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The influence of the initial state on the turbulence and transport is addressed in collisionless, global,
and full-f gyrokinetic simulations solving both the equilibrium and the fluctuations. For two strongly
differing initial states, it is found that the steady turbulent regime exhibits nearly identical statistical
properties. This result is in marked contrast with the claim of different final states. In fact, a long
transient with very different properties finally evolves towards the same turbulent regime for long
simulation times. When the initial state is a local Maxwellian, i.e., constant on flux surfaces, a
large-scale sheared electric potential develops on short time scales to compensate for the vertical
curvature and grad-B drifts. We predict analytically �i� the temporal dynamics at short times of this
electric potential, �ii� its poloidal structure, and �iii� its saturation time. All agree well with
numerical simulations using the GYSELA code. The impact on the transport is twofold, as compared
to the canonical initial state, where f only depends on the motion invariants: �i� the turbulence is
delayed due to a weaker effective growth rate, �ii� the same transport level is obtained at long times
and the turbulence exhibits nearly identical statistical characteristics. In agreement, the electric
potential of these two cases has the same magnitude despite very different transients.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2904901�

I. INTRODUCTION

A reliable prediction of the turbulent transport is of ut-
most importance in fusion devices. It is known to strongly
depend on the interplay between microturbulence and large
scale flows. The major importance of a correct treatment of
the zonal flows has been widely recognized.1 Direct numeri-
cal simulation using gyrokinetic modelling is now able to
address such issues. In collisionless models, an important
question has emerged on the choice of the initial state. Fol-
lowing Ref. 2, we will distinguish between the local and the
canonical Maxwellian initial distribution functions. The lat-
ter, since it is a function of the motion invariants only, is an
equilibrium solution of the gyrokinetic equation. Conversely,
the former is not, and depends on the label of the flux sur-
face.

When starting with a local Maxwellian, several
authors,2–5 including us, reported on the spurious generation
of large-scale sheared electric flows which hinder the turbu-
lent modes and are likely to quench the onset of the turbu-
lence. This paper will show that this result, correct at short
simulation times �twice the linear growth, at most�, breaks
down in a fully developed steady turbulent state �at least five
to ten times the linear growth�. This state can be reached due
to an improved coupling to two thermal baths located at the
radial boundaries, and which provide the free energy for the
system. In such a state, the statistical properties of the turbu-
lence are independent of the choice of the initial state; no
memory of its previous history is held within the system.
More precisely, the transport level is the same since similar
temperature profiles and turbulent heat flux are obtained. The
turbulence itself also exhibits the same statistical properties,
as, e.g., Fig. 8 will exemplify below.

On the other hand, when starting with a canonical Max-
wellian, no such flows are generated and the turbulence de-

velops first hand. It is acknowledged that a proper definition
for an initial equilibrium state is a crucial piece of physics
for gyrokinetic linear studies. Without flux-driven gyroki-
netic simulations, it also avoids a detrimental delay since �i�
long transients are avoided and �ii� profile relaxation in den-
sity and temperature is reduced. These two points are espe-
cially important for a new generation of global and full-f
codes like the GYrokinetic SEmi-LAgrangian �GYSELA�
code6,7 since �i� large scale flows are intrinsically modelled
and �ii� the mean profiles can evolve freely.

The main issues this paper will address are twofold: �i�
how does the system evolve from its nonequilibrium initial
state to an equilibrium and �ii� how does this evolution to-
wards an equilibrium impact the onset of underlying insta-
bilities, and ultimately the turbulent transport. The first point
is crucial to discriminate between instability-driven fluctua-
tions and time evolution towards the equilibrium. The second
axis clarifies whether a nonequilibrium initial state can dura-
bly impact the dynamics of the turbulence itself. After a
quick overview in Sec. II of the model we solve, we analyti-
cally predict in Sec. III the temporal dynamics, the poloidal
structure, and the saturation time of the flows due to a non-
equilibrium initial state. These results are successfully com-
pared to dedicated numerical simulations with GYSELA. The
saturation processes for these flows are discussed in Sec. IV
and their nonlinear impact on the transport and the turbu-
lence is reserved for Sec. V. A summary and discussion of
the important results can be found in Sec. VI.

II. A GYROKINETIC COLLISIONLESS MODEL
FOR THE ITG INSTABILITY

The model equations in GYSELA allow us to study colli-
sionless turbulent transport driven by the ion temperature
gradient �ITG� instability. In its present version, the turbu-
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lence is due to the fluctuations of the electrostatic potential
�. The code is also written in a simplified toroidal geometry
where magnetic surfaces are circular and concentric. The
magnetic field writes B=Bb, where b is the unit vector along
the field lines, b=1 /�1+ �r /qR�2�ê�+r / �qR�ê��, ê� and
ê� the unit vectors in the two periodic directions, respec-
tively, toroidal and poloidal and B=B0R0 /R. Quantities with
a subscript 0 are computed at the magnetic axis �r=0�,
R=R0+r cos � refers to the major radius and q�r�
=B ·�� /B ·�� is the safety factor profile. The GYSELA code
is based on a semi-Lagrangian scheme,6 applied to solve the
gyrokinetic equation,

�t f + �vE + vD� · �f + v���f + dtv��v�
f = 0, �1�

where � refers to the direction of b, f is the gyroaveraged
distribution function, and vE is the electric drift velocity,

vE =
B � ��̄

B2 . �2�

Also, vD refers to the curvature and grad-B drifts and in the
low � approximation reduces to

vD =
mv�

2 + �B

eB

B � �B

B2 , �3�

where m is the mass of the ions and �=mv�
2 /2B is the adia-

batic invariant. For simplicity, in the remainder of this paper,
we will generically call vD the curvature drift. The bar over f
or � refers to the gyroaverage operation, �̄�J ·�, where J
is the gyroaverage operator,

