
are easily understood qualitatively for a simplified inter-
action which would contain only density-density terms.
For Uzz ≫ Uxx = Uyy, a double occupancy is created
in, say, the x-orbital, while the third electron is shared

Figure 1. (Color) (a) Total superconducting (SC) order pa-
rameter Psc and orbitally-resolved SC gaps ∆α/W as a func-
tion of the interaction imbalance dU/U (as defined in Eq.4).
(b) Orbital occupancies as a function of dU/U . Dashed lines
indicate asymptotic values of the orbital occupancies dis-
cussed in the text, for dU < 0 and dU > 0, respectively.

equally between y and z - an equally probable configura-
tion having reversed roles of x and y which are iden-
tical by symmetry. (see Fig.5(b)) Hence in this case
Nx = Ny = 1/2(2 + 1/2) = 1.25 and Nz = 1/2. The
limiting values we observe in our calculation for the full
interaction (Eq.1) are somewhat reduced from these ones
by the pair-hopping term and charge fluctuations (Fig.1,
bottom panel).

These considerations suggest that the increased weight
of configurations having a double occupancy in the x or
y orbital is crucial to the enhancement of the SC. Sec. V
addresses the physical mechanism underlying this effect
in more details. We shall see there that the formation
of a spin-singlet pair is indeed crucial, but that an ad-
ditional requirement is that these pairs can delocalize
and become mobile through orbital fluctuations and pair-
hopping. This is indeed the case for dU > 0, because the
pair forms in either of the two degenerate, symmetry-
equivalent x, y orbitals.

This also explains why a negative dU is detrimental
to SC. In this case, formation of a pair is favored in the
z-orbital, as seen from the increase of Nz in Fig.1. Since
a single orbital is involved, the pair is localized and can-
not benefit from pair-hopping between orbitals. Note-
worthy is that SC is completely suppressed (at dU/U ≃
−0.1) significantly before complete orbital polarization is
reached (corresponding to Nz = 2, Nx,y = 1/2, as indi-
cated by dashed lines in Fig.1(b)).

B. Crystal field

Fig. 2 displays our results in the presence of a crys-
tal field splitting, Eq. (5). The results are displayed for
hCF > 0, since hCF < 0 is equivalent by symmetry (Ap-
pendix 2). We see that this perturbation is detrimental
to SC, in agreement with the recent findings of Ref. 47.
Although the perturbation of hCF > 0 favors the forma-
tion of a doubly occupied pair in the z-orbital, orbital
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Figure 2. (Color) (a) SC order parameter Psc and SC gaps
∆α/W as a function of the crystal-field, hCF/W as defined
in Eq.(5). (b) Orbital occupancies as a function of hCF/W .
Dashed lines indicate full orbital polarization into the z-
orbital singlet configuration (see text).

fluctuations are suppressed and the pair cannot delocal-
ize as for dU < 0. We note however that, in contrast
to the dU < 0 case, complete suppression of SC occurs
only close to full orbital polarization Nz = 2, Nx,y = 0.5.
Hence, one can say that SC is more robust in the presence
of a crystal-field than in the presence of an interaction
imbalance with dU < 0. We discuss this difference in
more details in Sec. V

C. Summary and comparison of different
perturbations

Fig. 3 provides a summary of some of our results for
the key observables (SC order parameter, gaps and Tc)
and allows for a comparison between different cases, with
reference to the U/W = 1 degenerate case which serves
as a reference point.

• The results displayed for U/W = 1.2 in the absence
of any perturbation (degenerate case) demonstrate
that only a very modest enhancement of Tc (by
factor of ∼ 1.1) is obtained from a global increase
of U/W corresponding to a uniform compression of
the system, as stated above.

• At the largest enhancement of the Psc, dU/U = 0.2
(with hCF = 0), the remarkably large enhance-
ments noted above are found, by a factor ∼ 1.6 for
the total order parameter, ∼ 1.8 for Tc and ∼ 3.5
for the gap ∆x,y.

• We have also displayed results for a more modest
imbalance dU/U = 0.04. As explained in Sec. IV,
this is our estimate for a realistic value of dU/U
induced by THz pumping in the experiments of
Mitrano et al.[39]. Remarkably, a quite sizeable
enhancement of SC by a factor of ∼ 1.35 for Tc is
found there, despite the small value of dU/U . As
also shown on Fig. 3, this enhancement is not much

Figure 3. (Color) Summary of key results under various per-
turbations: SC gaps, SC critical temperature Tc, and SC or-
der parameter Psc, all normalized to their corresponding val-
ues for U/W = 1 in the degenerate case dU = hCF = 0.

affected by a small crystal field hCF/W ≃ 0.06 (en-
hancement of Tc by factor of ∼ 1.41 with respect
to degenerate case) which may also be induced by
the THz pump (Sec. IV).

