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We address the quantum-critical behavior of two-dimensional itinerant ferromagnetic systems
described by spin-fermion models in which fermions interact with close-to-critical bosonic modes.
We consider Heisenberg ferromagnets, Ising ferromagnets, and the Ising nematic transition. Mean-
field theory close to the quantum critical point predicts a superconducting gap with spin-triplet
symmetry for the ferromagnetic systems and a singlet gap for the nematic scenario. Studying
fluctuations in this ordered phase using a nonlinear sigma model, we find that these fluctuations
are not suppressed by any small parameter. As a result, we find that a superconducting quasi-long-
range order is still possible in the Ising-like models but long-range order is destroyed in Heisenberg
ferromagnets.

PACS numbers: 74.40.Kb, 71.10.Hf, 74.25.Dw

I. INTRODUCTION

Quantum criticality and quantum critical points
(QCP) are among the most interesting subjects of con-
temporary condensed matter physics from both theoret-
ical and experimental points of view alike.1,2 Here, we
focus on the effects of quantum-critical behavior of two-
dimensional (2D) itinerant ferromagnets and, in particu-
lar, the cases of Heisenberg and Ising ferromagnets. Also,
we address the transition towards Ising nematic order.
The Stoner transition towards ferromagnetic order can

be regarded as an archetype of quantum phase transi-
tions. Generally, it belongs to a class of transitions where
the order parameter fields carries an ordering wave vector
q = 0. These and similar systems like spin liquids and
fermions coupled to a U(1)-gauge field3,4 are suitably de-
scribed in terms of 2 + 1-dimensional field theories. In
these theories, the fluctuations of the order parameter are
Landau-damped bosons with the well-known propagator

χ(ω,q) =
1

γ|ω/q|+ q2 + a
, (1)

where ω denotes frequency and q = |q|. At the QCP, the
boson mass a turns to zero, so that frequencies scale with
momentum as ω ∼ qz with a dynamical exponent z = 3.
Close to this point, the low-energy behavior of fermions
that interact with the fluctuations of the order param-
eter is driven away from Fermi-liquid theory, resulting
in non-Fermi-liquid (nFL) physics with different scaling
relations.3–7

This strong interaction between critical bosons and
massless fermions is essential for the description of the
quantum-critical phenomena and its full impact has
been missed in the earliest theoretical studies on this
subject,8,9 which predicted that critical behavior is mean-
field-like in both two and three dimensions. In these
works, the fermions were fully integrated out from the
partition function, which led to a critical φ4 theory for

the order parameter fluctuations alone. In two dimen-
sions, such an approach breaks down2,6 as the coupling
to the fermions leads to nonanalyticities or even singu-
larities in the φ4 theory. This suggested that magnetic
transitions are properly studied only in terms of so-called
spin-fermion models,6,7,10,11 which explicitly keep the in-
teraction between fermions and order parameter fluctua-
tions.

Spin-fermion models themselves caused their own trou-
bles related to the question of analytical control of the
theory. Introducing an artificially large number N of
fermion “flavors” in addition to the two electronic spin
species,3,6 a controlled solution was sought in the limit
of N → ∞ with perturbative corrections small in 1/N .
However, as discovered shortly after,4,5,12 a conventional
1/N expansion breaks down for these models as certain
classes of Feynman diagrams that by first-sight inspec-
tion seem small in 1/N in fact are not. Their neglect in
the previous work is thus not justified. More severely, it
is unclear if the theory can be analytically controlled at
all.

In this situation, several of us tried a differ-
ent approach13 to the spin-fermion model for an
antiferromagnetic QCP, which was inspired by certain
similarities between the “dangerous” diagrams men-
tioned above and those diagrams giving rise to the dif-
fusion modes in the theory of localization.14 In this ap-
proach, the dangerous diagrams are effectively summed
and captured in terms of an effective saddle-point theory
whose fluctuations are properly described in terms of a
nonlinear σ model. It is then only natural to ask whether
such a scheme may be applied to the ferromagnetic case
and similar systems.

In the ferromagnetic case, even the existence of the
QCP is under debate.6,7,15–21 The authors of Ref. 6
considered an itinerant ferromagnet in the non-Fermi-
liquid regime and showed that non-analytic contribu-
tions to the static particle-hole susceptibility χ(0,q) ap-
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pear for the Heisenberg ferromagnet and most likely de-
stroy the nature of the second-order phase transition in
this system. Only at low temperatures they expected
a first-order transition. Transitions with Ising symme-
try classes, however, are not affected by this reasoning.
Other studies15–21 found similar results indicating that
fluctuation effects lead to competing instabilities at the
ferromagnetic QCP.

In this work, we thus consider the problem from a dif-
ferent perspective. While it is still unclear how a com-
plete theory that describes both the nFL physics and the
transition into a competing ordered state may be con-
structed, we here try to understand the behavior from
the point of view of the metallic site (a ≥ 0). Using
the approach of Ref. 13, we argue that the QCP is un-
stable towards Cooper pairing of fermions foreshadowing
the transition into the magnetic state. Due to the na-
ture of the interaction, the gap has a triplet symmetry
for ferromagnets and a singlet one for the Ising nematic
transition. At the same time, true long-range order in 2D
systems is of course impossible for the vector order pa-
rameters considered and correlations of such ordering in
fact decay on short-range scales. Our findings are sum-
marized in the phase diagram in Fig. 1. Recent studies on
the possibility of superconductivity close to the nematic
QCP or to related non-Fermi-liquids using renormaliza-
tion group techniques22–26 found similar results.

The paper is structured as follows: In Sec. II, we define
the model and reduce it effectively to fermions on two
patches of the Fermi surface4,5 in order to capture the
relevant low-energy physics. We derive an effective the-
ory for the fermions alone by integrating out the bosons.
We are treating the Heisenberg and Ising models in par-
allel as most of calculations are the same. In Sec. III, we
derive a set of self-consistent mean-field equations that
include the feedback of the fermionic order on the boson
fluctuations. The solution of the mean-field equations re-
veals gaps in the Cooper channels at low temperatures
with different symmetries (p-wave for ferromagnets and
s-wave for the Ising nematic transition). In Sec. III E, we
verify that the mean-field solutions lead to a lower free
energy as compared to unordered fermions. Fluctuations
around the MF solution are studied in Sec. IV. Finally,
we conclude and discuss our considerations in Sec. V.