J · � =� d3k	�
0

2� d�

2�
eık·�s
�̂keık·x, �4�

where x is the position of the guiding centers, �̂k is the
Fourier transform of �, 	s is the ion gyroradius, and � is the
gyration angle. Given that k ·�s=k�	s cos �, the gyroaverage
operator reduces in Fourier space to a multiplication by the
Bessel function of first order J0�k�	s�. In GYSELA, it is re-
placed by its Padé approximation,

J0�k�	s� �
1

1 + � k�	s

2

2 . �5�

This is a crude approximation where sub-Larmor scales are
strongly overdamped, as discussed in Ref. 8. However, it has
the advantage of being valid when k�	s
1 and keeps J0

finite in the opposite limit k�	s→�. Also, the evolution
equation of the parallel velocity dtv� can be expressed as

mdtv� = − ���B − e���̄ +
mv�

B
vE · �B , �6�

where the parallel gradient �� reads

�� =
1

R
	�� +

1

q�r�
��
 . �7�

It is worth noticing that Eq. �6�, up to the first order in
	�=	s /a, can be recast into

mdtv� = − �� � B + e � �̄� ·
B�

B� , �8�

where we have introduced the small tokamak parameter 	�, a
the tokamak minor radius, and B� the classical modified
magnetic field, B��B+ �mv� /e�� �b whose norm reads
B�=B+ �mv� /e�b ·��b. Up to this limit, the whole model
equations have been checked to be fully consistent with the
general gyrokinetic theory.9 Self-consistency is achieved
with use of the quasineutrality equation,

e

Te�r�
�� − �00� −

1

neq�r�
�� · 	neq�r�

B0�ci
���


=
2�B

mneq�r��0

�

d��
−�

+�

dv�J · �f − f init� , �9�

where �00���d�d� /4�2� accounts for the magnetic flux-
surface average. The electronic response is adiabatic,

ne /neq=e��−�00� /Te�r�. The ion cyclotron pulsation is �c,
f init refers to the initial gyroaveraged distribution function for
the ions and initially, the electric potential � is a perturba-
tion. The Laplacian in the left-hand side comes from the
Taylor expansion of the double gyroaveraged operator10 and
validly describes a quasineutral plasma in the k�	s�1 limit.
Such an approximation is consistent with the Padé approxi-
mation of Eq. �5�. Obviously, small scales should be treated
more accurately when nonadiabatic electrons are included,
either trapped or passing. The gyroaverage operator will be
optimized in this perspective.

III. SELF-GENERATED LARGE SCALE SHEARED
ELECTRIC FLOWS DUE TO INITIAL CONDITIONS

In this section, we concentrate on the dynamics of the
plasma which occur when the initial distribution function f init

is not an equilibrium solution of the gyrokinetic Eq. �1�. The
system is initialized with the local Maxwellian, Eq. �10�,
namely f init� fLM. We write

fLM =
n�r�

�2�T�r�/m�3/2eE/T�r�, �10�

f�r,�,v�,�,t� = fLM�r,E� + 
fLM�r,�,v�,�,t� , �11�

where E stands for the total energy mv�
2 /2+�B and the axi-

symmetry of the problem imposes f to be independent of the
toroidal angle. Initially, 
fLM�t=0�=0. We call such a case
out of equilibrium. Characterizing the dynamics of such a
system essentially consists of determining the radial compo-
nent of the electric field which builds up. At vanishing elec-
tric field, an equilibrium flow along the parallel direction
must develop to balance the vertical polarization associated
with the ion curvature drift. It is analogous to the Pfirsch–
Schlüter current carried by the electrons. With a local Max-
wellian initial state which is even in v�, no such flow can
exist initially or develop on short times. The remaining pos-
sibility for the system consists of generating a large-scale
polarization flow in the poloidal plane which in turn can be
seen as resulting from a large-scale driven electric potential.
In what follows, we calculate this electric potential and give
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a prediction of the level, time growth, and saturation time of
such flows.

In this framework, at short times, 
fLM is a perturbation.
We restrict its Fourier expansion to the first modes only,
which appear to be dominant,


fLM � f00�r,E,t� + f10
s �r,E,t�sin � + f10

c �r,E,t�cos � ,

�12�

where f00 corresponds to the axisymmetric mode,
�m ,n�= �0,0�, f10

s and f10
c correspond to the sidebands,

�m ,n�= ��1,0�, m and n being, respectively, the poloidal
and toroidal mode numbers. As far as analytical calculations
are concerned, in this section, only n=0 modes are consid-
ered, which allows one to focus on the dynamics of equilib-
rium axisymmetric flows. Conversely, no such constraint is
made on the numerical results where all possible �n ,m�
modes are allowed to develop and interact. The very good
agreement between the two approaches emphasizes the cru-
cial role of the equilibrium n=0 modes. With fLM as an ini-
tial state, the quasineutrality equation is satisfied for a van-
ishing electric potential ��t=0�=0. Therefore, initially at
least, � is a perturbation; we also expand it on its first Fou-
rier modes,

��r,�,t� � �00�r,t� + �10
s �r,t�sin � + �10

c �r,t�cos � . �13�

No ordering here is presupposed between, respectively, f00,
f10

s , f10
c , and �00, �10

s , �10
c . The small parameter � of this

study is

� = max� f00

fLM
,

f10
s

fLM
,

f10
c

fLM

 �14�

which will be shown to scale like 	�. The sidebands f10 build
up because of the polarization due to the curvature drift. It
follows that at short times, Eq. �1� writes at leading order in
�,

