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Abstract. Finite Temperley–Lieb algebras are “diagram algebra” quotients of (the
group algebra of) the famous Artin’s braid group BN , while the affine Temperley–Lieb
algebras arise as diagram algebras from a generalized version of the braid group. We
study asymptotic “N → ∞” representation theory of these quotients (parametrized by
q ∈ C

×) from a perspective of braided monoidal categories.
Using certain idempotent subalgebras in the finite and affine algebras, we construct

infinite “arc” towers of the diagram algebras and the corresponding direct system of
representation categories, with terms labeled by N ∈ N.

The corresponding direct-limit category is our main object of studies.
For the case of the finite Temperley–Lieb algebras, we prove that the direct-limit cat-

egory is abelian and highest-weight at any q ∈ C× and endowed with braided monoidal
structure. The most interesting result is when q is a root of unity where the representa-
tion theory is non-semisimple. The resulting braided monoidal categories we obtain at
different roots of unity are new and interestingly they are not rigid. We observe then
a fundamental relation of these categories to a certain representation category of the
Virasoro algebra and give a conjecture on the existence of a braided monoidal equiva-
lence between the categories. This should have powerful applications to the study of the
“continuum” limit of critical statistical mechanics systems based on the Temperley–Lieb
algebra.

We also introduce a novel class of embeddings for the affine Temperley–Lieb algebras
(algebras of diagrams drawn without intersections on the surface of a cylinder) and
related new concept of fusion or bilinear N-graded tensor product of modules for these
algebras. We prove that the fusion rules are stable with the index N of the tower and
prove that the corresponding direct-limit category is endowed with an associative tensor
product. We also study the braiding properties of this affine Temperley–Lieb fusion.
Potential relationship with representations of the product of two Virasoro algebras are
left for future work.
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1. Introduction

Let K be a field and q is an invertible element in K. Graham and Lehrer introduced
in [1] a sequence TaN (with N = 1, 2, 3, . . . ) of infinite-dimensional algebras over K as the
sets of endomorphisms of the objects N in a certain category of diagrams that depends
on q. These algebras are called affine Temperley–Lieb and they are extended versions

of the Temperley–Lieb quotients of the affine Hecke algebras of type ÂN−1. They have
bases consisting of diagrams drawn without intersections on the surface of a cylinder.
A slightly different version of these algebras (the one without the translation generator)
was introduced much earlier by Martin and Saleur [2] in the context of 2d statistical
mechanics models such as loop models on a cylinder. One can cut the cylinder lengthwise
and obtain then a much smaller algebra of diagrams on the strip which is the famous
(finite) Temperley–Lieb algebra [3].

The categorical and statistical physics interpretations of the finite and affine Temperley–
Lieb (TL) algebras made possible many interesting connections between different parts of
mathematics (representation theory, knot theory, low-dimensional topology) and quan-
tum physics. Recent proposals for “fault tolerant” topological quantum computers for
instance – which may be realized experimentally using fractional quantum Hall devices –
are based on models of non-abelian anyons, whose Hilbert space, interactions and compu-
tational properties (e.g. qbit gates) are all expressed in terms of certain representations
of the Temperley-Lieb algebra (see e.g. [4, 5], and [6] for a recent review.)

From a different, more physical point of view, it is a well established experimental
fact that the properties of two-dimensional statistical mechanics lattice models at their
critical point [7] (e.g., those based on representations of the TL algebras with q ∈ C×

and when |q| = 1) can be described using conformal field theories – that is, quantum
field theories which are invariant under conformal transformations [8, 9]. This means,
for instance, that expectation values of products of local physical observables such as the
spin or the energy density can be identified with the Green functions of the conformal
field theory – the latter being calculated using abstract algebraic manipulations based
on the Virasoro algebra representation theory [9, 10].

It is important to understand that the identification between properties of the lattice
model and of the quantum field theory can only hold in the so called scaling limit or the
continuum limit. This requires in particular that all scales (such as the size N of the
system) be much larger than the lattice spacing limit. In terms of the finite or affine
Temperley-Lieb algebras, this means therefore that one needs to study N → ∞.

