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A systematic, constructive and self-consistent procedure to quantify nonlocal, nondiffusive action at a dis-
tance in plasma turbulence is exposed and applied to turbulent heat fluxes computed from the state-of-the-art
Sfull-f, flux-driven gyrokinetic GYSELA and XGC1 codes. A striking commonality is found: heat transport below
a dynamically selected mesoscale has the structure of a Lévy distribution, is strongly nonlocal, nondiffusive,
scale-free, and avalanche mediated; at larger scales, we report the observation of a self-organized flow structure
which we call the “E X B staircase” after its planetary analog.
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When modeling transport processes in tokamak plasmas,
the following oft-invoked—and questionable—assumption
greatly prevails: widely separated regions of the plasma do
not significantly interact with each other; and when they do,
they do so diffusively. Recast differently, this paradigm
states that any particle or heat flux can accurately be de-
scribed using a set of local transport coefficients—
diffusivities or conductivities—which should be locally re-
lated through a generalized Fick’s law to the thermodynamic
forces which induce them.

Models with such assumptions will be referred to as local
or quasilocal; they assume successive transport events to be
either mutually independent or with both a short correlation
and short memory; in other words transport events are ran-
dom and accurately described by a classical Gauss-Markov
process. In this line of thought, (i) cumulative, synergetic
small events piling up and generating large scale, avalanche-
like, temporally intermittent transport are disregarded on the
widely believed basis that turbulence regulating E XB
sheared flows would efficiently hinder large-scale, organized
transport events, thus strongly favoring a local, diffusive
transport paradigm. Nor is it taken into account the fact that
(ii) a large localized event may have a significant aftereffect
in the same region it occurred in.

Disappointment with local models is surprisingly mild,
given the vast amount of commonplace observations show-
ing inconsistencies between them and either perturbative (hot
or cold pulse) experiments [1-5], Bohm-like scaling of the
energy confinement time [6] or off-axis heating experiments
[7.8]. Those inconsistencies with local transport models are
usually dealt with by proposing phenomenological transport
models which may include an ad hoc local critical threshold
that switches between a slow and a fast transport channel;
each of these channels remaining diffusive (local) in essence.
The crude limitations of such models are, e.g., discussed in
Ref. [9].
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Theoreticians have long alerted to the dubiety of local,
diffusive approaches to nonlinear transport, using, e.g., con-
tinuous time random walks (CTRWs) [10] in as different
areas as chaotic dynamics [11,12], geophysics, economics,
financial mathematics [13], hydrodynamics [14], or even hy-
drology [15]. Early works in fusion research have also
worked beyond local, diffusive models: either invoking (i)
toroidal mode coupling to explain fast pulse propagation
[16], (ii) self-organized criticality (SOC) [17-19] and the
concept of marginal stability to connect nonlocal transport
events to scale-free avalanches [20,21] and explain ion pro-
file stiffness, (iii) turbulence spreading where rapid pulse
propagation is considered as a more general consequence of
the nonlinear dynamics [22], or (iv) based on the fractional
kinetic equation [9,23], following pioneering works by Man-
delbrot or Zaslavsky [24].

The present Rapid Communication builds upon these
works, yet adopting a different standpoint. The attractiveness
of the present approach rests with its extreme simplicity and
its ability to provide a systematic, constructive and self-
consistent procedure to quantify nonlocal and nondiffusive
behavior in complex geometry and realistic plasma param-
eters. Self-consistency is key to our approach: our analysis is
based on a large database from the state-of-the-art full-f flux-
driven gyrokinetic GYSELA [25] and XGC1 [26] codes: veloc-
ity fields, flows, and heat fluxes are fully self-consistent, dif-
fering from either CTRW or particle-following methods.
Mathematically, this problem translates as follows. We wish
to move from a local or quasilocal formalism:
O(r)=—n(r)x(r)VT(r), Q being the turbulent heat flux, n the
density, y the turbulent diffusivity, and 7" the temperature—
each of these three latter quantities are expressed locally at
radius r—to a generalized heat transfer integral [27]:

o(r) =—f/Cr(r,r') VI1(r)dr', (1)

