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Abstract

This paper tackles the delicate choice of the initial distribution function in full-f gyrokinetic codes such as GYSELA 5D,
aiming at predicting the turbulent transport level in low collisional tokamak plasmas. It is found, both analytically and
numerically, that a Maxwellian distribution function with constant profiles on magnetic flux surfaces leads to the fast gen-
eration of a large scale electric field. Such a field opposes the up–down charge separation governed by the inhomogeneity of
the equilibrium magnetic field. If large enough, the shearing rate induced by the resulting poloidal E� B velocity could effi-
ciently reduce the plasma micro-instabilities which account for the development of the turbulence. Starting in the ab initio

code GYSELA 5D from an equilibrium distribution function depending on motion invariants only is shown to cure such a prob-
lem. In this case, charge separation is counter-balanced by parallel flow, and the standard fluid force balance is recovered.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In tokamak plasmas, the energy confinement time is largely governed by the magnitude of the turbulent
transport. Nonlinear fluid simulations have been recently reported to systematically overestimate such a trans-
port [1]. Gyrokinetic models look appropriate to study such low collisional plasmas. However, they suffer
from the large numerical resources they require, inherent to the intrinsic complexity of a five-dimensional
phase space. In this framework, most present gyrokinetic codes deal with fluctuations only, implicitly assum-
ing a scale separation with the equilibrium. This assumption potentially conflicts with large scale fast transport
events, sometimes reported both in experiments [2] and in flux driven numerical simulations [3–5].

Conversely, the GYrokinetic SEmi-LAgrangian GYSELA code [6] treats the entire ion distribution function
in an axi-circular toroidal geometry. Such a full-f code faces the delicate problem of solving the gyrokinetic
equilibrium in a collisionless tokamak plasma. This is a crucial issue in those turbulence simulations where
the linear and nonlinear regimes of the instability are let to evolve from an initial unstable equilibrium state.
Especially, the first section shows that any equilibrium state at vanishing electric field requires a finite parallel
1007-5704/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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flow in order to compensate the vertical charge separation born of the inhomogeneity of the magnetic field. If
present, this large scale electric potential may increase the effective threshold of the instability, and potentially
quench the turbulence if its magnitude is large enough. Here, charge separation is to be understood in terms of
plasma polarisation, since ðdne � dniÞ=n0 n 1. Section 3 provides a natural way to account for the parallel
flow in GYSELA – thus preventing the generation of any equilibrium electric potential – by considering distri-
bution functions depending on the motion invariants only. Finally, the consistency of the retained equilibrium
with the force balance equation is discussed in Section 4.
2. Non-canonical initial distribution functions generate poloidal sheared flows

The onset of turbulence and its characteristics both depend on the properties of the equilibrium it develops
onto. Such an intricate relationship is of prominent importance in those codes where no scale separation
between equilibrium and fluctuations is assumed. This is especially true for the gyrokinetic code GYSELA 5D,
which self-consistently solves the gyrokinetic and the quasi-neutrality equations for the entire ion distribution
function in a simplified toroidal geometry [7,8]. In such a full-f code, the system is initialised with an equilib-
rium distribution function plus a bath of small amplitude modes. These small perturbations eventually grow
and nonlinearly saturate, provided the initial equilibrium is above the linear stability threshold. Conversely, if
the initial distribution function is not an equilibrium function, the system will first evolve towards an equilib-
rium. The consequences are twofold: the time evolution of the initial perturbations will be hard to discriminate
from that of the search of an equilibrium, and the equilibrium found by the system, if any, may turn out to be
stable with regard to perturbations.

In that respect, it is interesting to consider the following Maxwellian initial distribution function:
fM ¼
nðrÞ

ð2pT ðrÞ=mÞ3=2
e�E=T ðrÞ ð1Þ
where n and T are the radial profiles of density and temperature and E ¼ mv2
k=2þ lB. fM is constant on a mag-

netic surface labelled by the radial coordinate r. We shall call this initialisation non-canonical. As will be shown
in this section, such an initial state does not constitute an equilibrium of the system solved by GYSELA 5D at
vanishing electric field. Indeed, a radial electric field will be shown to develop on short time scales. The result-
ing sheared poloidal flow can then possibly prevent the onset of turbulence, consistently with theoretical pre-
dictions [9–11].