II. MODEL

A. Heisenberg ferromagnet

We follow Metlitski and Sachdev5 and seek to de-
scribe the low energy physics near the QCP in terms
of the semiphenomenological spin-fermion model. For
the Heisenberg ferromagnet, the bosonic modes describ-
ing the fluctuations of the ferromagnetic order parame-
ter have the form of a real three-component vector field
φ = (φ1, φ2, φ3). Close to the transition, they are gov-

FIG. 1. (Color online) Phase diagram in the space of tem-
perature T and boson mass a. The left-hand side describes
the Heisenberg ferromagnet: long-range ferromagnetic order
is only possible at the line T = 0 while a p-wave gap appears
at the QCP covering the nFl regime. The right-hand side
shows the same situation for the Ising ferromagnet. Here the
magnetic state has a true long-range order.

erned by the Lagrangian

Lφ =
1

2
φχ−1

0 φ+
g

2
(φ2)2 (2)

where the bare propagator is given by the bare suscepti-
bility

χ0(ω,q) = (ω2/c2 + q2 + a)−1 . (3)

In this formula, the mass term a measures the distance
to the QCP, c denotes the spin wave velocity, ω = 2πTn
with integer n is a bosonic Matsubara frequency, and T
is temperature.
The Lagrangian for the spin- 12 fermions ψ contains the

free part,

Lψ = ψ† (∂τ + ε(−i∇))ψ , (4)

and the coupling to the bosons φ,

Lψ,φ = λψ†φσψ . (5)

The free-fermions spectrum ε(k) is assumed to lead to the
Fermi surface shown in Fig. 2, and λ is the coupling con-
stant for the interaction between fermions and bosonic
ferromagnetic fluctuations. The vector σ = (σ1, σ2, σ3)
contains the three Pauli matrices for the fermion spin.
Finally, we denote by τ the imaginary time in the Eu-
clidean field theory. The Lagrangian

L = Lψ + Lφ + Lψ,φ (6)

fully determines the spin-fermion model we are now going
to investigate.
The most important soft scattering processes are those

in which a fermion momentum state kF is scattered tan-
gentially to the Fermi surface to the state kF + q. The
momentum q (or −q) of the absorbed (emitted) boson
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FIG. 2. (Color online) Fermi surface for the ferromagnet. The
colored region represents schematically the construction of the
patch model. The patches belong to the Fermi momenta ±kF

that are perpendicular to the bosonic momentum q. These
are the fermions interacting most strongly with such bosons.

in these most important processes is thus perpendicu-
lar to kF . This observation allows the construction of
an effective Lagrangian4–6 that further reduces Eq. (6).
Specifically, we consider only those fermion states located
in the vicinity of two antipodal patches around the op-
posing Fermi momenta kF and −kF of the Fermi surface,
see Fig. 2, while boson momenta satisfy q ⊥ kF .
Expanding the Lagrangian (6) around the momenta

specified above yields the effective patch-model La-
grangian L = Lχ + Lφ + Lχ,φ with

Lχ = χ†
+

(

∂τ − ivx∂x − vy∂
2
y

)

χ+

+ χ†
−

(

∂τ + ivx∂x − vy∂
2
y

)

χ− ,

Lφ =
N

2

[

(∂τφ)
2/c2 + (∂yφ)

2 + aφ2
]

,

Lχ,φ = λφ
(

χ†
+σχ+ + χ†

−σχ−

)

, (7)

where vx and vy are the Fermi velocity and the local
Fermi surface curvature, respectively. Also, in order to
introduce a formal (though artificial) expansion parame-
ter, we enlarge the number of fermion “flavors” by assum-
ingN copies4,5 of the original fermions from Eq. (4), lead-
ing to the effective fermion field χ± = (ψ1,±, . . . , ψN,±)
The index ± distinguishes the two patches of the Fermi
surface under consideration. Note that for each flavor
index j, ψj,± is still a two-component spinor. Finally,
we remark that the quartic term in Eq. (2) has been ne-
glected, a suitable approximation for the right-hand side

of the QCP, a ≥ 0.
Before beginning our actual analysis, let us introduce

a more convenient and compact notation. For this pur-
pose, and loosely following Ref. 13, we extend the current
2N -component fermion fields χ± by two more pseudo-
spins, the particle-hole pseudospin (denoted by τ) and
another to distinguish states in the two different patches
(Λ). Working with particle and hole-type states on a
same footing is especially convenient in situations where
superconducting pairing emerges, as will be the case in
the present study. We thus define the 8N -component
fermion field

Ψt =
1√
2

(

(

χ∗
+, iσ2χ+

)

τ
,
(

χ∗
−, iσ2χ−

)

τ

)

Λ
. (8)

Here and in the following, the superscript t denotes trans-
position of vectors or matrices. Introducing the matrix

C =

(

0 iσ2
−iσ2 0

)

τ

, (9)

we define “charge conjugation” for both vectors,

Ψ̄ = (CΨ)
t
, (10)

and matrices,

M̄(X,X ′) = CM t(X ′, X)Ct . (11)

Note that this notion of charge-conjugation extends to
dependencies on imaginary time τ and coordinates r,
which have been combined into X = (τ, r).
This allows to rewrite Lχ and Lχ,φ, Eq. (7), as

LΨ = Ψ̄(X)
[

− ∂τ + ivx∂xΛ3 − vy∂
2
yτ3

]

Ψ(X) , (12)

LΨ,φ = λΨ̄σΨφ = −λ tr
[

σΨ(X)Ψ̄(X)
]

φ .

The latter notation involving the trace over all discrete
degrees of freedom of Ψ allows an easy integration over φ.
Then, integrating the bosons out of the partition func-

tion Z leads to a theory containing only fermions, which
interact, however. We obtain

Z =

∫

e−S[Ψ]
〈

e−SΨ,φ
〉

φ
DΨ

=

∫

e−S[Ψ]−Sint[Ψ]DΨ (13)

with the interacting part described by the action

Sint[Ψ] = −λ
2

2

∫

∑

ij

χij0 (X −X ′)

× Ψ̄(X)σiΨ(X)Ψ̄(X ′)σjΨ(X ′) dXdX ′. (14)

The effective space- and time-dependent interaction po-
tential in this formula is formed by the bare bosonic prop-
agator

χij0 (ω,q) =
1

N

δij
ω2/c2 + q2y + a

. (15)
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Power counting shows4,5 that at low energies the ω2-term
in the boson propagator becomes irrelevant. On the other
hand, the relevant effective frequency-dependency (in-
cluding Landau-damping) will eventually be generated in
form of interaction-induced self-energies so that we may
discard the ω2-term in the beginning.
In contrast to the this term, the kinetic term ∂τ in the

fermionic Lagrangian, Eq. (12), although irrelevant by
power counting as well, should be kept4,5 because of the
importance of the topological information about the sign
of the fermion frequency and since otherwise, clearly, the
theory would lack any dynamics. Eventually, however,
also this term will be dominated by an emerging self-
energy term.4–6