�t f + vD · �f = 0. �15�

As far as analytical calculations are concerned, in the re-
mainder of this section, gyroaveraged quantities will be as-
sumed to be equal to the quantities themselves, namely,
J� Identity. Such a simplification is valid in the limit of
large gradient lengths with regard to 	s, as in the case of the
present analysis. Equation �15�, coupled to the quasineutral-
ity equation �9�, enable us to calculate the time evolution of
both the perturbed distribution function and the electric po-
tential. The detailed calculation can be found in Appendix A.
It is possible to selectively derive the dynamics of each per-
turbed part, given its parity in the poloidal angle. The main
equation on the distribution function which governs the dy-
namics of the system at short times is

f10
s =

vdfLM

Lp
t �16�

with vd= �mv�
2+�B� /eR0B0, Teq /eB0=	scs and cs

2=Teq /m.
For what follows, we note LX

−1��rX /X and �X��rrX /X. At
last, Lp

−1�Ln
−1+LT

−1�E /Teq−3 /2�. When coupled to the
quasineutrality equation, this latter equation, yields the time
evolution of �10

s at first order in 	�,

e

Teq
�10

s � �10
s t , �17�

�10
s =

2	scs

R0Lp
. �18�

The detailed calculation shows that Eq. �17� is the key equa-
tion which allows us to calculate the time evolution for all
the other perturbed quantities. The vertical charge polariza-
tion due to the curvature drift is the driving effect which
explains the growth of an electrostatic potential at short
times. Coupling between �10

s and f00 �resp. f10
c � generates the

axisymmetric �resp. cosine� component of the electric poten-
tial,

e

Teq
�10

c � �10
c 2t2, �19�

�10
c 2 =

�	scs�2

rR0LpLn
, �20�

e

Teq
�rr�00 � �00

2 t2, �21�

�00
2 = −

7

4
	 1

Ln
+

4

7LpLT
+

12

7Lp
� 1

Lp
+

1

r

 +

16

7
�p − �n


�� cs

R0

2

. �22�

Equations �17�, �19�, and �21� are predicted to characterize
the dynamics of the system in response to the vertical polar-
ization drift.

These analytical predictions can be checked with
GYSELA. The code is initialized with the local Maxwellian
and solves the full self-consistent problem, Eqs. �1� and �9�.
The temperature gradient is taken well below the ITG thresh-
old to prevent the onset of any instability. The case above the
threshold is detailed in Sec. V. Figure 1 compares the full
numerical solution to the analytical predictions,
Eqs. �17�, �19�, and �21�.

8 8

FIG. 1. �Color online� Time evolution of the transient electric potential
when the plasma is initially out of equilibrium. �Solid line� analytical
estimation of the growth rate; �dotted line� the complete simulation with
GYSELA �	�=1 /400�.
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Those predictions are twofold: �i� on the temporal
growth of �00, �10

s , and �10
c and �ii� on their respective am-

plitudes at the first saving time step �t. On the one hand, the
slopes which capture the time exponent agree remarkably
well until approximately 700�c

−1. At this time, the electric
drift and the parallel dynamics are brought into play. The
forthcoming Sec. IV will quantitatively discuss this point.
On the other hand, the prediction on the amplitudes at
�t=15�c

−1 cannot be straightforwardly compared; a mis-
match does exist for numerical reasons between the analyti-
cal prediction of the initial amplitudes and their numerical
counterparts. Appendix B details the following result: this
mismatch remains well below the accessible numerical error
bars. Although a direct test of the prediction on the ampli-
tudes ��10

s �, ��00
2 �, and ��10

c 2� in Eqs. �17�, �19�, and �21� is
difficult with the present discretization, it is possible to check
their parametric dependencies. Those equations give a strong
dependence with 	�. Equations �17� and �21� predict that

��10
s �, ��00

2 � � 	�
2 �23�

and, similarly, Eq. �19� predicts that

��10
c 2� � 	�

4 . �24�

Five simulations were run, which were initialized with the
local Maxwellian and well below the ITG instability thresh-
old, see Fig. 2. The only varying parameter was 	� in the set,
	�= �1 /800,1 /400,1 /200,1 /100,1 /50�. The expected para-
metric dependencies in Eqs. �23� and �24� are indeed very
well recovered numerically.

The physical picture underlying those results can now be
drawn. As expected, the first dominant term at short times is
the up-down �10

s dipolar electric field. It is linearly driven in
time by the up-down asymmetry of the vertical curvature
drift. The cosine component is orders of magnitude smaller.
Quasilinear coupling of �10

s to f00 generates via the quasi-
neutrality equation an axisymmetric flow associated with
the �rr�00 term. Differently speaking, a poloidal velocity
vpol�d�10

s /dt cos � builds up in time to enforce quasineutral-
ity and is responsible for large scale sheared �00 flows in the
poloidal plane.

IV. SATURATION PROCESSES FOR THE POLOIDAL
ELECTRIC FIELD

The strong dependencies with 	� contained in Eqs. �17�,
�19�, and �21� do not mean that these flows remain weak.
Indeed, an upper boundary of the time growth is given by the
time �sat at which either the parallel dynamics or the electric
drift velocity are sufficient to counterbalance the charge po-
larization. The five simulations used for Fig. 2 also show that
the saturation level of �00 �close to 0.17Teq /e� remains un-
changed for each value of 	� in the five runs. Therefore, to
remain consistent with Eq. �23�, �sat also has to scale with 	�,
�sat�	�

−1. So, in the end, the saturation level of these polar-
ization flows remains significant, whatever the value of 	�.