IV. TERA-HERTZ EXCITATION AND
U-IMBALANCE

In this section, we make contact with the experiment
of Mitrano et al.[39] by estimating the typical magnitude
of the perturbations dU/U and hCF/W induced by the
mid-infrared optical pulse employed by these authors. It
was proposed in Ref. 39 that this optical pulse excites
the T1u(4) intra-molecular vibrational mode of the C60

molecule, and a typical value of 2.0 Å
√

amu was quoted
for the normal coordinate excited amplitude of this mode.
In turn, the perturbation modifies the electronic struc-
ture of the t1u states.

We have calculated the three Wannier functions associ-
ated with these electronic states in both the unperturbed
equilibrium structure, and in the perturbed structure cor-
responding to the T1u(4) vibrational mode at the above
quoted amplitude (i.e. for a quarter-cycle of the pulse).
The results are displayed in Fig. 4, for a polarization of
the pulse conventionally chosen along the y-axis. As ex-
pected, in the equilibrium structure (upper panel), we
have three (degenerate) orbitals px, py and pz having
nodal surfaces in the yz, zx and xy plane, respectively.
In the deformed structure (lower panel), the C-C bonds
are distorted along the x- direction with odd symmetry
along the y-direction. As a result, only the node in the
xy plane is preserved, corresponding to a pz-like orbital
displayed on the lower right of Fig.4. In contrast, as
clear from Fig.4, the two other nodal planes (zx and yz)
are absent in the perturbed structure, corresponding to
two Wannier orbitals that we still denote ‘px-like’ and
‘py-like’. While the inversion symmetry along the y-axis
is broken by the perturbation, inversion symmetry along
the x- and z-axis is preserved, and the two orbitals px
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and py are still degenerate.(See Fig.13)
In order to evaluate the matrix elements of the

screened Coulomb interaction in both the equilibrium
and perturbed structure, we have used the constrained-
RPA (cRPA) ab-initio method[56]. In a nutshell, this
method computes the effect of screening in the random-
phase approximation (RPA/GW), including all particle-
hole excitations except those for which both the initial
and final states belong to the ‘target manifold’ of t1u

states retained in the low-energy many-body interaction
Hamiltonian (Eq.1). Matrix elements of this constrained
screened interaction between the above Wannier states
are then calculated. The results are displayed in Table I,
calling for the following observations.

• Overall, the effective intra-molecular repulsion Ueff

(which can be approximately estimated as U − V
with U the local component and V the nearest-
neighbour one, see figure. 3 in Ref. 19) is increased
by the T1u(4) distortion for all orbitals, by a fac-
tor up to ∼ 1.2. This is because the T1u(4) distor-
tion reduces the average distance between electrons
in the t1u states. Note however that, as discussed
above, this overall increase of the effective U does
not lead to a significant enhancement of SC.

• The screened Coulomb interaction for the node-
preserving pz orbital (Uz = 0.81 eV, Uz − V =
0.58 eV) is larger than for the px, py orbitals
(Ux,y = 0.79 eV, Ux,y − V = 0.56 eV). This cor-
responds to a positive value of the interaction im-
balance of order dU/U ≃ 0.04 (considering the ef-
fective interaction U − V ). The physical reason for
this is twofold. First, as shown on Fig. 4, the pz

orbital in the distorted structure displays an asym-
metric charge distribution, with lobes of quite dif-
ferent sizes for y > 0 as compared to y < 0 because
of the y-inversion symmetry-breaking. As a result,
there is an enhanced probability of having two elec-
tron closer to one another (for y > 0 in the Fig.4)
in this orbital. In contrast, the suppression of the
nodal surfaces for the x, y orbitals leads to a more
uniform charge distribution, so that this asymmet-
ric contraction is moderate for those orbitals. Note
that, in Ref. 39, a calculation using a Hückel model
for the molecular orbitals and simple electrostatics
led to the opposite conclusion dU < 0. However,
the reshaping of the molecular orbitals by the dis-
tortion (as well as screening) was not fully taken
into account.