B. Ising ferromagnet and Ising nematic transition

In case of Ising symmetry, the critical fluctuation
modes near the phase transition are described by scalar
boson fields φ. In the effective patch-model, the La-
grangian for the interaction between bosons and fermions
has instead of Lχ,φ in Eq. (7) the form

L(IF)
χ,φ = λφ

(

χ†
+σ3χ+ + χ†

−σ3χ−

)

, (16)

for the Ising ferromagnet, and we use

L(IN)
χ,φ = λφ

(

χ†
+χ+ − χ†

−χ−

)

. (17)

in order to study Ising nematic transition.
In terms of the compact notation (8), we may equiva-

lently write

LΨ,φ = λφΨ̄M̂Ψ. (18)

where the form of the coupling matrix M̂ depends on the
symmetry as

M̂ =

{

σ3 Ising ferromagnet
Λ3 ⊗ τ3 Ising nematic

(19)

Integrating out the bosons as before [Eq. (13)], we obtain
similarly an effective theory of interacting fermions Ψ
with the interaction instead of Eq. (14) given by

Sint[Ψ] = −λ
2

2

∫

χ0(X −X ′) Ψ̄(X)M̂Ψ(X)

× Ψ̄(X ′)M̂Ψ(X ′) dXdX ′ , (20)

where χ0 is given by the diagonal components of Eq. (15).
In general, our calculational approach is independent

of the three symmetries considered. For this reason, we
present it in detail only for the case of a Heisenberg ferro-
magnet, Eq. (14), but discuss what is specifically different
in the Ising cases afterwards.

III. MEAN-FIELD THEORY

Self-energy corrections and emergent (mean-field) or-
der parameters within the fermion model (13) repre-
sent the impact of the bosonic fluctuation modes on the
fermionic dynamics. We investigate these effects first.
In a second step, we have to see about the feedback of
fermion ordering and renormalized dynamics onto the
original bosons and, hence, to the effective interaction
potential of Sint, Eq. (14). This self-consistent procedure
is similar to an Eliashberg approach.6,27 In Sec. IV, we
will study fluctuations on top of the mean-field approxi-
mation in order to check its stability.

A. Fermion mean-field theory

We seek nontrivial mean-field solutions in the Cooper
and Fock channels and thus decouple the interaction Sint,
Eq. (14), for the Heisenberg Ferromagnet in the form

Sint[Ψ, Q] → i

∫

tr
[

Q(X,X ′)Ψ(X ′)Ψ̄(X)
]

dXdX ′ .

(21)

The mean-field Q is generally an 8N × 8N matrix in the
space of discrete degrees of freedom, which, we recall,
are spin, the pseudospin distinguishing patches, particle-
hole space, and additional fermion flavors. The form of
the coupling with the fermions, Eq. (21), leads to the
symmetry

Q̄(X,X ′) = −Q(X,X ′), (22)

and it is self-consistently determined by the mean-field
equation

Q(X,X ′) = −2iλ2
∑

ij

χij0 (X −X ′)σi
〈

Ψ(X)Ψ̄(X ′)
〉

eff
σj .

(23)

Note the factor of two which arises from summing con-
tributions of both Cooper and Fock channels. Averaging
〈. . .〉eff is with respect to the effective action

Seff [Ψ] =

∫

Ψ̄(X)ĤeffΨ(X) dX (24)

with

Ĥeff = −∂τ + ivx∂xΛ3 − vy∂
2
yτ3 − iQ̂ , (25)

where the operator Q̂ acts on the fields Ψ(X) as

Q̂Ψ(X) =

∫

Q(X,X ′)Ψ(X ′) dX ′. (26)

Action (24) is quadratic in fermion fields and thus natu-
rally defines the propagator

G(X,X ′) = −2
〈

Ψ(X)Ψ̄(X ′)
〉

eff
, (27)
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which is an 8N × 8N matrix.
In the following, we assume that Q(X,X ′) depends

only on the difference of coordinates. Then, in the
Fourier representation, the self-consistency equation (23)
reduces to

Q(ε,p) = iλ2T
∑

ε′

∑

ij

∫

χij0 (ε− ε′,p− p′)

× σiG(ε
′,p)σj

dp′

(2π)2
, (28)

where ε = πT (2n+1) with integer n is a fermionic Mat-
subara frequency.
Expanding Q into its components in spin space σ, we

obtain the decomposition

Q(ε,p) =
[

f(ε,p)− ε
]

11 + iS(ε,p) + iD(ε,p)σ (29)

where f represents a usual self-energy correction, S is
the 4N × 4N matrix for a possible singlet gap, and D =
(D1, D2, D3) a triplet gap with each component being a
4N × 4N matrix in Λ ⊗ τ and flavor spaces. As in the
usual Eliashberg treatment,6,27 we neglect corrections to
the fermion spectrum ε(k) and also retain in the following
only the frequency dependency of Q. Symmetry (22)
implies the symmetries

f̄(ε) = −f(−ε) ,
S̄(ε) = −S(−ε) ,
D̄(ε) = D(−ε) . (30)

Singlet S and triplet D gaps usually do not appear at
the same time so that we have to concern ourselves only
with the sector that survives. Even if the present mean-
field equations predicted degenerate singlet and triplet
solutions, in reality residual interactions such as Coulomb
or electron-phonon coupling, which are always present,
lift the degeneracy and generally favor the singlet gap
because of its more robust s-wave symmetry. For these
reasons, we will treat S and D separately.

1. Triplet gap

In the situation of the triplet gap, the Green’s function
in the mean-field equation (28) has the form

G(ε,p) =
[

if(ε)11− vxpxΛ3 − vyp
2
yτ3 −D(ε)σ

]−1
.

(31)

In order to obtain in the right-hand side the pole struc-
ture in the form of (scalar) denominators

P± =
[

f2(ε) + (vxpx ± vyp
2
y)

2 + d2(ε)
]−1

, (32)

we should restrict D by the constraints

{D,Λ3} = {D, τ3} = 0 , (33)

and demand that (Dσ)2 be scalar. These relations and
symmetry (30) limit D to matrices of the form

D(ε) = d(ε)nU with U = iΛ2

(

0 u
−u† 0

)

τ

. (34)

Herein, the real scalar function d(ε) is the amplitude of
the gap, the unit vector n = (n1, n2, n3) corresponds
to the d vector of a triplet superconductor, and u is a
unitary N ×N -matrix in flavor space. (Λ2 is the second
Pauli matrix in the space of patches.)
The gap D contains only off-diagonal components in

particle-hole space τ . This corresponds to the formation
of triplet Cooper pairs. Note that there is no compet-
ing charge order as in the case of an antiferromagnetic
QCP.13 This absence of any charge order is ultimately
due to the curvature, which has imposed the constraint
{D, τ3} = 0, cf. Eq. (33).
In the physical case N = 1, the group of u reduces

to U(1), which just corresponds to the phase of the su-
perconducting condensate. Explicitly carrying out the
inversion in Eq. (31), we find