Two physical mechanisms can be invoked to keep the
radial electric field from growing, respectively associated
with the electric drift and the parallel dynamics. It is
well known that without collisions, an axisymmetric �00

flow is nonlinearly damped towards a nonvanishing residual
value.11 It saturates since nonlinearly coupled with Landau
damped n=1 sidebands and oscillates at the geodesic acous-
tic mode �GAM� frequency,12 �GAM��7 /4+� vT /R. Here,
�=Te /Ti�=1� for adiabatic electrons and vT is the electron
thermal velocity. We plot in Fig. 3 the Fourier spectral analy-
sis of �10

s , �00, and �10
c . As expected, they are peaked at the

�GAM frequency. The width of the peaks comes from the
finite time resolution available in this simulation. This piece
of physics appears as soon as the electric drift is included in
the model, with a characteristic time �E,

�E � �GAM
−1 . �25�

And as expected, we find �E�	�
−1. Details of the calculation

of �E are given in Appendix C. At 	�=1 /400, �E�670�c
−1,

which is in good agreement with Fig. 1. At that time, the
electric potential starts indeed to depart from the power law
predicted by Eqs. �17�, �19�, and �21�.

The second saturation mechanism for the electric poten-
tial depends on the parallel dynamics. It consists of building
up a parallel flow which will compensate the ever existing
polarization due to the curvature drift. No further electric
field is then required to satisfy quasineutrality. Appendix D
contains the detailed calculation. When introducing the par-
allel dynamics, Eq. �16� is modified into

FIG. 2. �Color online� Dependence with 	� of the amplitudes of �00, �10
s

and �10
c , when initial state is fLM. Values are taken at �t=15�c

−1.

FIG. 3. �Color online� Fourier time spectrum analysis of �00, �10
s , and �10

c .
Frequencies are normalized to the GAM frequency �	�=1 /400�.
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f10
s =

vdfLM

Lp
t − v�

�B

Teq

r

qR2 fLMt . �26�

The first term is due to the inhomogeneity of the magnetic
field and triggers the growth of the electric potential already
discussed in the previous section. The second term is new,
due to the parallel dynamics. Importantly, at short times, it
does not modify the dynamics of the electric potential dis-
cussed in Sec. III. Indeed, one may recall that in order to
calculate �10

s —thus also �00 and �10
c —the sine component

f10
s is integrated over phase space. Since the new term in Eq.

�26� is odd in v�, it does not contribute to �10
s . Nonetheless,

because of this symmetry-breaking term in v�, the distribu-
tion function keeps departing from a local Maxwellian. Now,
when keeping the second order terms in �, a new term—even
in v�—is added to Eq. �26�. With this new term detailed in
Appendix D, an important new piece of physics is added to
the model, allowing for a parallel flow to build up. The back
reaction of this flow on the level of generated electric poten-
tial can be quantified. It is found that the introduction of the
parallel dynamics results in a t3 correction term for �10

s �and
a t4 correction term for �00 and �10

c �,

e�10
s

Teq
�

2	scs

R0Lp
t −

2	scs

R0

Teq

mq2R2� 1

Lp
+

1

LT

t3. �27�

The quadratic corrections in time for �00 and �10
c are

straightforwardly calculated from the above expression. The
first term describes the growth of the electric potential at
short times as discussed in Sec. III. As expected, the negative
sign in front of the second term shows that the development
of a parallel flow leads to a decrease of this growth. The
perturbative analysis of the latter section breaks when the
cubic term balances the linear term. It gives an estimate for
the characteristic building-up time of the parallel flow,

�� �
qR

vT
�1 +

Lp

LT
, �28�

where vT is the thermal ion velocity. At 	�=1 /400,
�� �2160�c

−1, which is a very good estimate of the saturation
time of the flows, as exemplified in Fig. 1. Its necessary
parametric dependence with 	� is also right since indeed
�� �	�

−1.

V. GENERIC STEADY STATE OF TURBULENCE

A convenient choice for an equilibrium solution of the
gyrokinetic equation is provided by the local Maxwellian in
which the radial coordinate �=�0

rr�dr� /q is replaced by an

effective coordinate �̄, function of the motion invariants.2–5

This choice is referred to as the canonical Maxwellian,

fCM =
n��̄�

�2�T��̄�/m�3/2
e−H�E,r�/T��̄�e+e���̄�/T��̄�, �29�

where H=mv�
2 /2+�B+e� is the total energy. In particular,

�̄� P� /e=��r�+mRv� /e is a function of P�, which explic-
itly depends on the parallel velocity. The “density” n and
“temperature” T in Eq. �29� are no longer radial profiles, but
functions of the motion invariant P�. Such a class of distri-

bution functions intrinsically allows for the existence of a
parallel flow to counterbalance the polarization drift. In

GYSELA, �̄ is replaced by an effective radial coordinate r̄,
with the dimension of a length, derived from this third in-
variant P�,

r̄ = r0 −
q0

r0
���r� − ��r0�� −

mq0

eB0r0
�Rv� − R0v�� , �30�

where quantities with label “0” are defined at half-radius of
the simulation box. The last term in Eq. �30� is by definition
a motion invariant,

v� = Sign�v��� 2

m
�E − �BmaxY�E − �Bmax� �31�

with Y the Heaviside function and Bmax the maximum of the
magnetic field on the whole simulation box. So as to mini-
mize the parallel flow, v̄� in Eq. �30� is chosen such that
�Rv� −R0v̄�� scales like 	�. It is important to notice that even
though the difference between r and r̄ is small, it carries a
new piece of physics which intrinsically allows for a parallel
flow; the fact that the guiding-centers deviate from a mag-
netic field line by a few Larmor radii �a banana width at
most�. The canonical initial state naturally ensures the fluid
force balance equation Er+U�B�−U�B�=�p / �ne�. Espe-
cially, the canonical initial state gives the correct neoclassical
poloidal velocity in the collisionless limit: in the early linear
phase, U��0.7�T which is very close from the theoretical
asymptotic neoclassical value U��0.6�T �see Fig. 1 in
Ref. 14�.