• We have also calculated the value of the electronic

(ferromagnetic) Hund’s coupling in both the equi-
librium and distorted structure. A small increase is
found (0.008 eV and 0.003 eV for x, y and z, respec-
tively). The effect of this on the effective inverted
Hund’s coupling would require an ab-initio evalu-
ation of the change in the coupling to the Jahn-
Teller phonons, which we have not attempted here.

Figure 4. (Color) Top-row: t1u Wannier functions for K3C60

in the equilibrium structure (top-row). Bottom row: Wan-
nier functions in the transient structure obtained by selec-
tively exciting the T1u(4) phonon mode along the y-axis, at
a maximum amplitude (corresponding to a 1/4-cycle) of 2.0
(Å

√
amu) - see Ref.39. Note that only the pz-like orbital has

a preserved nodal surface in that case (corresponding to the
xy plane), leading to a larger value of U for that orbital. Only
a single molecule is shown for visibility. The red (blue) color
corresponds to positive (negative) isosurfaces of the Wannier
function. In the transient structure px-like and py-like or-
bitals (see text) do not have nodes but remain equivalent by
symmetry. (See Fig.13)

Hence, for simplicity, we kept Jinv constant in our
study.

So far, we have considered the direct effect of the
pumped T1u(4) mode. In Ref. 39, it was suggested that
this mode could also induce a deformation of other struc-
tural modes through a non-linear coupling (‘non-linear
phononics’, see Refs. 57 and 58). For example, a coupling
of the form Q2

T1u
QHg

to a Raman-active Hg mode was
considered, and its effect on the electronic structure of
the t1u states calculated [39]. The resulting crystal-field
splitting in the perturbed structure (with both T1u(4)
and Hg perturbation) was found to be hCF/W ≃ 0.06.
This is the motivation for also including this perturba-
tion in the model calculations reported above. We have
found that a crystal-field of this magnitude does not spoil
the SC enhancement resulting from the dU/U ≃ +0.04
imbalance.

V. MECHANISM OF SUPERCONDUCTIVITY
ENHANCEMENT

In this section, we discuss in some details the mecha-
nism leading to SC enhancement or suppression by the
two perturbations considered in this article.
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Table I. Coulomb interaction matrix elements, as evaluated from cRPA, in the equilibrium structure and in the presence of the
T1u excitation. The screened values correspond to the coupling constants acting on the low-energy t1u electronic states. Values
of the bare Coulomb interaction matrix elements without screening are also presented. U and JH are on-site (local) couplings,
while V is the inter-site (nearest-neighbour) Coulomb interaction. Calculations including both the T1u and Hg distortions were
also performed (not shown), leading only to minor changes in the results for only T1u distortion case

.
Ux,y (eV) Uz (eV) JH:xz,yz (eV) JH:xy (eV) V (eV)

Equilibrium (cRPA) 0.70 0.70 0.033 0.033 0.21
With T1u (cRPA) 0.79 0.81 0.041 0.036 0.23
Equilibrium (unscreened) 3.23 3.23 0.096 0.096 1.36
With T1u (unscreened) 3.47 3.58 0.14 0.12 1.36

Figure 5. (Color) Multiplets of eigenstates for an isolated
molecular site, for a half-filled t1u shell occupied by three elec-
trons. (a): In the absence of any perturbation and when only
density-density interactions are considered, the (210), (111̄),
and (111) states are eigenstates. For the Kanamori hamil-
tonian (1) involving pair-hopping and spin-flip terms, these
states reorganize into (S = 3/2, L = 0), (S = 1/2, L = 2),
and (S = 1/2, L = 1) multiplets, as indicated by the ar-
rows. (b),(c),(d): Eigenstates for a density-density interac-
tion hamiltonian, in the presence of the perturbations dU > 0,
dU < 0 and hCF, respectively.

A. Molecular eigenstates and histograms

First, we analyze the eigenstates (multiplets) of the
interaction hamiltonian (1) for an isolated molecule, and
how they are modified by the perturbations. This anal-
ysis is summarized in Fig. 5.

Consider first the inverted Hund’s coupling interaction
with density-density terms only (i.e omitting the pair-
hopping and spin-exchange terms contained in Eq. (3)).
As displayed in panel (a) of Fig. 5, the ground state is the
(210) state made of a singlet pair in one of the orbitals,
a single electron in another orbital and an empty orbital.
The excited states all have one electron in each orbital, in
either the (111̄) with one spin-flip or (111) spin-parallel
configurations. These states are separated by 2|Jinv | and
4|Jinv | from the ground-state, respectively.