G(ε,p) = −1

2
[(P+ + P−)11 + (P+ − P−)τ3Λ3]

×
(

if(ε)11 + vxpxΛ3 + vyp
2
yτ3 +D(ε)σ

)

(35)

with P± defined in Eq. (32).
Inserting Eq. (35) into the self-consistency equa-

tion (28) yields the two equations

f(ε)− ε =
λ2

2
T
∑

i

∑

ε′

∫

χii0 (ε− ε′,p− p′)

×(P+ + P−)f(ε
′)
dp′

(2π)2
, (36)

D(ε)σ = −λ
2

2
T
∑

ij

∑

ε′

∫

χij0 (ε− ε′,p− p′)

×(P+ + P−)σiD(ε′)σσj
dp′

(2π)2
. (37)

We are tackling their solution in Sec. III C.

2. Singlet gap

The singlet gap S behaves differently from the triplet
gap D under charge conjugation, cf. Eqs. (33). This
different symmetry behavior constraints the matrix S to

S(ε) = b(ε)W with W = Λ1

(

0 w
w† 0

)

τ

, (38)

where b(ε) is the (real) amplitude and w a unitary N ×
N matrix in flavor space. In particular, we find that S
corresponds to a s-wave superconducting pairing gap.
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Instead of Eq. (37), the second equation in the set of
self-consistency equations in the singlet case is

S(ε) = −λ
2

2
T
∑

i

∑

ε′

∫

χii0 (ε− ε′,p− p′)

× (P+ + P−) S(ε
′)
dp′

(2π)2
. (39)

Because the singlet spin space is trivial, the Pauli ma-
trices have dropped out. A quick inspection reveals that
for the Heisenberg ferromagnet, the singlet solution van-
ishes as the signs in the two sides of Eq. (39) are different.
In the triplet case, the anticommutation relations of the
there present Pauli matrices heal this “fault.” For the
Ising nematic transition, however, it will be the singlet
component that prevails, see below.

B. Feedback on bosons

The relevant dynamics of the bosonic fluctuations is
generated only by their coupling to the fermions.4,5 If
the fermions have developed a pairing order, this order
should then also have an impact on the bosons. Thus,
for a complete self-consistency, we have to consider the
feedback of the (ordered) fermions on the boson propaga-
tor, which itself determines the effective fermion-fermion
interaction.
In practice, we obtain the self-consistently renormal-

ized bosonic propagator χijeff by summing the usual series
in bubble diagrams, see Fig. 3. Analytically, the result is
given by

[χijeff(ω,q)]
−1 = [χij0 (ω,q)]

−1 −Πij(ω,q), (40)

with the boson self-energy

Πij(ω,q) = −λ
2

2
T
∑

ε

(41)

×
∫

tr [G(ε,p)σiG(ε+ ω,p+ q)σj ]
dp

(2π)2
.

The fermionic Green’s functions in this equation include
the mean-field Q. On the other hand, the effective boson
propagator χijeff including the self-energy Π should replace

χij0 in Eqs. (36), (37), and (39) so that we arrive at a
completely self-consistent system of mean-field equations.

FIG. 3. Effective bosonic propagator (double-dashed lines) as
a result from coupling the bare bosons (dashed lines) to the
possibly ordered fermions (solid lines).

In a general situation of a nonzero triplet gap D,
Eq. (34), off-diagonal elements in χijeff make calcula-
tions rather cumbersome. If we assume an ordering vec-
tor n = (1, 0, 0), however, there are nonzero components
only along the diagonal and we find

Πijω,q = −γN δijΩ
ii(ω)

|qy|
(42)

with

γ =
λ2

4πvxvy
. (43)

The functions Ωii(ω) are given by Ω11 = Ω− and Ω22 =
Ω33 = Ω+ where

Ω±(ω) = πT
∑

ε

×
(

1− f(ε)f(ε+ ω)± d(ε)d(ε+ ω)
√

f2(ε) + d2(ε)
√

f2(ε+ ω) + d2(ε+ ω)

)

. (44)

In the absence of the gap, they simply reduce to Ωii(ω) =
|ω|.

C. Solution of the mean-field equations

Let us now try and solve the mean-field equations (36)
and (37) including the renormalization of the boson prop-
agator for the triplet gap D, Eq. (34), in the case of
the isotropic ferromagnet. Clearly, the unitary matrix u
drops out of the equation so that there are degenerate
solutions for all u in the unitary group U(N). Rotational
symmetry [O(3)] implies degeneracy also for the normal
vector n, which we thus choose to be n = (1, 0, 0) for
convenience. The full saddle-point manifold of degener-
ate extrema is thus U(N)×S2, where S2 is the 2-sphere.
Defining the intrinsic energy scale of the system

Γ =

(

λ2

3
√
3Nγ1/3vx

)3

, (45)

we measure all quantities of dimension energy in terms
of Γ, i.e., T̄ = T/Γ, ε̄ = ε/Γ, f̄ = f/Γ, d̄ = d/Γ, and Ω̄ =
Ω/Γ. Then as we integrate over momenta in Eqs. (36)
and (37), these equations together with Eq. (44) lead at
criticality (a = 0), to a set of fully universal equations:

f̄(ε̄)− ε̄ = T̄
∑

ε̄′,i

∣

∣Ω̄ii(ε̄− ε̄′)
∣

∣

−1/3
f̄(ε̄′)

√

f̄2(ε̄′) + d̄2(ε̄′)
, (46)

d̄(ε̄)σ1 = −T̄
∑

ε̄′,i

σiσ1σi

∣

∣Ω̄ii(ε̄− ε̄′)
∣

∣

−1/3
d̄(ε̄′)

√

f̄2(ε̄′) + d̄2(ε̄′)
, (47)

Ω̄ii(ω̄) = πT̄
∑

ε̄

(48)

×
(

1− f̄(ε̄)f̄(ε̄+ ω̄)± d̄(ε̄)d̄(ε̄+ ω̄)
√

f̄2(ε̄) + d̄2(ε̄)
√

f̄2(ε̄+ ω̄) + d̄2(ε̄+ ω̄)

)

.
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FIG. 4. (Color online) Gap d̄ as a function of a dimensionless
frequency ε̄ at criticality (a = 0) and a little to the right
of the QCP (ā = 0.1). Temperature has been chosen to be
T̄ = 0.001. The gap has a maximum close to zero frequency.
All energies are measured in units of Γ, Eq. (45).