Two simulations at 	�=1 /200 and with the same initial
temperature gradient R /LT�12—well above the threshold—
have been compared up to the nonlinear regime. They only
differ by their initial distribution function, either canonical or
local Maxwellian. These global simulations used fixed
boundary conditions with �=0 enforced at the radial bound-
aries, periodic boundary conditions in �� ,��, and no-
perturbation conditions in the nonperiodic r and v� directions
for the distribution function. Two thermal baths lay at
r�0.2a and r�0.8a, complemented with two radially local-
ized diffusive regions inside the simulation box �see Fig. 4�
in which a source term S�r�=�r�D�r��rf� is added. In these
buffer zones, the gyrokinetic equation reads df /dt=S�r�. The

FIG. 4. �Color online� Initial and final temperature profiles when starting
from the canonical and the local Maxwellian �initial temperature is the
same�. The ad hoc radial diffusion coefficient is nonzero in buffer zones
only, at r�0.28a and r�0.72a.
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two diffusive buffer regions at the edge boundary layers are
essential to reach a quasisteady state. Indeed, they lead to an
effective coupling of the system with the radial boundary
conditions where the temperature is prescribed. The effect of
the diffusive buffer zones is twofold: �i� they damp the fluc-
tuations towards zero, consistently with the boundary condi-
tions, and �ii� they allow for the diffusive exchange of energy
between the thermal baths and the system. It is worth notic-
ing that in such a configuration, the injected energy flux in
the system is not constant in time; it is a priori unknown and
is an output of the simulation. Alternatively, one could think
of simulations at constant �or at least controlled� incoming
energy flux. In this case, the temperature freely evolves at
one of the radial boundary conditions at least. Such situa-
tions would be close to so-called “flux-driven” fluid
simulations.13

In both nonlinear simulations, we calculated 3200 time
steps �t�5–10�c

−1 on half a torus. The grid mesh is regular
and consists of �2�109 grid points in the 5D phase space,
more precisely �r ,� ,� ,v� ,��= �256,256,128,32,8�. A
broad spectrum of low amplitude, random phasing, toroidal
and poloidal perturbation modes is added to these initial
states. For convenience, we will call the total amount of par-
allel flow across the midplane �at poloidal angle �=0� the
following quantity: �dr��dv�v�f �. Figure 5 plots this quantity
as a function of time �the absolute value enables to take into
account Pfirsch–Schlüter-type flows whose average over a
flux surface would vanish by symmetry�. As expected, in the
noncanonical case, a parallel flow builds up from nothing on
the typical time ��, Eq. �28� �inset of Fig. 5�. It saturates at
the same level as the initial magnitude in the canonical case;
both systems end up with a comparable level of parallel
flows. The quantity �dr��dv�v�f � provides an estimate of the
parallel flows, including up-down asymmetric ones.

At shorter times than ��, the strong sheared poloidal
flows discussed in Sec. III play a dominant role. Their influ-
ence on the turbulence is shown in Fig. 6. The time evolution
of the heat flux averaged over the central 70% of the simu-
lation box—corresponding to the width of the global

mode—is plotted for the two cases. The turbulent transport is
delayed when starting from an initial local Maxwellian. As
illustrated in the inset of Fig. 6, the shear flow turns out to
reduce the effective growth rate, by a factor of about 35%.
Such an effect qualitatively agrees with the theoretical
predictions,15–17 although the reduction appears to be much
smaller than expected. The turbulence overshoot at the end
of the linear phase is also less pronounced. Note that the
system is almost in a statistical steady state, in the sense that
the mean temperature gradient relaxes adiabatically as com-
pared to the fluctuations. Indeed, it has relaxed �i� similarly
for the two different initial states and �ii� less than 33% for
the canonical case and 34% for the noncanonical case be-
tween 10 000 and 25 000�c

−1, while the heat flux has re-
mained fairly constant. Nonetheless, the temperature profile
keeps on relaxing at longer times, as illustrated in Fig. 6. The
incoming energy flux should be maintained in order to avoid
such a long-term relaxation in global and full-f simulations.

After the turbulence overshoot �for times larger than 2 to
3���, the heat flux levels for the canonical and noncanonical
cases are comparable. This global result does not allow for a
straightforward prediction on the saturation levels of the
electric potential in both cases. Figure 7 shows that the levels
of the axisymmetric flow ��00� and the root mean square
�RMS���
�2��,� in the two cases are alike over the whole
nonlinear phase. This result is not yet fully understood. Just
as well, the statistical properties of the turbulence are almost
identical in both cases. Figure 8 compares the time and radial
correlation functions calculated in the fully developed turbu-
lent state, since the end of the overshoot �from 5000 to
25000�c

−1�. The typical size of a turbulent eddy is indepen-
dent of the initialization and of the order of 6	s. Similarly,
the correlation time is also independent of the initial state
and of the order of 800�c

−1.
In the collisionless regime, provided the inevitable pro-

file relaxation is very slow �no flux-driven conditions�, after

FIG. 5. �Color online� Time evolution of the total amount of parallel flow
across the midplane. Note the presence of the absolute value in the definition
of the “total amount of parallel flow” within the integral which allows us to
include Pfirsch–Schlüter-type flows, which would otherwise vanish by sym-
metry. The inset is a zoom at early times �	�=1 /200�.

FIG. 6. �Color online� Time evolution of the heat flux and the temperature
gradient length in both canonical and noncanonical cases. The inset is a
zoom at early times, its y-axis is in log scale �	�=1 /200�.
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2 to 3 times �� the turbulence develops and washes out very
efficiently any possible memory the plasma could retain of
its initial state.