For the full Kanamori hamiltonian (Eq.1) involving
pair-hopping and spin-flip terms, these multiplets rear-
range into eigenstates of S and L, as indicated by the ar-

rows in panel (a). The six-fold degenerate ground-state
has (S = 1/2, L = 1): it can be viewed as a resonant su-
perposition of the different (210) states with a singlet pair
delocalized between the different orbitals. The presence
of a singlet pair in the ground-state and its coherent de-
localization over orbitals through the pair-hopping term
is key to the SC found in the IHSC model. This enhance-
ment of SC by pair-tunneling between different orbitals
was considered in Refs. 59 and 60, and is sometimes re-
ferred to as the Suhl-Kondo mechanism. Excited multi-
plets have (S = 1/2, L = 2) and (S = 3/2, L = 0) and
are separated from the ground-state manifold by 2|Jinv |
and 5|Jinv |, respectively.

In panels (b,c,d) of Fig. 5, we display the effect of the
three perturbations dU > 0, dU < 0 and hCF, respec-
tively, focusing for simplicity on a density-density inter-
action only. The dU > 0 perturbation (panel (b)) affects
the (210) multiplets only. States with the spin-singlet
pair in the z-orbital are unaffected, while those with the
pair in the x or y orbital are energetically stabilized, by
an amount dU . Hence, dU > 0 leads to a relative sta-
bilisation of (210) states with a pair in x or y orbital,
as compared to the (111) and (111̄) states. This is a
key ingredient for the promotion of SC by the dU > 0
perturbation.

In contrast for dU < 0 (panel (c)), the states with a
pair in the x or y orbital are lifted up in energy, while
the molecular ground-state with a pair in the z-orbital is
unaffected. This corresponds to a relative destabilization
of the (210) multiplet as compared to the (111) and (111̄)
ones. Furthermore, because the pair is now localized in a
single orbital, the pair-hopping term is ineffective. Both
factors lead to a suppression of SC.

This analysis is based on the t1u many-body eigen-
states of an isolated molecule, as described by (Eq.1).
In order to confirm its relevance to the full solid in the
presence of inter-molecular hopping, we have calculated
the probability for a given state to be visited during the
Monte-Carlo sampling performed in the full DMFT cal-
culation [61]. This is displayed in Fig. 6. Panel (a)
demonstrates that indeed the (210) states are stabilized
by the dU > 0 perturbation, and destabilized for dU < 0,
relatively to the (111) or (111̄) states.

Fig.5(d) displays the energy levels in the presence of
a crystal-field with hCF. The different components of
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Figure 6. (Color) Statistical weights of the (210), (111) or
(111̄) states in the presence of (a) an interaction imbalance
and (b) a crystal-field perturbation, as obtained from DMFT.
Datas indicated by circle (red), star (blue), and square (green)
are analysed in detail in Fig.8.

the (210) ground-state manifold are lifted up in energy,
by hCF, 2hCF and 3hCF depending on whether the z-
orbital is doubly occupied, singly occupied or empty,
respectively. Excited states (111) and (111̄) are lifted
up by 2hCF. As a result, the energy difference between
the molecular (210) ground-state, which was 2|Jinv | in
the absence of the perturbation, is now increased to
2|Jinv | + hCF. This corresponds to a relative stabiliza-
tion of the (210) multiplet, as also demonstrated for the
full calculation by the statistical weights displayed in
Fig. 6(b). We have seen, however, that SC is suppressed
by the crystal-field perturbation. Hence, stabilization of
the (210) manifold is not a sufficient condition for the pro-
motion of SC: pair delocalization through orbital fluctu-
ations is crucial, and we now analyze this in more details.

B. Key role of orbital fluctuations

Orbital fluctuations within the multiplet of (210) states
promote superconductivity. The pair-hopping term
(Eq. 3) allows from the formation of an intra-molecular
resonant state with (S = 1/2, L = 1). In the degenerate
case, the corresponding singlet pair can live in any of the
three orbitals, as illustrated in Fig.7(a). The other panels
in this figure illustrate the fact that orbital fluctuations
allowing the singlet pair to delocalize between different
orbitals are still possible for dU > 0, but are hampered
for both dU < 0 and in the presence of a crystal field.