We remark that at finite temperatures T , the sum over
frequencies contains a divergent term for ε = ε′. This
divergency only appears as a result of neglecting the self-
interactions of the bosons, the (φ2)2-term in Eq. (2),
which at finite temperatures leads to finite mass a(T )
in the boson propagator, thus making the problematic
term regular. At T = 0, this problem does not occur at
all since frequency integrals converge. We note that the
issue of a divergent ε = ε′ contribution does not arise27

in the equations for the actual physical gap.28

Equations (46)–(48) permit a solution with zero gap,
d = 0, which corresponds to the well-known3–6,27 self-
energy correction with f̄− ε̄ ∝ |ε̄|2/3 at low temperatures
and f̄ ∝ ε̄ for large T . However, at low temperatures
T < Tc with Tc ≈ 0.07 Γ, numerical simulations show
that solutions with nonzero gaps d̄ become possible and,
as we show in Sec. III E, will turn out the energetically
preferred ones. At the same time, the usual self-energy
terms, represented by f , deviate from the gapless situa-
tion at small frequencies. Typical frequency dependen-
cies of f and d are plotted in Figs. 4 and 5.

Figure 6 shows that also the boson self-energy shows
a different than usual behavior in the gapped phases.
Moreover, its “moment” Ω̄11 = Ω̄−, cf. Eq. (44), in
the direction of the normal vector n = (1, 0, 0) be-
comes gapped at zero frequency as Ω̄−(ω̄) scales with
d2 for small |ω̄|. In contrast, the other two moments
Ω̄22 = Ω̄33 = Ω̄+ do not have such a gap. For large ω,
these functions approach the linear regime as in the case
of d = 0.

A little away from the QCP, where a > 0 but small,
Eqs. (46) and (47) have to be modified as the last integra-
tion over momentum can no longer be performed easily.
Numerically, though, a similar study as before is possible

FIG. 5. (Color online) Self-energy f̄−ε̄ in units of Γ, Eq. (45),
as a function of a dimensionless frequency ε̄ at temperature
T̄ = 0.001 at the QCP (a = 0) and a little away from it
(ā = 0.1) in the presence of a nonzero gap d as well as, for
comparison, the pure self-energy solution without gap, which
energetically is less favorable.

FIG. 6. (Color online) Boson self-energies Ω̄± as a function of
the frequency ω̄ at temperature T̄ = 0.001 and at the QCP.
At small frequencies, the gap d precludes the usual Landau
damping from setting in. The component Ω̄− even acquires
itself a gap ∼ d2.

as we replace

|Ω̄ii(ε̄− ε̄′)|− 1
3 → |Ω̄ii(ε̄− ε̄′)|− 1

3 J
(

ā[Ω̄ii(ε̄− ε̄′)]−2/3
)

(49)

where

J(α) =
3
√
3

2π

∫ ∞

0

x

1 + x3 + xα
dx (50)

and ā = (γΓ)−2/3a is the dimensionless bosonic mass.
For finite values a > 0, the gap d is increasingly lowered
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(at T fixed), see Fig. 4, and will eventually vanish at a
critical value ac.

D. Ising ferromagnet and Ising nematic transitions

In order to analyze the situation around the Ising
ferromagnetic and Ising nematic transitions, the mean-
field equations derived in the preceding section for the
isotropic ferromagnet have to be adapted. Specifically,
instead of Eq. (28), the starting point should be

Q(ε,p) = iλ2T
∑

ε′

∫

χeff(ε− ε′,p− p′)

× M̂G(ε′,p)M̂
dp′

(2π)2
, (51)

where the matrix M̂ , Eq. (19), has to be chosen accord-
ing to whether we investigate the Ising or Ising nematic
transition.
For the Ising transition, M̂ = σ3 and by the same ar-

gument as in the Heisenberg case, there is no singlet solu-
tion, cf. the discussion of Eq. (39). For a triplet solution,
cf. Eq. (37), we need to require that σ3Dσσ3 = −Dσ

for a non-vanishing solution. (Otherwise, the two sides
of the mean-field equation would have different signs.)
Thus, in the Ising case, we conclude that the D3 compo-
nent of D has to vanish identically. As a result for the
triplet order parameter, we obtain

D = b(ε)n(IF)U (52)

with an effectively two-component unit vector n(IF) =
(n1, n2, 0). This implies a smaller saddle-point manifold
of U(N) × S1. For convenience, when writing explicit
mean-field equations, we choose n(IF) = (1, 0, 0).
For the Ising nematic transition, the coupling matrix

is M̂ = Λ3 ⊗ τ3 and does not affect the physical spin σ.
Since M̂UM̂ = −U and M̂WM̂ = −W , cf. Eqs. (34)
and (38), both singlet and triplet pairing instabilities
should be formally allowed solutions to the mean-field
equations. However, as we argued after Eq. (30), the sin-
glet pairing should be the more robust one and prevail.
Developing the mean-field theory for the singlet pairing
order parameter

S(ε) = b(ε)W (53)

based on Eq. (39) is completely analogous to the scheme
in the preceding section.
The mean-field equations for the pairing instabilities

around both the Ising and the Ising nematic transitions
are given by

f̄(ε̄)− ε̄ = T̄
∑

ε̄′

|Ω̄+(ε̄− ε̄′)|−1/3f̄(ε̄′)
√

f̄2(ε̄′) + b̄2(ε̄′)
, (54)

b̄(ε̄) = T̄
∑

ε̄′

|Ω̄+(ε̄− ε̄′)|−1/3b̄(ε̄′)
√

f̄2(ε̄′) + b̄2(ε̄′)
. (55)

Note that only the (gapless) component Ω̄+, cf. Eq. (44),
contributes to the effective boson propagator. We em-
phasize that even though the gap equation are the same,
the symmetry of the gap is different for both cases. For
the Ising case, b is the amplitude of a two-component
triplet gap, whereas this is a singlet gap in the nematic
case. Numerical simulation of the mean-field equations

predicts a critical temperature of T
(IF/IN)
c ≈ 0.12 Γ, be-

low which superconducting triplets or singlets appear at
the Ising or Ising nematic transition, respectively.