VI. TRANSIENT INITIAL STATE MEMORY:
DISCUSSION AND CONCLUSION

Let us start from a linearly unstable initial state in which
a small initial perturbation exponentially grows in time. Two
generic and very different cases can be considered. First of
all, �i� the initial state is a �quasi� stationary state which
evolves on a time scale �s which is large as compared to the
inverse of the linear growth rate �lin

−1 of the instability,
�s�lin�1. This case is exemplified by the choice of the ca-
nonical Maxwellian, Eq. �29� as an initial distribution func-
tion. Secondly, �ii� the initial state is nonstationary and its
characteristic self-organizing time �s is comparable to �lin

−1,
�s�lin�1. The local Maxwellian, Eq. �10�, is a representative
initial state for �ii�. In this latter case, to the instability-driven
evolution of the plasma superimposes the self-organizing dy-
namics due to the nonequilibrium initial state. A priori, this
can lead to very different dynamics as compared to case �i�
in which the evolution of the plasma is only due to the in-
stability.

Transiently indeed, sheared poloidal flows �including
zonal flows� are generated in the collisionless regime by the
nonstationary local Maxwellian initial state. They develop
over the whole simulation box on time scales comparable to
the ITG growth rate. Such flows are several orders of mag-
nitude smaller when the initial state is a stationary canonical
distribution function. This paper clarifies the underlying
physical mechanism: these flows emerge as a result of the
vertical plasma polarization which is due to the inhomoge-
neity of the magnetic field. The poloidally sinusoidal �resp.
axisymmetric� component of the electric potential grows lin-
early �resp. quadratically� in time. Such electric flows satu-
rate due to both the onset of GAMs and the development of
parallel flows, analogous to the Pfirsch–Schlüter current.
These latter flows efficiently counterbalance the vertical
charge polarization. We analytically predict their symmetries,
time evolution, initial amplitudes �or at least their parametric
dependencies�, and saturation time up to the beginning of the
nonlinear phase �t����. These results are in very good agree-

ment with simulations. In this transient regime, the E�B
shearing rate effectively competes with the linear growth rate
of the instability and the onset of the turbulence is delayed,
as qualitatively already noticed in Refs. 3–5.

At long times though, irrespective of the choice of the
initial state, the turbulence robustly develops, with identical
statistical properties. This is in marked contrast with the
claim of different final states, depending on the choice of the
initialization. A new ingredient is necessary to understand
this difference. As expected from the ITG context, the mean
temperature gradient appears to be that crucial element. In
global simulations, the problem consists of its unavoidable
relaxation �no flux-driven conditions�. In order to minimize
it, small diffusive buffer zones at the radial edge of the simu-
lation box have been implemented in GYSELA. They effi-
ciently allow the coupling of the plasma to a free energy
reservoir, in our case modelled by two thermal baths. With
these conditions, the mean temperature gradient relaxes �i�
very slowly and �ii� identically for both the two different
considered initial states �see Fig. 6�. These results allow us to
run simulations during much larger times well above the
threshold, which leads to crucial differences as compared to
the latter works. Indeed, the more the mean temperature gra-
dient relaxes, the weaker the drive on the turbulent modes.
When the system is not coupled to an external source of free
energy, as in Refs. 3–5, this relaxation leads to a marginally
stable state on time scales comparable to the linear growth
rate. In this case, the turbulent modes are hindered and the
onset of the turbulence can be quenched. Conversely, when
the system can feed on an external source of free energy, the

FIG. 8. �Color online� Comparison of the radial and temporal correlation
lengths of the electric potential over the whole nonlinear phase in both the
canonical and noncanonical cases �	�=1 /200�.

FIG. 7. �Color online� Comparison of the levels of �RMS and of the mean
flows ��00� in both the canonical fCM and noncanonical fLM cases
�	�=1 /200�.
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turbulence keeps existing on larger times. In this case, the
turbulence is only delayed and its nature is ultimately unal-
tered; the same level of parallel and axisymmetric flows, the
same level of transport and the same correlation times and
lengths are obtained �see, respectively, Figs. 5, 7, 6, and 8�.
The shearing rate due to the axisymmetric flows �including
the zonal flows� which develop in the case of a local Max-
wellian initial state is not sufficient to quench the onset of the
turbulence. Indeed, these flows develop over the whole simu-
lation box on large radial scales, generating a large-scale
shear as compared to the typical size of the turbulent modes
and the turbulence is ultimately almost unaffected.

As gyrokinetic simulations are numerically heavily de-
manding, the choice of an initial canonical state in global
collisionless simulations is nonetheless important. Indeed, it
allows us to address the relevant physics of turbulence
growth and nonlinear saturation right from the start, avoiding
long transients. In this case, the gain in terms of CPU time
can be appreciable. Besides, the local Maxwellian case could
prevent the onset of the instability in some specific cases, if
the transient polarization electric field turns out to be strong
enough to hinder the growth of the unstable modes. This
could be all the more critical for those simulations run close
to the linear stability threshold. Such a physics is expected to
bear some similarities with the so-called Dimits upshift,
when the onset of self-generated zonal flows prevents the
development of the instability.18 In collisional plasmas, the
distribution function is forced towards a local Maxwellian
and this problem should be less marked. Still, in order to
genuinely sustain a steady turbulent state on a confinement
time, flux-driven conditions with a prescribed and controlled
heat source should be implemented.
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APPENDIX A: SHORT-TIME DYNAMICS GOVERNED
BY THE CURVATURE AND GRAD-B DRIFTS

We start with the following equation:

�t f + vD · �f = 0. �A1�

We concentrate on the leading order contributions in �. The
latter equation reads