Especially, let us show analytically that any initial distribution function similar to the one defined by Eq. (1)
leads to the development of a non-vanishing electric field in GYSELA 5D. The fundamental reason is that such a
non-canonical f does not carry any parallel flow that would ensure the compensation of the vertical charge
separation governed by the curvature and grad-B drifts in a toroidal geometry. The fluid analogous of such
a physics is the fact that the divergence of the diamagnetic velocity has to be balanced by the divergence of
the parallel flow [12]. The time evolution of the guiding-centre 5D distribution function f ðr; h;u; vk; lÞ solved
in GYSELA – namely the gyrokinetic equation – can be found in Grandgirard et al. [7]. Let us look for equi-
librium solutions at vanishing electric field and of the following general form: feq ¼ glðr; h; vkÞe�E=T ðrÞ, where gl

is a given function of r; h and vk parametrised by l. The gyrokinetic equation then reads
vg gllB
orT

T 2
sin hþ glv2

km
orT

2T 2
sin hþ orgl sin hþ ohgl

cos h
r

� �
þ ovkgl

lBr sin h

mqR2
� ohgl

vk
qR
¼ 0 ð2Þ
where vg ¼
mv2
kþlB

eB
B�$B

B2 ¼ �
mv2
kþlB

eR0B0
ðsin hêr þ cos hêhÞ is the curvature and grad-B drifts in the low b approxima-

tion, vg its modulus, B ¼ Bðêr þ r=qR0êhÞ is the magnetic field, B ¼ B0R0=R, R ¼ R0 þ r cos h the major radius
and q the safety factor. We also concentrate on an axisymmetric equilibrium distribution ou � 0. We intend to
show that gl cannot be an even function of vk and must be such that any equilibrium at vanishing electric field
requires a finite parallel flow. To proceed, let us assume by contradiction an equilibrium distribution function
can exist, with a fixed even parity in vk, such that glðr; h; v2

kÞ ¼
P1

n¼0anðr; hÞv2n
k . Projecting Eq. (2) on the

fv2p
k ; v

2pþ1
k g (p 2 N) basis allows one to separate the odd and even parities in vk:
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lB
orT

T 2
sin h glvgv2p

k

D E
þ m sin h

orT

2T 2
glvgv2pþ2

k

D E
þ sin h orglvgv2p

k

D E
þ cos h

r
ohglvgv2p

k

D E
¼ 0 ð3aÞ

lBr sin h
mR

ovkglv2pþ1
k

D E
� ohglv2pþ2

k

D E
¼ 0 ð3bÞ
where the brackets stand for hGi �
Rþ1
�1 dvkG expð�mv2

k=2T 0Þ. Using the expression of gl, Eq. (3b) reads as
follows:
X1
n¼0

2T 0

m

� �n

C nþ p þ 1

2

� �
nan

2

m
lBr sin h

R
� ohan�1

� �
¼ 0 ð4Þ
with CðnÞ �
R1

0 dt tn�1e�t. Since Eq. (4) must remain valid for all integer p, the following relationship holds, for
all integers nP1:
an ¼
mR

2lBr sin h
ohan�1

n
ð5Þ
Injecting such a relationship in Eq. (3a) yields for the a0 term:
½B; a0� ¼ a0
lBohB

r
orT

T 2
ð6Þ
where ½g; h� � 1
r ðorgohh� orhohgÞ is a Poisson bracket. Eq. (6) implies that 1

sin h ½B; a2
0� ¼

2lB2

R
orT
T 2 a2

0. Integrated
over r and h, the latter equation can be recast as follows:
Z
dr dh

a2
0

R2

1

r sin2 h
� 2l

orT

T 2

� �
¼
Z

dh a2
0

B

R2

� �rmax

rmin

ð7Þ
The left-hand side integrand is strictly positive. The right-hand side integrand depends on h only. Therefore,
when differentiating Eq. (7) with respect to r, and for any a0 and T regular enough, the only physical solution
is for a0 identically equal to zero. Eq. (5) then implies that all the other coefficients an are also identically zero.
Thus, with a vanishing electric potential, the only even solution in vk of the gyrokinetic equation is null every-
where. In other words, any possible equilibrium solution that is even in vk – which is especially the case if gl is
independent of vk – is characterised by a non-vanishing electric field. Alternatively, equilibrium solutions at
zero electric field are asymmetric in vk, such that there exists a finite parallel flow analogous to the Pfirsch–
Schlüter current. Notice that this flow may be vanishing when averaged on a flux surface, similarly to the
Pfirsch–Schlüter current.