Understanding mathematically the continuum limit of the two-dimensional statistical
mechanics lattice models at their critical point remains a challenge. Many works in the
mathematical literature have concentrated on the existence of the limit, and investiga-
tions of conformal invariance and what it may mean for models defined initially on a
discrete lattice. Significant progress was obtained in some cases (such as the Ising model
or percolation) spurred in part by developments around the Schramm–Loewner Evolu-
tion (see e.g. [11, 12]). For a recent attempt at constructing the conformal stress-energy
tensor or the Virasoro algebra on the lattice, see [13, 14].

A different, algebraic route was pioneered by physicists [15], who investigated the po-
tential relations between the Lie brackets of the Virasoro algebra generators and of certain
elements in the associative algebras – such as the Temperley–Lieb algebra – underlying
the lattice models. This approach saw considerable renewed interest in the last few years
as it shows great promise in helping to understand logarithmic conformal field theories.
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For recent reviews and references about these theories – from both mathematics and
physics point of view see the special volume [16]. For works (in mathematical physics) on
relationships between the Temperley–Lieb lattice models and logarithmic conformal field
theories in the context of the continuum limit, see [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

From the perspective of the continuum limit, we have thus an interesting problem of
understanding the “asymptotic” representation theory of the finite and affine TL algebras
when N tends to infinity. There are at least two very distinct parts of the problem: (i) to
define appropriately a tower of the algebras and understand its inductive limit as a cer-
tain infinite-dimensional operator algebra and (ii) to understand representation-theoretic
aspects of the limits, i.e. to define and study towers of the representation categories of
the algebras. The first problem (i) seems to be very hard because it requires construct-
ing inductive systems of algebras (and their representations) where the homomorphisms
respect also the C-grading by the Hamiltonian of the lattice model, which is a particular
element of the algebra (e.g. TL). Such systems are designed to control the growth of the
algebras as the number N of sites tends to infinity and to keep only those states and
operators that are eigenstates of the Hamiltonian with finite eigenvalue in the limit1. By
the definition, the inductive limit of such an inductive system gives what physicists call
the continuum limit of lattice models and we use this term as well. Unfortunately, our
understanding of the spectrum and eigenstates of the Temperley–Lieb Hamiltonians is
very limited, so only rather simple cases within this program were appropriately rigor-
ously treated [28] (see also [25]) and have indeed shown an explicit connection with the
conformal field theory on the operator level.

The main goal of our paper is to study the second point (ii) or the “categorical” part of
the asymptotic representation theory of the finite and affine TL algebras. Using certain
idempotent subalgebras in the finite and affine cases, we construct infinite arc-towers of
the diagram algebras and the corresponding direct system of representation categories,
with terms labeled by N ∈ N. In more details for the finite TL case, we introduce the
“big” representation category

⊕
N TLN−mod encapsulating all representations of the

TL algebras for all N , and a fixed q ∈ C×. We then define naturally the tensor product
(bi-functor) in the category using the induction: it is endowed with an associator and
braiding isomorphisms that we prove do satisfy the coherence conditions (the pentagon
and hexagon identities).

Inside the N-graded category of finite TL representations, we construct the “shift”
functors FN : TLN−mod −→ TLN+2−mod associated with the arc-towers of the TL
algebras. These functors have a nice property: they map the standard modules to
the standard ones of the same weight, projective covers to projective covers, etc. The
inductive or direct system of the TL-representation categories thus defined has also
certain nice and important properties: the associators are mapped to associators and
braiding isomorphism to braiding isomorphism. We then prove that all these structures
endow the corresponding direct limit with a braided monoidal category structure, which
we denote as C∞. This construction can be considered as a machinery to prove that
the TL fusion rules are stable with N for any q ∈ C×. When q is generic, the category
C∞ is semi-simple and have left and right duals. Interestingly, the construction is well
defined even for q a root of unity, which is the most interesting case for the applications,

1The idea here comes from physics: one should keep at N → ∞ only relevant “physical” excitations
– finite-energy states – above the ground states (that is, the Hamiltonian’s eigenstates of minimum
eigenvalue). Note that the Hamiltonian in this discussion has to be properly normalized.
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u(1) 7→ u(2) 7→

Figure 1. The map of the two translation generators u(1) ∈ T
a
N1

and

u(2) ∈ T
a
N2
, with N1 = 3 and N2 = 2, into T

a
N1+N2

in terms of affine TL
diagrams where each crossing/braiding at i-th site has to be replaced by a
linear combination of identity and ei.

in particular to low-dimensional topology and logarithmic conformal field theory. In the
root of unity case, we prove that the direct-limit categories we obtain are abelian and
highest-weight. They have a non-simple tensor unit and in particular not all objects
have duals, so the categories are not rigid when q is a root of unity.