where the kernel K, (including a mildly varying density
dependence)—physically, a generalized diffusivity—is the
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crucial quantity. At this point, insofar as /C, is not specified,
let us emphasize that no assumption of dominance of nonlo-
cality over locality is made: Eq. (1) embeds both nonlocal
and local (C, can be a Dirac distribution) formalisms. One
goal of this paper is to provide a straightforward and system-
atic way to infer the form of KC,, no assumptions on the
nature of the dynamics (local or not) being made a priori.
The basic idea is to interpret Eq. (1) as a convolution product
and hence recast, using the convolution theorem, the heat
transfer integral as a mere product in Fourier space:
F(K,)==F(Q)/ F(VT), F being the radial Fourier transform.
Thus, given any set of data, insofar as the turbulent heat flux
QO and the external thermodynamic forces are known, one
can straightforwardly compute the (Fourier transform of)
kernel F(KC,).

To illustrate this idea, we performed this procedure on a
vast sample of simulation data, encompassing significantly
different plasma parameters. For an up-front comparison
with local transport models, the quantities below are both
flux-surface averaged and radially averaged over the central
half of the simulation domain, as is the case for the normal-
ized temperature gradient R/L;—known to quantify the
strength of the turbulence drive: Q« (R/L;—5.9)"? [27]. We
scan (i) the importance of SOC features while scanning this
key control parameter from weak and close to marginal
(R/Ly=6.2) to moderate/strong (R/Ly=7.5) turbulence re-
gimes, (ii) the collisionality v, over one order of magnitude
in the tokamak-relevant low-collisional so-called “banana re-
gime,” from 0.05 up to 0.5. At last, the system size, param-
etrized (iii) by the dimensionless p,=p;,/a number spans
from today’s smallest tokamaks (p,=1/128) down to tomor-
row’s largest ones (with the p,=1/512 Iter-like value). Here,
a denotes the minor radius and p; is the ion gyroradius; other
typical plasma parameters read at mid radius p=r/a=0.5:
T,=T,, e=r/R=0.17, g=1.4, and s=(r/q)dq/dr=0.78. The
safety factor ¢ is parabolic, R=Ry+r cos 6 is the major ra-
dius, € the inverse aspect ratio, 7; and 7, the ion and electron
temperatures and v, =€ >?qRyv;/vy, vy=(T/m)"? being the
thermal velocity, v; the ion-ion collision frequency. Also
vp=rdE,/rB) is the EXB shear rate. Typically, the
p,=1/256 simulation with GYSELA involves over
60 10° grid points on a half-torus high-resolution
(r.0,¢,v,u)=(512,512,128,128,16) mesh and the
p.=1/192 simulation with XGC1 involves over 13 10°
markers. The results are summarized in Fig. 1.

As the first remarkable feature from Fig. 1, (i) a universal
pattern seems to arise, despite the widely different underly-
ing plasma conditions. A generic exponential form
L., exp(—Alk,|?) can indeed be tailored in each case to best
fit the data, k, denoting the radial wave vector, normalized to
p; at mid radius. The Fourier transforms are performed be-
tween 0.35=p=0.65 after temporal average over a collision
time. At this point, v and A are free parameters: y controlling
the shape of the fit, A its width. A set of optimal (y,A) pairs
[e.g., in the case p,=1/512, pairs between (y,A)=(0.9,18)
and (1.1,24)] may be found to equally well fit the data.
Interestingly, in any case, 0.8<<y< 1.2, readily implying
that (ii) the kernel K, is a Lévy distribution with index 7.
This result is especially attractive since Lévy distributions
are characterized by a divergent second moment (infinite
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FIG. 1. (Color online) A Cauchy-Lorentz distribution robustly
fits the kernel F(K,) throughout a wide span of parameters.

variance), making them choice candidates for modeling non-
locality.

At this point, let us strongly emphasize on the fact that
finding the kernel K, to be of Lévy type appeared self-
consistently, as an outcome of our procedure and that no
preconceived hypothesis has led us to this conclusion. The
current study, based on the self-consistent fluxes from
GYSELA or XGCl, is strongly different in essence to proce-
dures such as, e.g., those in Refs. [9,23], based on test par-
ticle following in a prechosen Lévy-like nondiffusive formal-
ism. For the sake of simplicity, we now (iii) choose to
discriminate among all optimal (y,A) pairs by setting y=1.
This choice has several advantages: with limited loss of gen-
erality, it allows for physical intuition while remaining fully
analytic. As a special case of Lévy distributions, the y=1
case is trivially Fourier invertible, its inverse being the well-
known Cauchy-Lorentz distribution. Thus, /C, in real space
now has the attractively simple analytic expression (A being
constant—see below):

A A2

K(r,r')=——5———.
AArr’) (A2 + |r=r'?