�t
fLM = vd�sin ��rf +
cos �

r
��f
 , �A2�

where vd= �mv�
2+�B� /eR0B0. Similarly, the quasineutrality

equation, Eq. �9�, reads

�10
s sin � + �10

c cos � − 	s
2��rr� +

����

r2 

=

Teq

eneq

2�B

m
�

0

�

d��
−�

+�

dv�
fLM. �A3�

For the sake of simplicity, we assume Ti=Te=Teq. At leading
order in �, the sin � component reads

f10
s � vd

fLM

Lp
t �A4�

with Lp
−1�Ln

−1+LT
−1�E /Teq−3 /2�. We recall that LX

−1

��rX /X and �X��rrX /X. In particular, Lp is the pressure
gradient length. Similarly, the f10

c component is such that

�t f10
c �

�10
s

rB0

fLM

Lp
. �A5�

At last, the evolution equation for the axisymmetric pertur-
bation f00 reads

�tt f00 �
vd

2

2

fLM

Lp
� 1

Lp
−

�rLp

Lp
+

1

r�
+

�fLM

2R0Teq
�t��r�10

s −
�10

s

r

 . �A6�

At this stage, �10
s remains unknown. The quasineutrality

equation then allows us to explicitly solve Eqs. �A5� and
�A6�. We define �G��2�B /mneq�−�

+�dv��0
�d�GfLM. And thus,

�1� = 1 and m�v�
2� = B��� = Teq, �A7�

�vd� =
2Teq

eB0R0
and �vd

2� =
7Teq

2

e2B0
2R0

2 . �A8�

As a consequence, �E /Teq−3 /2�=0. Taking the time deriva-
tive of Eq. �A3� yields the time evolution of �10

s ,

e

Teq
�t�10

s �� vd

Lp
� =

2Teq

eB0R0

�rpeq

peq
. �A9�

Since the 	s
2��rr�10

s −�10
s /r2� term is a 	� correction to �10

s , it
has been neglected. At first order in 	�,

e

Teq
�10

s �
2	scs

R0Lp
t �A10�

with Teq /eB0=	scs and cs
2=Teq /m. Injecting the expression

of �10
s , Eq. �A10�, into Eqs. �A5� and �A6� leads to

f10
c �

fLM

rR0LpLp
�	scst�2, �A11�

f00 ���B0

Teq

fLM

2Lp
�	scs

R0

2	 2

LT
−

1

Lp
+ Lp�p −

1

r



+
vd

2

4

fLM

Lp
	 1

Lp
−

�rLp

Lp
+

1

r

�t2. �A12�

Similarly, one can obtain the evolution equations for �10
c and

�00 from Eq. �A3�,
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e

Teq
�10

c �� 	s
2cs

2t2

rR0LpLp
� =

�	scs�2

rR0LpLn
t2, �A13�

− 	s
2 e

Teq
�rr�00 �� f00

fLM
� . �A14�

The latter integral can be estimated as

e

Teq
�rr�00 � −

7

4
	 1

Ln
+

4

7LpLT
+

12

7Lp
� 1

Lp
+

1

r



+
16

7
�p − �n
� cst

R0

2

. �A15�

Equations �A10�, �A13�, and �A15�, respectively, correspond
to Eqs. �17�, �19�, and �21�. They are predicted to character-
ize the dynamics of the system in response to the vertical
polarization drift.

APPENDIX B: QUANTITATIVE ANALYSIS
OF THE DEPARTURE BETWEEN THE ANALYTICAL
PREDICTION AND SIMULATIONS

Equations �17�, �19�, and �21� are obtained after integra-
tions over phase space. In GYSELA, these integrals are calcu-
lated using cubic splines and have a typical precision �int

�10−4 in our simulations, which can be defined as the rela-
tive error between the exact solution of the full problem and
the numerical result. To explain it more plainly, let us con-
centrate on �10

s , Eq. �18�. At least three different values of it
exist, written �10

s,N, �10
s,E, and �10

s,A. The first one is given by
the numerical simulation; the second one would be the exact
solution of the full problem without any source of numerical
imprecision and the last one is the analytical prediction we
want to check �summary in Table I�. What this appendix is
going to show for �10

s is that �log �10
s,N−log �10

s,E�� �log �10
s,A

−log �10
s,E�. The same results are also found for �00 and �10

c .
Though we cannot conclude the amplitudes predicted in Eqs.
�17�, �19�, and �21� are recovered numerically, they remain
well inside the accessible numerical error bars. In Eq. �17�,
the relation

� vd

Lp
� =

2Teq
2

e2B0R0

�rpeq

peq
�B1�

is exact analytically but only approached on a numerical
point of view. When integrating over v� and �, an error �s is
generated,

e

Teq
�10

s � 	2	scs

R0Lp
+ �s
t . �B2�

This error enters the f10
c and f00 calculation,

f10
c �

fLM	scs

rLp
	 	scs

R0Lp
+

�s

2

t2, �B3�

f00 ��vd
2

4

fLM

Lp
	 1

Lp
−

�rLp

Lp
+

1

r



+
�fLM

4eR0
	�r�2	scs

R0Lp
+ �”s
 − � 2	scs

rR0Lp
+

�s

r


�t2.

�B4�

The integration of the former equation �B3� leads to

e

Teq
�10

c � � 	s
2cs

2

rR0Lp
+

�s	scs

2r
�� 1

Lp
�t2. �B5�

Let us introduce �c the error for �1 /Lp�. The first term of Eq.
�B5� can be written, �	s

2cs
2 /rR0LpLn+�c�t2 and the second,

��s	scs /2rLn+�c�t2. Thus,

e

Teq
�10

c � ��10
c ��s=0 + 	2�c +

�s	scs

2rLn

t2. �B6�

Proceeding the same way for �00,

− 	s
2�rr�00 �

Teq

eneq

2�B

m
� � d�dv�f00. �B7�

Let us define f00
�s=0 given by Eq. �B4� when �s=0. Let us

introduce �1
0 and �2

0 which represent the errors for, respec-

tively, �f00
�s=0 / fLM� and ���. Thus, Eq. �B7� reads

e

Teq
�rr�00 � � e

Teq
�rr�00�

�s=0
−

1

	s
2	�1

0 + �2
0 −

�s	scs

4rR0

t2.