As will be shown in the following section, such a property is intrinsically fulfilled when properly considering
an equilibrium distribution function [13,14].
3. Canonical equilibrium in GYSELA 5D

Any arbitrary function of the motion invariants – namely the adiabatic invariant l ¼ mv2
?=2B, the total

energy H ¼ 1
2
mv2
k þ lBþ e/ and the toroidal kinetic momentum Pu ¼ mRvu þ ew, with w the poloidal flux –

represents a stationary equilibrium in the collisionless gyrokinetic code GYSELA 5D. Let feq be the so-called
canonical equilibrium, defined as a kind of modified Maxwellian:
feq ¼
nð�rÞ

ð2pT ð�rÞ=mÞ3=2
e�H=T ð�rÞeþe/ð�rÞ=T ð�rÞ ð8Þ
where �r stands for an effective radial coordinate derived from the third invariant: �r ¼ r0 � q0

r0eB0
Pu þ hðl;HÞ,

such that feq is a function of the motion invariants only (the quantities with a label 0 are defined at half-radius
of the simulation box and h is an arbitrary function of the motion invariants l and H). The density n and
temperature T are no longer radial profiles, but functions of the motion invariant Pu. Since the parallel



68 G. Dif-Pradalier et al. / Communications in Nonlinear Science and Numerical Simulation 13 (2008) 65–71
dynamics is crucial to equilibrium, �r is written in terms of Pu so as to bear this dependence. Following [14],
a good choice appears to be
Fig. 1.
(b) rat
�r ¼ r0 �
q0

r0

½wðrÞ � wðr0Þ� �
mq0

eB0r0

½Rvk � R0�vk� ð9Þ
where wðrÞ ¼
R r

0
r0dr0

q . Also, the last term in Eq. (9) is by definition a motion invariant, which will be assumed to
scale like qH, the ratio of the ion gyroradius qi over the minor radius:
�vk ¼ SignðvkÞ
ffiffiffiffi
2

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � lBmax

p
YðE � lBmaxÞ ð10Þ
with Y the Heaviside function and Bmax the maximum of the magnetic field on the whole simulation box. It is
worth noticing that, due to the explicit dependence in vk of the invariant �r, the canonical feq exhibits an asym-
metry in vk. Such a property allows for the compensation of the vertical charge separation by a finite parallel
flow, as discussed in the previous section. This justifies a posteriori the use of the invariant �r as an effective
radial coordinate. So as to minimise the parallel velocity, �vk in Eq. (9) is chosen such that ðRvk � R0�vkÞ scales
like qH. It is important to notice that even though the difference between r and �r is small, it carries a new piece
of physics: the fact that the guiding-centres deviate from a magnetic field line by a few Larmor radii (a banana
width at most). This radial excursion leads to a parallel flow.

The impact of the initial distribution function on the dynamics of the equilibrium E� B flow hvhi has been
analysed numerically. A set of two simulations is compared in Fig. 1: they only differ by the initial distribution
function, either given by the canonical (Eq. (8)) or by the non-canonical (Eq. (1)) expression. As evident in
Fig. 1a, the system develops a large mean flow /00 on short time scales when initialised with the non-canonical
distribution function. It turns out to be more than one order of magnitude larger than the one observed in the
canonical case. The poloidal cross-section of the electric potential then exhibits the annular structure charac-
teristic of such large scale flows. In this non-canonical case, it is worth noticing that the system also develops
spontaneously a parallel flow that tends to counter balance the vertical charge separation. However, such a
process appears to build up on larger time scales. The quantitative dynamics of both the electric field gener-
ation and the parallel flow will be addressed in a future publication. Ultimately, one may expect the large equi-
librium flow appearing in the non-canonical case to possibly reduce the turbulence magnitude. Following
earlier theoretical works [9–11], an approximate criterion to quantify the backreaction of the velocity shear
on the turbulence is provided by the ratio of the E · B shearing rate cE ¼ jorr/00=Bj over the linear growth
rate clin. The latter is approximated by clin � ðkhqiÞvT=

ffiffiffiffiffiffiffiffiffiffi
R0Lp

p
in Fig. 1b, with khqi � 0:3 corresponding to

the most unstable linear mode [1], vT ¼
ffiffiffiffiffiffiffiffiffi
T =m

p
the thermal velocity and Lp the equilibrium pressure gradient

length. According to this criterion, the non-canonical case appears to be marginally unstable, cE=clin being of
the order of 1, while the canonical case remains unstable until later times. Fig. 1c focuses on the time evolution
of the most unstable resonant mode in both canonical and non-canonical simulations. In the canonical case
this mode grows, whereas it remains at the initial perturbation level in the non-canonical case, possibly being
stabilised by the E� B shear.