E. Free energy

In order to complete the mean-field study, we should
check that the non-trivial solution involving an emergent
pairing gap in either the triplet (Heisenberg, Ising) or
singlet (Ising nematic) channel is energetically preferable
to the unordered (non-Fermi-liquid) state. Since a direct
calculation of the free energy F = −T lnZ is difficult,
we begin with the derivative with respect to the coupling
constant λ2,

d lnZ[Ψ]

dλ2
= − 1

λ2

∫

Sint[Ψ] exp {−S[Ψ]}DΨ
∫

exp {−S[Ψ]}DΨ
, (56)

and eventually recover the free energy as

F = −T
∫ λ2

0

d lnZ[Ψ]

dλ2
dλ2 + F0 . (57)

Here, F0 is the free energy of the noninteracting system.
In zeroth other in λ2,

d lnZ

dλ2
= −1

4
TV

∑

ε,ω

∫

χij0 (ω,q) (58)

× tr [G0(ε,p)σiG0(ε+ ω,p+ q)σj ]
dp dq

(2π)4
,

where V denotes the volume of the system. In order
to obtain the full solution, we have to sum the relevant
series of diagrams. Replacing the bare propagators for
fermions and bosons by the ones we self-consistently de-
rived in the preceding sections, however, automatically
carries out the relevant summations. Thus, we evalu-
ate Eq. (58) with the effective propagators G and χeff

for both the solution with finite gap and the zero-gap
solution. If the difference ∆F = Fd 6=0 − Fd=0 becomes
negative, the system will undergo the transition into the
pairing-gapped phase.
Evaluating the momentum integrals, we find

∆F =

[

V

∫ λ2

0

γ1/3Γ4/3Sx

3
√
3λ2

dλ2

]

× T̄
∑

ω̄,i

(

[Ω̄ii(ω̄)]1/3 − |ω̄|1/3
)

. (59)
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FIG. 7. (Color online) Free energy difference −∆F measured
in units of the non-universal prefactor in Eq. (59) as a function
of temperature T̄ and distance ā to the QCP, both measured
in units of Γ, Eq. (Gamma).

with Sx =
∫

(dqx/2π) given by an ultraviolet momentum
cutoff. Measuring ∆F in units of the positive (nonuni-
versal) prefactor in square brackets in Eq. (59), we find
a universal result. In particular, the sign of the free en-
ergy difference ∆F is determined by the universal part
in Eq. (59).
The numerical evaluation of ∆F based on the solutions

to the mean-field equations shows that the opening of the
gap is always energetically favorable, ∆F < 0. A plot of
∆F as a function of temperature and boson mass a is
shown in Fig. 7.
Without any difficulty, this result is extended to the

situation of Ising and Ising nematic transitions, where
close to the QCP superconducting pairing becomes the
preferred state.

Free energy for slowly fluctuating fields

In order to study the effects of fluctuations of the order
parameter D (for the isotropic case) along or perpendic-
ular to its saddle-point manifold, we need to generalize
the free energy (59) to include (slow) fluctuations in space
and imaginary time. The sought-after free energy func-
tional should satisfy the relation

dF

dλ2
=
T

4

∫

χijeff(X −X ′)

× tr [G(X,X ′)σiG(X
′, X)σj] dXdX

′ , (60)

cf. Eq. (58).
In analogy with Eq. (29), we split the mean-field Q into

self-energy terms and the order parameter but otherwise

keep Q(X,X ′) general,

Q(X,X ′) = a(X,X ′)11 + iD(X,X ′)σ . (61)

Here, a is a scalar and D the order parameter including
fluctuations around the mean-field. Analogously, we split
the Green’s function G(X,X ′), Eq. (27),

G(X,X ′) = A(X,X ′)11 +B(X,X ′)σ . (62)

The mean-field equations locally relate the quantities in-
troduced above to each other,

a(X,X ′) = iλ2χa(X −X ′)A(X,X ′), (63)

D(X,X ′) = λ2χD(X −X ′)B(X,X ′) . (64)

Here, interested in slow fluctuations, we do not assume
any particular choice for n. Thus, the structure of the
equations has to take into account nondiagonal bosonic
self-energies Πij , cf. Eq. (41). This leads to the effec-
tive interaction couplings in Eqs. (63) and (64) that are
defined as

χa =
∑

i

χiieff ,

χijD = χaδij − 2χijeff . (65)

With all these definitions at hand, we write the functional

F̃

T
=

1

4

∫

tr
[

− iA(X,X ′)a(X ′, X)

+B(X,X ′)D(X ′, X)
]

dXdX ′ (66)

− 1

2

∫

tr ln
[

Ĥ0 + ia(X,X ′)−D(X,X ′)σ
]

dXdX ′ ,

where Ĥ0 = −∂τ + ivx∂xΛ3 − vy∂
2
yτ3. Differentiating F̃

with respect to λ2, we almost arrive at Eq. (60). The only

discrepancy is that instead of the boson propagator χijeff ,

the derivative dF̃ /dλ2 holds the expression

χ̃ijeff =
d(λ2χijeff)

dλ2
. (67)

However, since χ̃ijeff and χijeff share the same asymptotic
behavior both in the ultraviolet and the infrared limits,
we believe that the approximation χ̃ijeff ≃ χijeff , although
not globally controlled by a small parameter, should not
qualitatively alter the physics. For this reason and sim-
plicity, we adopt F̃ , Eq. (66) as qualitatively correct func-
tional for the free energy.
Physically most relevant are the fluctuations of the or-

der parameter D. The starting point for their study in
the next section will thus be the reduced free energy

F

T
=

1

4

∫

tr [B(X,X ′)D(X ′, X)] dXdX ′

−1

2

∫

tr ln
[

Ĥ0 −D(X,X ′)σ
]

dXdX ′ . (68)

We remark that in a completely analogous way, we find
corresponding free energy functionals also for the Ising
and Ising nematic symmetries.
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IV. FLUCTUATIONS

In this section, we investigate the effects of fluctuations
on the order parameterD around the mean-field solution.
Throughout most of this section, we have in mind the
Heisenberg scenario while we will comment on the Ising
case in Sec. IVE. We thus write D as sum of the mean-
field gap and its fluctuating components,

D(X,X ′) = D0(X −X ′) + δD(X,X ′) . (69)

So far, we have not yet specified the nature of the fluc-
tuations. In fact, we can imagine different types of fluc-

tuations according to which symmetry is broken at the
mean-field level. Below the critical temperature Tc, the
mean-field breaks the O(3) and U(N) rotational sym-
metries associated with spin and the additional fermion
flavors, respectively. Thus we expect massless excita-
tions. Furthermore, we have to consider fluctuations of
the modulus d that will lead to massive fluctuations.

Let us begin with the free energy functional (68) and
insert Eq. (69) instead of the mean-field. Expanding the
functional to second order in fluctuations δD and trans-
forming into momentum space, we obtain a correction to
the mean-field free energy of the form

δ2F [δD]

T
=

1

4
T 2

∑

ε,ω

∫

tr [δB(ε,p;ω,q)δD(ε,p;−ω,−q)]
dp dq

(2π)4

+
1

4
T 2

∑

ε,ω

∫

tr
[

G (ε+,p+)
(

δD(ε,p;ω,q)σ
)

G (ε−,p−)
(

δD(ε,p;−ω,−q)σ
)]dp dq

(2π)4
. (70)

For a compact notation, we use the abbreviation ε± =
ε ± ω/2 and p± = p ± q/2. The function δB is related
to δD by Eq. (64). Equation (70) is our starting point
to study the effects of fluctuations.