Figure 8 presents a more in-depth analysis of the com-
puted statistical weights of states forming the (210) man-
ifold, for three representative cases of dU > 0, dU < 0
and crystal-field. This figure complements Fig. 6 in which
only the global weight of the (210) multiplet was pre-
sented. Here, we display the weights obtained by mea-
suring statistical weights of each eigenstate of the Hamil-

Figure 7. (Color) This figures illustrates the key role of
ground-state orbital fluctuations in promoting SC. These fluc-
tuations are present in the unperturbed degenerate case (a),
are preserved for dU > 0 (b), while they are suppressed for
dU < 0 (c), or the presence of hCF (d). Note that, for clarity,
only the location of the pair in the ground-state is displayed
in this figure - the third lone electron has been omitted.

tonian in the (210) manifold (detailed in Sec. 6). We
observe that:

• For dU > 0 (Fig. 8(a)), the state which is a res-
onant superposition of a singlet pair in the x and
y orbitals (plus a lone electron in the z orbital)
has the largest statistical weight. Its weight is even
larger than that of the (S = 1/2, L = 1) states
in the degenerate case. This fully confirms that
the enhancement of SC observed in this case orig-
inates from the stabilization of states involving a
spin-singlet pair together while preserving orbital
fluctuations.

• For dU < 0 (Fig. 8(b)), the dominant states are
those with a pair in the z orbital only, hence sup-
pressing orbital fluctuations. Also the correspond-
ing weight is reduced as compared to that of the
(S = 1/2, L = 1) states in the degenerate case.
This confirms that the suppression of SC even when
orbital polarization is incomplete originates from
both the destabilization of singlet pair configura-
tions and in the suppression of orbital fluctuations.

• In the presence of a crystal-field (Fig. 8(c)), we
have a mixed situation: the weight of states hav-
ing a spin-singlet pair is enhanced (by a factor
∼ 1.75 in Fig. 8(c)) as compared to that of the
(S = 1/2, L = 1) multiplet in the degenerate
case. However, this increased weight corresponds
to states with a pair in the z orbital only, for which
orbital fluctuations are suppressed. As a result, the
SC phase is resilient as long as the orbital polariza-
tion is incomplete and is finally suppressed only
when hCF/W is large enough to yield full orbital
polarization and complete quenching of orbital fluc-
tuations, as shown on Fig.2.
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Figure 8. (Color) Histogram of statistical weights for (a)
dU/U = 0.06, (b) dU/U = −0.06, and (c) hCF/W = 0.10.
The most dominant multiplets are plotted in each case. See
Fig.14 for the precise definition of eigenstates a1-a6, b1-b6,
and c1-c6.

C. Driving superconductivity into the
strong-coupling regime

Finally, we demonstrate in this section that turning on
the imbalance perturbation dU > 0 increases the effective
pairing strength, i.e. that the system is driven into a
more strongly coupled SC regime.

To this aim, it is important to consider the different
orbitals separately. In Fig. 9(a), we display the orbitally
resolved SC order parameters P α

sc as a function of dU/U .
As clear from this figure, the action takes place in the
x- and y-orbitals for which P x,y

sc increases to large values
with dU/U . In contrast, after a small initial increase
P z

sc becomes quickly negligible. This corresponds to the
dominant pair-formation in a resonant state between the
x- and y-orbital, as discussed before.

In order to reveal the effective SC coupling, we consider
the dimensionless ratio ∆α/WP α

sc. In a weak-coupling
BCS superconductor, ∆ = Psc Vat, where Vat is the ef-
fective attractive interaction. Hence, this ratio equals
Vat/W (≪ 1 in the BCS regime) and is a good indicator
of the effective dimensionless coupling.

This ratio is also displayed in Fig. 9(a) as a function
of dU/U . For U/W = 1, Jinv /W = −0.04 studied here,
we see that it takes a value ∼ 0.5 in the degenerate case
dU = 0, indicating already a sizeable SC coupling. As dU
is increased, this ratio becomes small for the z-orbital but
increases rapidly for the x, y orbitals, reaching a value of
order unity at dU/U = 0.4. Hence the system is clearly
driven into a strong-coupling SC regime by the interac-
tion imbalance perturbation.