Such an analysis remains qualitative, since both the stability criterion and the linear growth rate are
approximations. To sum up, it essentially shows that (i) the non-canonical initialisation leads indeed to the
In both canonical and non-canonical cases (qI ¼ 10�2): (a) time evolution of the ðm; nÞ ¼ ð0; 0Þ mode of the electric potential
io of the E� B shearing rate over a rough estimate of the linear growth rate (c) time evolution of the most unstable mode.
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fast generation of large scale sheared E� B flows, and that (ii) these flows can potentially reduce the effective
instability growth rate. If strong enough, such flows could reduce and possibly quench the turbulence.

4. Consistency with the force balance equation

The consistency between fluid and gyrokinetic descriptions is a matter of current work, as exemplified in
Ref. [15] in the general gyrokinetic-MHD framework. The present section focuses on some aspects of this con-
sistency, restricted to the simplified equations solved by the GYSELA code. Namely, we only consider the cal-
culation restricted to the first-order in qH, consistently with the latter reference. Let us first notice that the
specific prescription for the equilibrium distribution function adopted in Eq. (9), including the definition of
�vk, belongs to the following larger class of equilibrium distribution functions:
feq ¼
nð�wÞ

ð2pT ð�wÞ=mÞ3=2
exp � H

T ð�wÞ
þ e/ð�wÞ

T ð�wÞ

� �
1þ m�wk�j

T ð�wÞ

� �
ð11Þ
Here, �w is derived from the third invariant: �w � Pu

e ¼ wþ mRvu

e , w being the poloidal flux. �w is analogous to �r in
that it represents an effective radial coordinate in the case of a more general class of axisymmetric magnetic
equilibria of the form: B ¼ I$uþ $w� $u. Here, I is a flux function IðwÞ. The density and temperature pro-
files in Eq. (1) are now evaluated with �w, and thus are motion invariants. Also, �wk and �j are arbitrary func-
tions of the motion invariants. They are such that

m�wk�j

T ð�wÞ scales like qH.
This section aims at showing the simple relationship between �j and fluid quantities such that GYSELA fulfills

the force balance equation. Let us first detail the force balance in fluid:
enðEþ V� BÞ ¼ $p ð12Þ
Summing over all species, this equation implies B � $p ¼ 0 and E � B ¼ �B � $/ ¼ 0, meaning that the pressure
p and the electrostatic potential / are flux functions. The general solution of Eq. (12) reads
V ¼ VE þ VH þ V k
B

B
¼ �$w� B

B2
/0 þ p0

ne

� �
þ V k

B

B
ð13Þ
where p0 and /0 stand for the derivatives of p and / with respect to w. Uppercase letter V refers to fluid
velocities. The cross-product can be derived from the general expression of the magnetic field:

$w� B ¼ IB� B2R2$u. Let us define jf

BmaxðwÞ �
�I
B2 /0 þ p0

ne

	 

þ V k

B . With these new notations, the fluid velocity
V (Eq. (13)) reads as follows:
V ¼ jf

BmaxðwÞ
Bþ /0 þ p0

ne

� �
R2$u ð14Þ
where Bmax is the maximum magnetic field on each magnetic surface: BmaxðwÞ � Bðw; h ¼ pÞ. Fig. 2 illustrates
the different ways of expressing the fluid velocity V: field aligned and transverse coordinates are used in Eq.
(13), whereas Eq. (14) expresses V as a difference between two adjacent directions, namely $u and B. In this
latter system of coordinates, the match between the fluid and the gyrokinetic approaches is easily tackled.
Fig. 2. In flux coordinates, the field lines (given by êk) are straight lines.
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In the limit of large aspect ratios, incompressibility can be reasonably assumed: $ � V ¼ 0. In this case,
B � $ jf

Bmax
¼ 0, such that jf is a flux function jfðwÞ. The parallel and transverse components of V then read:
V k ¼ jf ðwÞ
B

Bmaxð�wÞ
þ /0 þ p0

ne

� �
IðwÞ

B
ð15Þ

V? ¼ VE þ VI ¼ VE þ
B� $p

enB2
ð16Þ
Let us now express the fluid velocity as derived from the general form for the kinetic equilibrium in GYSELA,
Eq. (11). The standard definitions for the parallel and transverse guiding-center fluid velocities of such an equi-
librium are Vk ¼ 1

n

R
vkfeq and V? ¼ 1

n

R
ðvg þ vEÞfeq, where integration is carried out over normalised phase

space
R
�
R1

0
2pB=mdl

Rþ1
�1 dvk. It is easy to show that both kinetic and fluid transverse flows exhibit the same

divergence. Indeed, let us first recall that
R

evg � $feq ¼ B
B2 � $B

B � $
R
ðmv2

k þ lBÞfeq

h i
. The MHD equilibrium

imposes j� B ¼ $p, such that the later term can be recast into 2 B�$B
B3 � $p ¼ $ � ðB�$p