2)

As the Lorentzian width, parameter A may now further be
interpreted as a radial influence length: a transport event hap-
pening at location r can drive a flux up to a distance A from
this event. One can now readily see that A does indeed take
over a special relevance to assess the question of locality vs
nonlocality: the larger A, the stronger the nonlocality. As we
now emphasize, A is found to be too large to allow recon-
ciliation with local approaches: A> ¢, the turbulence auto-
correlation length.

For each simulation, the A values are straightforwardly
evaluated as described above, by fitting F(K,) to £;. This
analysis in Fourier space provides both the form of the ker-
nel and a first estimate of the kernel width A. To further
buttress our argument, cross-check of these latter values has
been performed in real space while minimizing the quantity:
|02, ~[K,(r,r)VT(r")dr' |2, where Qy,, denotes the
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FIG. 2. (Color online) The “influence length” A is compared to
the turbulence autocorrelation length €, the avalanche size and the
“E XB staircase” width between the jetlike structures in Fig. 3
(solid symbols, GYSELA; open symbols, XGC1).

simulated turbulent heat flux and X, is given by Eq. (2).
Through this minimization process, an optimal pair (A,A) is
found for each simulation. When volume-averaging the
turbulent heat flux, the issue of the nonlocality of kernel /C,
is washed away and A—the strength parameter—scales
as expected from the weak turbulence scaling: (i)
X" o 8¢, the turbulence intensity, and (ii) transport near
marginality is expressed [27], in the spirit of phase transi-
tions, in terms of a critical threshold and critical exponent:
X" (R/Ly—R/ L)% with R/L;.=59 and a=1/2. As a
result, A o<(5¢?),((R/Ly),—R/ Ly )"

Regarding A—the nonlocality parameter—its values, re-
ported in Fig. 2, are (i) in close agreement (within 10%) with
the direct estimates from Fourier space and are (ii) meso-
scale: well below the system size a, yet well above the tur-
bulence autocorrelation length: €.<<A<a. This length €,
takes on a special relevance in local-like models; a similarly
defined “influence length” would indeed range in these mod-
els from the ion Larmor radius p; up to €. Throughout the
whole range of plasma parameters, as shown in Fig. 2, the
influence lengths A estimated from Egs. (1) and (2) are well
beyond the correlation length of the fluctuations €, i.e., what
one would expect from local models. If we further recall that
IC, may equivalently be described by a second moment di-
vergent Lévy distribution, reconciliation of this data with
local or quasilocal models can only appear as fortuitous.

On the grounds of this difficult reconciliation, any trans-
port model should endeavor to encompass the possibility for
a nonlocal, nondiffusive action at a distance. A prominent
manifestation of action at a distance in plasma turbulence are
the commonly observed, intermittent, large-scale heat ava-
lanches; in that spirit, the typical avalanche size—
comparable to the tail in the autocorrelation function C,—is
compared in Fig. 2 to the kernel width A for each simulation.
Close agreement is found, which interestingly grounds this
intuitive nonlocal influence length A—self-consistently ob-
tained from actual heat fluxes—to the oft-invoked physics of
self-organized near-critical transport, featuring long tails in
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FIG. 3. (Color online) Corrugations of the mean temperature
profile (averaged over V;l) correlate well with dynamically driven
steady-standing E X B sheared flows which self-organize nonlin-
early in a jetlike pattern: the “E X B staircase.”

C,, 1/f-type spectra [25,26], subcritical transport [27,25] and
Hurst exponents of order unity [27].

Avalanches are often thought of as scale invariant; having
this intrinsic “nonlocal length” saturating at mesoscale A
<a for large enough systems (1/p,=256) is a remarkable
manifestation of self-organization. Elucidating the mecha-
nisms whereby this scale emerges is beyond the scope of this
Letter. However, as a salient footprint of this influence length
on the flow structure, strongly organized and persistent
E X B sheared flows emerge and organize the turbulence into
radial domains (Fig. 3, inset). The typical size of these do-
mains (the spacing between the “jets”) is shown as the
E X B staircase width in Fig. 2; it also is in remarkable
agreement with the avalanche size and the kernel influence
length A, reflecting the surprising tendency of the stochastic
avalanche ensemble to self-organize in a jetlike pattern: few
avalanches do indeed exist on scales larger than A. Hence,
any proposed mechanism will have to account for arresting
the upscale of nonlocality to the system size and the emer-
gence at this mesoscale A of a jetlike pattern of coherent
structures of alternating sign: the “E X B staircase,” see Fig.
3, which we name after its planetary analog [28].