We also give a rather explicit description of objects in the category C∞ (subquotient
structure of standard and projective objects) and describe the fusion rules. It turns out
that this data matches what we know about certain category of the Virasoro algebra
representations at critical central charges, so we have in particular an equivalence of
abelian categories, described in Prop. 7.1. We formulate (for the first time) an explicit
conjecture (in Conj. 7.2) that the two categories are equivalent as braided monoidal
categories and give few supporting arguments.

This result provides a mathematical framework to understand the observations in
[20, 21] that the representation theory of the Virasoro algebra relevant to the description
of the scaling limit of statistical models and the representation theory of the Temperley-
Lieb algebra occurring in the lattice formulation of these models “are very similar” (this
observation has spurred many developments in the analysis of Virasoro and Temperley–
Lieb-like algebras modules – see e.g. [23, 29, 30]).

Note that, since we are dealing with the ordinary Temperley–Lieb algebra, the sta-
tistical models here have “open boundary conditions”, which is known to correspond,
in the scaling limit, to boundary conformal field theory, involving a single Virasoro al-
gebra [31]. Meanwhile, the physics of critical statistical lattice models away from their
boundaries (the so called “bulk” case) is described by two copies of the Virasoro algebra,
corresponding to the chiral and anti-chiral dependencies of the correlation functions. The
ideas in [19] can then be extended, and involve now, on the lattice side, models with
periodic boundary conditions, for which the correct algebra is now the corresponding
affine Temperley–Lieb algebra.

Our second result is concentrated on the limit of affine TL representation categories
and on a new tensor-product or fusion in the enveloping category (where we call it the
affine TL fusion) and eventually in the direct-limit category. The affine TL fusion is
based on a non-trivial embedding of two affine or periodic TL algebras for N1 and N2

into the “big” algebra T
a
N1+N2

on N1+N2 sites. Note that there is an obvious embedding
in the finite TL case while in the periodic or affine case it is not a priori clear how to
embed the product of two periodic TL algebras into another periodic TL algebra. We
introduce a novel diagrammatic way for this in Sec. 3 and describe here shortly only the
embedding of the two translation generators u(1) and u(2), as in Fig. 1. (We have thus
constructed a novel tower of the affine TL algebras.) The affne TL fusion for the affine
TL modules is then defined as the induction from such subalgebra T

a
N1

⊗T
a
N2

to T
a
N1+N2

.
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We then use the machinery elaborated in the finite TL case (in Sec. 5: note it is actually
a very general construction that can be applied to a relatively general class of diagram
algebras) and prove that the affine TL fusion rules are stable with N and the tensor
product is associative.

Like in the finite TL case, inside the N-graded category of affine TL representations,
we construct the “shift” functors FN : T

a
N −mod −→ T

a
N+2−mod corresponding to

what we call the arc-towers of the affine TL algebras and the corresponding direct limit

that is denoted by Ĉ∞. We have proven that this limit has a tensor product with an
associator but there is no braiding (we have computed some of the fusion rules and they
are apparently non-commutative). However, we have shown that there is a semi-braiding
connecting ‘chiral’ and ‘anti-chiral’ tensor products, the one defined above and the other
defined similarly but interchanging over-crossings with under-crossings.

This periodic or “bulk” case is much harder than the “open-boundary” case, and less
explored, despite some beautiful results on some simple cases [22, 32, 28, 33, 34, 35]. A
key ingredient that was missing so far was how to define for lattice models a fusion that
may correspond, in the continuum limit, to the fusion of non chiral fields. The results
of the present paper provide a potential way to do this, which will be explored more in
our subsequent work [36].