B2 Þ. The divergence of
V? then reads: $ �V? ¼ $ � ðVE þ B�$p

enB2 Þ. One recovers both the electric drift and the magnetising current
obtained in the fluid description. Up to a rotational term, V? and V? are then equal. The calculation of
the magnetising current from the transverse particle fluid velocity is given in Appendix A.

As far as the parallel flow is concerned, first notice that the difference between �w and w, namely mRvu=e,
remains small and scales like qH. One can then Taylor expand feq, Eq. (11):
feqð�wÞ ’ feqðwÞ þ ð�w� wÞ dfeq

d�w
jw ’ fMðwÞ þ fMðwÞ

mwkj
T ðwÞ þ fMðwÞ

mIvk
e

n0

n
þ T 0

T
E
T
� 3

2

� �
þ e/0

T

� �
ð17Þ
wk and j correspond to �wkð�wÞ and �jð�wÞ where �w is replaced by w, respectively. fM is defined by Eq. (1). fMðwÞ
does not lead to any parallel flow. The two last terms only of Eq. (17) contribute to Vk:
Vk ¼
mj
T
hhvkwkii þ

IðwÞ
B

/0 þ p0

ne

� �
ð18Þ
where hhGii � 1
n

R1
0

2pB=mdl
Rþ1
�1 dvkGfMðwÞ. The parallel velocities given in Eqs. (18) and (15) look similar.

Giving �wk a similar expression to that of �vk (Eq. (10)), namely:
�wk ¼ SignðvkÞ
ffiffiffiffi
2

m

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � lBmaxð�wÞ

q
YðE � lBmaxð�wÞÞ ð19Þ
with Y the Heaviside function, one obtains mj
T hhvkwkii ¼ jf

B
Bmax

. In this case, Vk and Vk can be reconciled
provided j ¼ jf , or equivalently �j ¼ jf ð�wÞ.

5. Conclusion

This paper provides a practical way to tackle the delicate problem of the equilibrium in full-f and collisionless
gyrokinetic codes such as GYSELA 5D, aiming at predicting the turbulent transport level in tokamak plasmas.
Especially, a large scale electric field is found to develop on short time scales if the initial distribution function
is not an equilibrium function – for instance a Maxwellian with constant profiles on magnetic surfaces. This field
results from the imbalanced vertical charge separation which naturally occurs in such toroidal configurations.
This large scale electric potential leads to a sheared poloidal rotation, which back reacts on turbulence and can
potentially quench the instability, if large enough. Conversely, choosing a canonical initial distribution function,
i.e. a stationary equilibrium of the gyrokinetic equation, cures such a problem. The canonical form retained in
GYSELA 5D, function of the motion invariants only, aims at minimising the difference between an effective radius
based on the invariants, and the geometrical radius. It is shown to fulfill the force balance equation.

Appendix A. Recovering the particle transverse fluid current

We shall here emphasise on the classical result which enables to derive the correct particle transverse fluid
velocity. It is well known that the transverse current J? reads: J? ¼ J?gc þ Jmagn, where J?gc is the guiding-center
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component, J magn ¼ $�M is the magnetisation current, M ¼ �
R

lbf the plasma magnetisation and
integration is carried out over normalised phase space

R
�
R1

0
2pB=mdl

Rþ1
�1 dvk. The following calculation is

performed taking into account the ‘low b-drift’, namely vD ¼ vg þ
mv2
k

eB2 ð$� BÞ?.
J? ¼
Z

eðvE þ vDÞfeq þ ð$�MÞ? ¼ enVE þ p
B� $B

B3
þ ð$� BÞ?

B2

Z
mv2
kfeq � $�

Z
lbfeq

� �
?

¼ enVE þ
B� $p?

B2
þ ðp � 2p?Þ

B� $B

B3
þ ðpk � p?Þ

ð$� BÞ?
B2

ðA:1Þ
which is the transverse fluid current up to the first-order in qI, the pressure being defined as follows:
pk �

R
mv2
kfeq, p? �

R
lBfeq and p ¼ pk þ p?. In the case of an isotropic pressure tensor, pk ¼ p?, the last

two terms vanish and the expression for $ �V? is recovered.
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