Note that the location of these jets does not seem to be
tied to rational values of the safety factor g, as commonly
emphasized. As a new perspective, one may ask whether,
e.g., in such monotonic g-profile plasmas, the location of
these jets could favor a transport barrier to nucleate.

A bigger picture starts to emerge, summarized in Table I,
in which self-organization is present at all scales yet mani-
fests itself differently at different scales; its most prominent
feature being arguably the dynamical emergence of the me-
soscale A: at scales smaller than A, transport is scale-
invariant, avalanche-mediated, nonlocal and nondiffusive; at
scales larger than A, few genuinely scale-free avalanches ex-
ist; rather, strongly coherent and persistent flows organize the
turbulence into a jetlike pattern, the E X B staircase. The sys-
tem may thus either be seen as scale-invariant, nonlocal,
nondiffusive (fractal or self-similar) on some scale or,
equivalently, strongly organized on some other. Further dis-
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TABLE 1. Turbulence-induced mesoscale A delineates the large-
scale organized flow pattern from small-scale avalanching.

ion Larmor gyroradius p;
8y pi scale-free, non-local,

A s
turbulence autocorrelation length £, avalanche-mediated
A dynamics
kernel width A = ‘influence length’

~ avalanche length
~ ‘E x B staircase’ width
A (large systems)
temperature gradient length L

self-selected
meso-scale dynamics

persistent, jet-like
organised E x B
structures

A
system size a (simulation box)

cussion of the E X B staircase, especially through discussion
of the physical mechanism which sets the jet spacing—for its
connection to mean flow shear, see Ref. [27]—is beyond the
scope of the present paper and will be reported elsewhere.

So far, the heat flux Q(r,r) has been temporally averaged
over a collision time; we thus only addressed the spatial
question of the nonlocal, nondiffusive (non-Gauss-Markov)
behavior of Q. An equally interesting question is to now
address its Markov (temporal) counterpart; essentially, two
modeling choices are here possible:

Q(r,t):—fdr’lC,(r,r’)J dt'IC,(r' ,t,t' YV T(r',t"), (3)

Q(r,t):—ffdr’dt’IC,,t(r,r’,t,t’)VT(r’,t’). 4)

Equation (3) is a straightforward follow-up from Eq. (1): K,
may still be given by Eq. (2) while K, is now the unknown.
Inversely, Eq. (4) is its generalization, the convolution theo-
rem being applied to the 2D (radius, time) Fourier transform
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of K, . Both approaches have been investigated, giving simi-
lar conclusions. First, focusing on the formulation in Eq. (3),
K, is simply evaluated while either looking at (i) a definite
radial position or (ii) averaging over a radial domain. What-
ever the chosen position or the radial domain, no universal
feature as in Fig. 1 could univocally be extracted from the
available data. A similar conclusion holds when focusing on
the formulation in Eq. (4), either looking at selected &, values
or averaging over a selected domain in wave vector space.

In summary, (i) a simple, systematic, constructive and
self-consistent procedure is proposed to quantify nonlocal,
nondiffusive behavior based on the use of the convolution
theorem. Fluxes are expressed as generalized heat transfer
integrals for which (ii) an operational form is derived,
through the finding of a universal Lévy-type kernel X,—with
no preconceived hypothesis regarding the nature of the heat
transport. A strong (iii) nonlocal, nondiffusive spatial behav-
ior is found, stemming from the self-organized, avalanche-
mediated transport. As a prominent feature of this self-
organization, (iv) the dynamics is crucially determined
through the emergence of a mesoscale—A—which can alto-
gether be interpreted as the kernel influence length, the ava-
lanche size and the EXB staircase width. Scale-free
avalanche-dominated nonlocal dynamics is found at sub-A
scales; inversely, strongly organized, persistent jet-like pat-
terns of E X B flows dominate above this mesoscale. At last,
(v), the available data does not allow to conclude on the
possibility of non-Markovian (memory) effects.
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