It is interesting to compare and contrast this finding to
the effect of uniformly increasing U/W in the degenerate
case: ∆/WPsc is plotted vs. U/W for this case in Fig. 10

Figure 9. (Color) (a) Orbitally-resolved SC order parameter
P α

sc and ratio ∆α/W P α

sc, and (b) Orbitally-resolved quasipar-
ticle weight Zα as a function of interaction imbalance dU/U .

of Appendix. 1. At small U/W and |Jinv |/W (weak-
coupling regime), it takes a value close to 2|Jinv |/W , the
pairing interaction predicted by BCS mean-field decou-
pling being 2|Jinv | at U = 0. As U/W is increased, it
also increases to values of order unity. However, in this
case, the Mott transition is reached at a critical value
(U/W )c ≃ 2 at which the quasiparticle weight Z van-
ishes. In contrast (Fig. 9(b)) strong-coupling supercon-
ductivity can be achieved by the imbalance perturbation
without Zx,y becoming very small. Since Z enters the
superfluid density, we conclude that the interaction im-
balance perturbation permits a robust strongly-coupled
superconductor without being limited by the proximity
of the Mott transition.

VI. CONCLUSION AND PERSPECTIVES

Motivated by the recent experimental report of Mi-
trano et al. [39], we have investigated in this article pos-
sible theoretical mechanisms for enhanced superconduc-
tivity in A3C60 fullerenes, based on IHSC model.

Our main finding is that an interaction imbalance cor-
responding to a smaller value of the Coulomb matrix el-
ement for two of the orbitals in comparison to the third
one, is indeed a perturbation which efficiently enhances
SC. We have identified the physical mechanism respon-
sible for this enhancement. It consists in a stabilisation
of the intra-molecular states containing a singlet pair,
while preserving the orbital fluctuations associated with
the pair-hopping interaction term. These fluctuations al-
low for the pair to be delocalized coherently between two
orbitals. Interaction imbalance was shown to bring SC
further into the strong-coupling regime. It provides a dis-
tinct and more efficient way to control and enhance SC in
these compounds than the volume-control corresponding
to a uniform change of the bandwidth and interaction
strength for all orbitals.

Furthermore, we have performed first-principle calcu-
lations of the changes of the electronic structure and of
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the screened Coulomb matrix elements of K3C60 , associ-
ated with the deformation due to the pumped T1u intra-
molecular mode. Our results demonstrate that indeed an
interaction imbalance with a favorable sign and magni-
tude for SC enhancement is induced by this deformation.

Our work calls for several future studies. The am-
plitude of the modulation of the T1u mode quoted in
Ref.41 and used in the present work is but an order of
magnitude estimate, and a more precise ab-initio deter-
mination is desirable (as well as a direct experimental
determination of the transient modulation of the struc-
ture). The light excitation may also induce other rele-
vant changes in the material besides the interaction im-
balance considered here, such as more complex changes
in the band-structure, a modulation of the inter-orbital
Coulomb matrix element and even a direct modulation
of the inverted effective Hund’s coupling (due e.g. to
an induced displacement and modulation of Jahn-Teller
modes). Inter-molecular phonons could also be an active
part of pairing in the new excited structure [39].

Obviously however, the most pressing extension of our
work is to perform a non-equilibrium study in which the
changes in electronic structure and orbital-dependent in-
teraction strengths are time-dependent. We note in this
respect that, as noted in Ref.41, the dynamical selective
excitation of a specific phonon mode leads to a modula-
tion of the Coulomb interaction at twice the frequency
of the excited phonon. In the present case, this corre-
sponds to ∼ 0.4 eV - a 10 fs timescale, 100 times faster
than the pico-second time scales over which the SC state
is observed in the experiments of Ref. [39]. Hence, the
interaction modulation is in the antiadiabatic limit, pro-
viding some justification to the equilibrium treatment
performed in the present article. Nonetheless, a full non-
equilibrium treatment is in order and will be considered
in future work.
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APPENDIX

1. Superconductivity in the degenerate case

Figure 10 displays Psc, ∆, ∆/P α
sc, and the quasiparti-

cle spectral weight Z as a function of U/W in the de-
generate case. As discussed in the Sec.V C, the enhance-

Figure 10. (Color) Degenerate case (three equivalent or-
bitals). (a) SC order parameter Psc, and gap ∆, as a function
of U/W / (b) Ratio between SC gap and order parameter for
each orbital ∆/W P α

sc, (c) Quasiparticle weight Z as function
of U/W The dashed-dotted line in (b) denotes the asymp-
totic value 2|Jinv |/W of the attractive coupling which holds
in the weak-coupling BCS regime U/W → 0, |Jinv | ≪ W (See
Sec.V C)

ment of U/W in the degenerate case drives the system
into a strong-coupling SC regime, as evidenced by the
increasing ratio ∆/WP α

sc. In contrast to Fig.9 however,
the quasiparticle spectral weight diminishes rapidly as
shown in Fig.10(c), and the enhancement of SC is cutoff
by entering the Mott phase.