A. Massless fluctuations

From Eq. (34) we recall that the gap is described by
three components, which are its modulus d, a normal vec-
tor n, and the unitary matrix u, cf. Eq. (34). All compo-
nents fluctuate around the mean-field solution, which we
choose to be at n0 = (1, 0, 0)t, u = 11, and dε = d(ǫ). In
the harmonic approximation, the three sectors, in partic-
ular massless and massive fluctuations, decouple, and we
may study them separately. Let us first consider a fixed
modulus dε and fixed “flavor” matrix u, and have a look
at fluctuations in the direction n. We thus consider

δD(ε;ω,q) = dεU δnω,q, (71)

as fluctuating fields with a fixed modulus (n2 = 1) may
be parametrized29 around a chosen mean-field n0 as

n = n0 + δn , (72)

where fluctuations δn, if small, are approximately orthog-
onal to n0.
Inserting Eq. (72) into the free energy (70), we obtain

δ2F [δn]

T
= T 2

∑

ω,ε

∫

K̃(ε;ω,q)δnω,qδn−ω,−q

dq

(2π)2
,

(73)

where the kernel K̃(ε;ω,q) is given by

K̃(ε;ω,q) = K(ε;ω,q)−K(ε; 0, 0) , (74)

with

K(ε, ω,q) = −N
∫

d2ε
∑

s=±

Ps(ε+, p+)Ps(ε−, p−)

×
[

fε+fε− + δs(p+)δs(p−) + dε+dε−
] dp

(2π)2
. (75)

Here, δs(p) = vxpx + svyp
2
y and P± has been defined

in Eq. (32). The frequency-dependent functions fε and
dε are solutions to the mean-field equations Eqs. (46)
and (47). While the single kernel K(ε;ω,q) separately

diverges for small |q|, the effective kernel K̃(ε;ω,q) re-
mains finite and, in the limit of low energies, may be
expanded for small ω and |q|. This leads to the non-
linear σ-model that describes the gapless fluctuations of
the vector n,

F [n]

T
=

∫

[

aω (∂τn)
2 + axv

2
x (∂xn)

2 + ayv
2
y (∂yn)

2 ] dτdr.

(76)

The coefficients of the three terms are

aω =
Nρ

vx

∫

dpy
2π

, (77)

ax =
Nη

vx

∫

dpy
2π

, ay =
Nη

vx

∫

dpy
2π

p2y ,
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where

η = T̄
∑

ε̄

d̄2ε̄
(f̄2
ε̄ + d̄2ε̄)

3/2
, (78)

ρ = T̄
∑

ε̄

d̄2ε̄

[−3(f̄ε̄f̄
′
ε̄ + d̄ε̄d̄

′
ε̄)

2

2(f̄2
ε̄ + d̄2ε̄)

5/2

+
(f̄ ′2
ε̄ + f̄ε̄f̄

′′
ε̄ /2 + d̄′2ε̄ + d̄ε̄d̄

′′
ε̄/2)

(f̄2
ε̄ + d̄2ε̄)

3/2

]

.

Explicit numerical evaluation of the frequency sums
shows that η and ρ are both of order unity. However,
integrals over momentum py seem to diverge and should
be cut at a proper momentum scale given by the length ℓ
of the Fermi surface patch.
To be specific, we see in the fermionic propagator

the scaling px ∼ Γ1/3ε2/3, while the bosonic propaga-
tor shows that py ∼ γ1/3ε1/3. Since typical energies are
of order Γ, we observe

px
py

∼ λ2vy
v2x

≪ 1 . (79)

The last inequality determines the parameter region in
which our approach is applicable. For the length ℓ of a
patch, we then estimate

ℓ = (γε)1/3 ∼ (γΓ)1/3 =
1

3
√
3

λ2

Nvx
. (80)

Using this cutoff scale, we interpret the integrals in
Eqs. (77) as

∫

dpy
2π

=
ℓ

2π
and

∫

p2y
dpy
2π

=
1

2π

ℓ3

3
. (81)

Finally, let us rescale the coordinates, x = vxx̃ and y =
vyℓỹ/

√
3, so that the σ model (76) becomes

F [n]

T
=
Nℓ2vy
2π

∫

[

ρ (∂τn)
2 + η (∇n)2

]

dτdr̃ . (82)

This σ model is the effective low-energy theory for the
gapless fluctuations of n.
The theoretical treatment of the massless fluctuations

of the unitary matrix u that rotates the N additional in-
ner fermion flavors follows the same steps and eventually
leads to an effective σ model with target manifold U(N).
We find

F [u]

T
=
ℓ2vy
2π

∫

Tr
[

ρ ∂τu
†∂τu+ η ∇u†∇u

]

dτdr̃. (83)

Here, Tr is the trace over N ×N matrices acting on fla-
vors. Note that coefficients in the two σ-models (82)
and (83) for n and u are the same.
Concluding this section, the massless fluctuation

modes around the mean-field solution are described by
a combined O(3) and the U(N) nonlinear σ model. In
Sec. IVD, we will discuss its critical behavior using the
renormalization group (RG).

B. Fluctuations of the modulus

The effective free energy functional for fluctuations of
the modulus can be derived with a very similar approach.
Setting dε = d0,ε+σ(ε;ω,q), where d0,ε is the mean-field
value, we investigate fluctuations of the form

δD(ε;ω,q) = n0Uσ(ε;ω,q) . (84)

Inserting this into the free energy functional (70), we re-
duce it step by step in analogy with the preceding section
to the form

F [σ]

T
=
Nℓ2vy
2πΓ2

∫

[

Γ2σ2 +

(

∂σ

∂τ

)2

+ (∇σ)2
]

dτdr̃ .

(85)

[We here ignore coefficients ∼ 1 of the form of those in
Eq. (78).] Fluctuations σ of the modulus are thus massive
with mass term Γ2. In the prefactor, Γ2 appears in the
denominator because σ has the dimension energy.