�B8�

The smaller the 	� parameter, the more important those
errors. At 	�=1 /400, the mismatch between analytics and
numerics is most penalizing,

�s � − 2.78 � 10−6, �B9�

2�c +
�s	scs

2rLn
� − 2.24 � 10−10, �B10�

��1
0 + �2

0�	 r

a

2

−
�s	scs�r log r − r�

4a2R0
� 8.52 � 10−8	�

2 .

�B11�

And thus,

�s � − 2.78 � 10−6, �B12�

�c � − 1.09 � 10−10, �B13�

�1
0 + �2

0 � 1.16 � 10−13. �B14�

Yet all three errors, Eqs. �B12�–�B14�, are well below �int.

TABLE I. Summary of the different sources of imprecision for the estimate
of the electric potential, e.g., �10

s ��t is the first saving time step�.

Analytical: log �10
s =log �10

s,A+log �t

Numerical: log �10
s =log �10

s,N+log �t

Exact: log �10
s =log �10

s,E+log �t
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APPENDIX C: ONSET OF GAMS WITH QUALITATIVE
AGREEMENT ON THE FREQUENCY

We calculate the modification of the prediction on the
components of the electric potential Eqs. �17�, �19�, and �21�
when the electric drift is taken into account. We find an os-
cillating modulation, close to the GAM frequency, as ex-
pected from the Rosenbluth and Hinton theory.11 Let us
consider

�t f + �vD + vE� · �f = 0. �C1�

We will concentrate on the first order terms in � since Sec. III
already discussed the leading order at short times. Using Eqs.
�11�–�13�, Eq. �C1� reads

�t
fLM � vd�sin ��r
fLM +
cos �

r
��
fLM�

+
�fLM

RTeq
�sin ��r� −

cos �

r
���� +

���

rBLp
fLM.

�C2�

In the following, we will neglect the terms with a cos � de-
pendence as compared to those in sin �. Proceeding the same
way than in Sec. III, the first Fourier modes of the distribu-
tion function read

�t f00 �
vd

2
f10

s � +
�fLM

2RTeq
�10

s �, �C3�

�t f10
s � vdf00� +

�fLM

RTeq
�00� , �C4�

�t f10
c �

fLM

rBLp
�10

s , �C5�

where �10
s ���r�10

s . Equations �C3� and �C4� can be recast
into

�tt f00 �
vd

2

2
f00� +

�fLM

RTeq
��00� +

�t�10
s �

2

 , �C6�

�tt f10
s �

vd
2

2
f10

s � +
�fLM

RTeq
��10

s �

2
+ �t�00� 
 . �C7�

When coupled to the quasineutrality equation, the first two
terms in Eqs. �C6� and �C7� due to the curvature drift lead to
high-order terms ��r

4�00 �resp. �r
2�10

s � for �00 �resp. �10
s �

which are negligible. The electric potential reads

�tt�− 	s
2e�00�

Teq

 �

1

R0B0
��00� +

�t�10
s �

2

 , �C8�

�tt� e�10
s

Teq

 �

1

R0B0
��10

s �

2
+ �t�00� 
 , �C9�

�t� e�10
c

Teq

 �

�10
s

rB � 1

Lp
� =

�10
s

rBLn
, �C10�

where we made use of Eq. �A7�. Since we are interested in
times when �00 or �10

s start to saturate, the �t�10
s � /2 term in

Eq. �C8� is neglected as compared to �00� . This equation has
a time-oscillating solution close to the GAM frequency,

�00� � cos� cs

R
t + �
 �C11�

with � an arbitrary phase. Given Eq. �C11�, a function
�sin�cst /R+�� is a solution of Eq. �C9�. Then, Eq. �C10�
leads to �10

c ��00� . All three components of the electric po-
tential have a time-oscillating behavior close to the GAM
frequency, as found indeed in Fig. 3. It also clearly scales
with 	� since cs /R�	�.

APPENDIX D: PARALLEL FLOWS, A ROBUST
SATURATION MECHANISM FOR THE CHARGE
POLARIZATION

With the parallel dynamics, Eq. �15� reads

�t f + vD · �f + v���f +
dv�

dt
�v�

f = 0. �D1�

The sine component equation has the simple form

�t f10
s =

vdfLM

Lp
+

�

m
��B�v�

fLM +
v�

qR
f10

c . �D2�

At leading order in �, it can be integrated over time,

f10
s =

vdfLM

Lp
t − v�

�B

Teq

r

qR2 fLMt . �D3�

The cosine component equation can also be estimated. To do
so and include the contribution of the parallel dynamics, we
assume it is initially a perturbation. Equation �A5� is modi-
fied into

�t f10
c =

fLM

rB0Lp
�10

s −
v�

qR
f10

s �D4�

with �10
s and f10

s given, respectively, by Eqs. �17� and �D3�.
The odd part in v� of f10

c , written as O�f10
c �, reads

O�f10
c � =

v�

qR

vdfLM

Lp
t . �D5�

It allows us to determine �10
s ,

�t� e�10
s

Teq

 =� vd

Lp
+

�

m
��B

�v�
fLM

fLM
+

v�

qR

f10
c

fLM
�

= � vd

Lp
� −

1

2� v�
2vd

Lp
�� t

qR

2

. �D6�

After a little algebra,

e�10
s

Teq
=

2	scs

R0Lp
t −

2	scs

R0

Teq

mq2R2� 1

Lp
+

1

LT

t3. �D7�

The introduction of the parallel dynamics results in a t3 cor-
rection term, which is negligible at short times. It becomes
significant when the linear term in this equation is balanced
by the cubic term. An upper boundary for this time is
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�� �
qR

vT
�1 +

Lp

LT
, �D8�

where vT is the thermal velocity of the ions. Since the �00

and �10
c components of the electric potential are evaluated

from �10
s , the parallel dynamics introduce a t4-correction to

their t2-dependence. Also, �� clearly scales with 	� since
R /vT�	�

−1.
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