2. Equivalence of positive and negative crystal
fields

Figure 11 illustrates the electron-hole symmetry be-
tween hCF > 0 and hCF < 0 cases (see Ref. 47). As
shown in Fig. 11(a), a spin-singlet in the electron pic-
ture for hCF > 0 corresponds to a spin-singlet in the hole
picture for hCF < 0 (red dotted circles). A lone electron
for hCF > 0 corresponds to a lone hole for hCF < 0 as
shown in green dotted circles.

From this electron-hole correspondence, Psc, P α
sc, and

∆α exhibit symmetric behavior with respect to hCF = 0
axis as shown in Fig. 11(b). Also in Fig. 11(c), the
orbital occupancy for hCF > 0 in the electron picture
is symmetric with that for hCF < 0 in the hole picture.
For positive hCF, full orbital polarization occurs around
hCF/W = 0.3 with orbital occupancies Nx,y = 0.5 and
Nz = 2. For negative hCF, full orbital polarization oc-
curs around hCF/W = −0.3 with orbital occupancies
Nx,y = 1.5 and Nz = 0. In the hole picture, these occu-
pancies correspond to 0.5 for x and y, and 2 for z, which
is symmetric with positive hCF/W = 0.3 case.
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Figure 11. (Color) (a) Electron-hole symmetry in the negative
and positive hCF cases. (b) SC order parameter Psc, orbitally-
resolved pairing amplitude P α

sc, and SC gaps ∆α/W in the
presence of perturbation of Eq.5 for negative and positive hCF

values. (c) Orbital occupancies for negative and positive hCF

values.

3. Spectral function

Figure 12 presents partial density of states (PDOS) of
orbitals x, y, and z in the (a,b) unperturbed degenerate,
(c) dU/U = −0.20, (d) dU/U = 0.20, (e) hCF/W = 0.06,
and (f) hCF/W = 0.30 cases.

In the unperturbed case Figs. 12(a,b), overall PDOS
consists of the quasi-particle part, whose width is about
0.5W , and lower and upper Hubbard bands located at
an energy scale of ∼ U = W . The width of the quasi-
particle peak corresponds to the energy scale of Kondo
temperature, and well agrees with ZW with the quasi-
particle weight Z (∼ 0.5 for U/W = 1). There exists a
gap around the Fermi level due to the symmetry-breaking
into SC phase. The energy scale of the SC gap ∼ 0.04W
(see Fig. 1, U/W = 0) is smaller than that of Kondo
temperature. These two energy scales are also discussed
in Ref.3

In the imbalanced Coulomb interaction with dU/U =
−0.20 case (Fig. 12(c)), consistent with the results in
Fig. 1, SC gaps are completely suppressed for all orbitals
without full orbital polarization. All x-, y-, and z-orbital
PDOSs cross the Fermi level with up-shifting for x- and
y-orbitals, and down-shifting for z-orbital, respectively.
In dU/U = 0.20 case of Fig. 12(d), also consistent with
the results in Fig. 1, SC gaps in x and y-orbital, ∆x,y,
are much larger than that of z-orbital, ∆z, i.e. SC gaps
are anisotropic.

In the crystal-field case with hCF/W = 0.06 (Fig.
12(e)), PDOSs of x- and y-orbitals are shifted up, and
that of z-orbital is shifted down. However, SC gaps
for all orbitals are resilient, consistent with Fig.2. The
anisotropy in the size of SC gap is small. For a large
crystal-field, hCF/W = 0.30 (Fig. 12(f)), PDOS shows
complete orbital polarization. With this complete orbital
polarization, SC gaps for all orbital are suppressed, con-

Figure 12. (Color) Partial density of states (PDOS) for orbital
x, y, and z in the (a,b) degenerate, (c) dU/U = −0.20, (d)
dU/U = 0.20, (e) hCF/W = 0.06, and (f) hCF/W = 0.30
cases. Lorentzian smearing with the width of 0.004W is used
in depicting PDOS.

sistent with Fig. 2.