C. Strength of the fluctuations

In order to investigate the limits of applicability of
mean-field theory extended by the models (76), (83),
and (85) for fluctuations, let us estimate how strong fluc-
tuations around a particular mean-field solution are. For
the gapless excitations, let us evaluate the average zero-
temperature fluctuation variance. Here, the Matsubara
sum is effectively replaced by a frequency integral,

〈δn(0)δn(0)〉 = 4πvx
Nℓ

∫ Γ

0

1

ρω2 + η
(

v2xq
2
x + v2yℓ

2q2y
)

dω dq

(2π)3

∼ vx
Nℓ

Γ
1

vxvyℓ
∼ 1

N2
. (86)

Thus at zero temperature, there is no generic small pa-
rameter controls the fluctuations in n but only the (arti-
ficial) large-N limit may keep the theory under control.
At finite temperature, the contribution of the zero

Matsubara frequency (ω = 0) inevitably leads to an in-
frared divergency of the momentum integral, which can-
not even be healed by assuming N ≫ 1. In fact, this
just reflects the well-known result that in two dimen-
sions, there is no breaking of continuous symmetries at
T > 0.
Computing similarly the fluctuations of the matrix U ,

we find at T = 0

〈

u(0)u†(0)
〉

∼ N
vx
ℓ
Γ

1

vxvyℓ
∼ 1 . (87)

Note that in contrast to fluctuations δn, fluctuations in u
are not even suppressed in the large-N limit.
Fluctuations of the modulus are massive and thus less

dangerous in the infrared limit. At zero temperature, we
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find

〈σ(0)σ(0)〉 ∼ vxΓ
2

Nℓ
Γ

1

vxvyℓ
∼ 1

N2
Γ2 . (88)

Indeed, we find fluctuations in σ suppressed but again
only as 1/N2, yet there is no generic model parameter to
control them.

D. Renormalization group

In order to go a little beyond the preceding section, let
us look at how the couplings of the nonlinear σ-models
for the massless fluctuations in n and u flow under the
action of the renormalization group (RG). At finite tem-
perature, only the static with respect to imaginary time τ
component is important, yielding the effective free energy
functional

F

T
=
N

t

∫

Tr
[

∇u†∇u+ (∇n)2
]

dr̃, (89)

with the effective temperature

t =
8π2

3
√
3η
T̄ . (90)

Since the symmetries of fluctuations in n [O(3) symme-
try] and the U(N) matrix u are different, we have to
expect a different flow behavior under the RG. For this
reason, we introduce two distinct effective coupling con-
stants for these two sectors, 1/tu and 1/tn, which share
the bare value 1/t, Eq. (90).
At one-loop order, we thus find the RG equations for

the two nonlinear σ models29

dtu
dξ

=
N − 1

πN
t2u,

dtn
dξ

=
1

2πN
t2n . (91)

Herein, ξ = logα as we integrate out fast momenta be-
tween Λ/α and Λ.
The general behavior is independent from N > 1. As

we go to smaller momenta, the effective temperatures tn
and tu increase and eventually diverge in the infrared
(ξ → ∞), reflecting the absence of any long-range spatial
order. For N = 1, the RG equation (91) for fluctuations
in u indicates a vanishing β-function at one-loop order.
However, as it is well-known, the formation of vortices
comes into play,30,31 and the correct RG is given by the
Berezinskii-Kosterlitz-Thouless one32 resulting in the ap-
pearance of quasi-long-range order. At the same time, for
angular fluctuations in n, the divergency of the RG flow
of tn appears for all N , including the case N = 1, show-
ing again the large-N limit does not help to control the
theory at finite temperatures.

E. Ising ferromagnetic and Ising nematic

transitions

In principle, we could repeat the whole procedure for
the Ising symmetric models. However, results will be

quite similar. The Ising models differ from the Heisen-
berg one studied above as angular fluctuations of the or-
der parameter (n) are either absent (for the Ising nematic
transition) or, in the approach above, have a vanishing
β-function (for the Ising ferromagnet), which is a gen-
eral feature of the O(2) nonlinear σ-model. We recall
that in the physical case of N = 1, the RG equation (91)
indicates a vanishing β-function for fluctuations in u as
well.
These are common features of the two-component non-

linear σ-model in two dimensions, and it is well-known
that although true long-range order is impossible, a state
with quasi-long-range order emerges due to condensa-
tion of vortex and antivortex pairs. This happens at
the Berezinskii-Kosterlitz-Thouless transition,30,31 a sce-
nario that applies to our system in these Ising cases and
leads to the quasi-long-range order at finite temperatures
as indicated in the phase diagram in Fig. 1.

V. CONCLUSION AND DISCUSSION

We have performed a field theoretical analysis of ferro-
magnetic quantum-criticality for itinerant fermions in the
spirit of a preceding analysis13 of the antiferromagnetic
QCP. Using the spin-fermion model, we discussed vari-
ous transition scenarios (Heisenberg, Ising, and Ising ne-
matic). Mean-field theory predicts a gap in the supercon-
ducting channel below a critical temperature Tc, which
is either in the singlet (Ising nematic) or triplet channel
(Heisenberg, Ising). The presence of such a gap also leads
to different self-energies in the boson and fermion prop-
agators as compared to those known from normal state
studies.3–6

Fluctuations of the gap modulus can be controlled as-
suming a large number N of artificial fermion “flavors”.
We conclude therefore that superconductivity with quasi-
long-range order emerges for systems with Ising symme-
tries below a critical temperature Tc, see the phase di-
agram in Fig. 1. On the other hand, long-range cor-
relations are absent in the Heisenberg ferromagnet at fi-
nite temperature for any N , reflecting the failure of 1/N -
expansions encountered in the earlier studies. However,
considering the interaction between different layers in re-
alistic systems, long-range superconducting order might
be stabilized also in the Heisenberg ferromagnet.
It is instructive to compare our results with recent the-

oretical works. In Ref. 25, Cooper pairing close to the
nematic QCP was studied considering the interplay of
nematic fluctuations and an attractive interaction in the
Cooper channel. It was found that the latter interaction
determines the symmetry of the order parameter while
nematic fluctuations lead to an enhancement of Tc. A
similar result was obtained by Ref. 26. For a deformed
static bosonic susceptibility χ−1

0 (0,q) = |qy|1+ǫ, Meltit-
ski et al.22 obtained a superconducting instability cover-
ing the QCP with analytical control gained by assuming
ǫ≪ 1.
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On the experimental side, superconductivity close
to ferromagnetism has been observed in the com-
pounds UGe2, URhGe, and UCoGe, which are Ising
ferromagnets.33,34 Yet there is no unified picture for su-
perconductivity in these compounds, which have quite
different phase diagrams involving, e.g., different mag-
netic phases and first-order magnetic phase transition at
low temperatures. Experimental evidence also links the
Ising nematic transition to a superconducting instability
in the iron pnictides,35,36 where the nematic instability
is covered by a superconducting gap. Near the nematic
instability, however, also a spin-density wave phase ter-
minates, which makes the situation complicated and may
even have the consequence that the superconducting gap
at the QCP has a more intricate symmetry than s-wave
determined by the residual interactions.
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