4. Ab initio Calculations - Methods

In the present study, we employ the quantum

espresso package [62, 63] to perform ab initio calcu-
lations for fcc K3C60. In the band structure calculation,
we adopt the generalized-gradient approximation (GGA)
with the Perdew-Burke-Ernzerhof parameterization [64]
for the exchange-correlation functional. We prepare the
Troullier-Martins norm-conserving pseudopotentials [65]
in the Kleinman-Bylander representation [66] for the car-
bon and potassium atoms with the valence configurations
(2s)2.0(2p)2.0, and (3p)6.0(4s)0.0(3d)0.0, respectively. We
take into account the nonlinear core correction [67] in
the pseudopotential for the pottasium atom. The cal-
culation is done with 5×5×5 k mesh. The cutoff en-
ergy for the wave functions is 40 Ry. The calculations
of the Coulomb interaction parameters are done within
cRPA [56]. The dielectric function is expanded with the
plane waves with the energy cutoff of 7.5 Ry. We em-
ploy 335 bands (129 occupied + 3 t1u bands + 203 un-
occupied) to calculate the polarization function with ex-
clude the transitions within t1u manifold. The gener-
alized tetrahedron method [68, 69] was applied to per-
form the Brillouin-zone integral with respect to the wave



12

Figure 13. (Color) (a) Bottom-left and (b) bottom-center
Wannier functions in Fig. 4 viewed along y axis. Red (blue)
color corresponds to positive (negative) isosurface of the wave
function. For visibility, only a single C60 molecule in K3C60

solid is shown. In (b), global phase factor (−1) is multiplied to
the Wannier function. It is easy to see that these two Wannier
functions are related by symmetry, and thus equivalent.

vector. We construct maximally localized Wannier func-
tions [70, 71] from t1u manifold, and the cRPA interaction
parameters are given by the Wannier matrix elements of
partially-screened Coulomb interactions.

The structures used in the calculation are same as
Ref. 39.

• fcc K3C60 with the lattice constant 13.89 Å.

• fcc K3C60 (a=13.89 Å) + T1u(4) distortion (ampli-
tude: 2.0 Å

√
amu)

• fcc K3C60 (a=13.89 Å) + T1u(4)+Hg(1) distortions
(amplitudes: 2.0 and 1.5 Å

√
amu, respectively)

The obtained cRPA result for K3C60 in equilibrium struc-
ture is consistent with the estimate in Ref. 54.

5. Equivalence of px-like and py-like Wannier
functions in Fig. 4 (bottom panel)

Figure 13(a) and 13(b) show the bottom-left and
bottom-center Wannier functions in Fig. 4 viewed along
y axis. Here y axis is the direction of the T1u pumping.
We see that these two Wannier functions are related by
symmetry, and thus are equivalent.

6. Detailed composition of eigenstates in Fig. 8

Figure 14 presents energy eigenstates in the probability
histogram of Fig.8.

As shown in Fig. 8, for dU/U = 0.06, the state which
has the highest probability, a3, shows symmetric reso-
nance between states with the spin-singlet in x- and y-
orbitals. Also noteworthy is that the probability of asym-
metric resonant states between the state with singlet in
z-orbital and the state with a singlet in x or y-orbital
as shown in a1 and a5 states, is larger than that of the
(S = 1/2, L = 1) resonant state in the degenerate case.

Figure 14. (Color) Energy eigenstates in the Fig.8, a1-a6,
b1-b6, and c1-c6.

This result implies that the stabilization of a x- and y-
orbital singlet also promotes the SC gap in the z-orbital,
∆z for dU/U = 0.06 which is consistent with Fig. 1(a).

In the case of dU/U = −0.06, in states which has
the highest probability, b1 and b6, the coefficient for the
state with z-orbital spin-singlet (0.89) is much larger than
that of the state with x- or y-orbital singlet (0.45). This
suggests that the singlet electron-pair is localized mainly
in z-orbital. As a result, the orbital fluctuation is sup-
pressed.

Also, in the case of hCF/W = 0.10, in states with the
highest probability, c1 and c6, the coefficient for the state
with z-orbital spin-singlet (0.98) is much larger than that
for state with x- or y-orbital spin-singlet (0.19). Thus,
the singlet-pair is localized in z-orbital, suppressing the
orbital fluctuation.
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