The paper is organized as follows. We first recall in section 2 the definition and
well-known facts about the finite Temperley–Lieb (TL) algebra, including the fusion of
TL modules, then introduce a tower of finite TL algebras that leads to the concept
of an “enveloping” TL representation category endowed with N-graded bilinear tensor
product – an object which, we show later, is crucial for comparison with results from
physics. We introduce then a novel tower for the affine TL algebras in section 3 where
we also introduce our diagrammatic fusion for affine TL modules. This fusion is further
considered in section 4 where a connection to the affine Hecke algebra is discussed. We
start in section 5 our discussion of limits of TL representation categories and introduce a
braided monoidal structure on the direct limit of the TL categories, with the main result
in Thm. 5.8. This section is rather technical and long but provides a general approach
for studying the limits associated with towers of algebras. This approach is then used
in section 6 in the affine TL case where our main result is formulated in Thm. 6.10. We
conclude in section 7 by a discussion of the relation of our work with the Virasoro algebra
representation theory, Prop. 7.1, and write down a fundamental conjecture 7.2 about an
equivalence of braided tensor categories. In Appendix A, we give several examples of the
diagrammatic calculation of affine TL fusion rules.

Conventions: Throughout the paper we fix the field K = C for convenience, though
most of our results hold for any field K (we need the characteristic zero only when we
discuss the subquotient structure of the TL representations). We also denote by N the
additive semi-group of positive integers {1, 2, 3, . . .}.

Acknowledgements: We are grateful to Jesper L. Jacobsen for fruitful discussions and
general interest in this work. This work was supported in part by the ERC Advanced
Grant NuQFT. The work of AMG was also supported by a Humboldt fellowship, DESY
and CNRS. AMG thanks IPHT/Saclay for its kind hospitality during last few years
where a part of this work was done. AMG also thanks the organizers of the workshop
Conformal Field Theories and Tensor categories, International Center for Mathematical
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ei = . . .

1 i i+ 1

. . .

N

Figure 2. The diagrammatic representation of ei.

=

Figure 3. The diagrammatic version of the relation eiei+1ei = ei.

Research, Beijing, 2011 where some of our results (those on the direct limit of finite TL
categories and the relation to the Virasoro algebra) were presented.

2. Fusion in TL-mod categories

The (finite) Temperley–Lieb (TL) algebra TLN(m) is an associative algebra over C

generated by unit 1 and ej , with 1 ≤ j ≤ N − 1, satisfying the defining relations

e2j = mej ,

ejej±1ej = ej,(2.1)

ejek = ekej (j 6= k, k ± 1).

This algebra has a well-known faithful diagrammatical representation in terms of non-
crossing pairings on a rectangle with N points on each of the opposite sides. Multipli-
cation is performed by placing two rectangles on top of each other, and replacing any
closed loops by a factor m. While the identity corresponds to the diagram in which each
point is directly connected to the point above it, the generator ei is represented by the
diagram, see Fig. 2, where the points i on both sides of the rectangle are connected to the
point i+1 on the same side, all other points being connected like in the identity diagram.
The defining relations are easily checked by using isotopy ambient on the boundary of
the rectangle, see Fig. 3.

We will often omit mentioning the parameter m and write simply TLN as the replace-
ment for TLN(m).

2.1. Towers of the TL algebras. The important ingredient of our constructions below
are towers of the TL algebras. In terms of the diagrams, we can naturally construct two
kinds of towers.

• The first one is standard, it uses the standard embeddings of the algebras:

(2.2) TLN
ι

−−−−→ TLN+1



7

such that

(2.3) ι(ej) = ej , 1 ≤ j ≤ N − 1,

or in terms of the TL diagrams one adds one vertical string on the right of the
diagram considered as an element in TLN – this gives an element in TLN+1.

• The second tower uses what we call the arc-embeddings: a diagram on N sites is
enlarged up to the diagram on N + 2 sites by adding arcs, see precise definition
below in Sec. 5.1.

The first type of TL towers is used in the definition of the TL fusion, while the second
is used in constructing direct limits of the TL representation categories.

2.2. TL fusion. In this section, we recall fusion for modules over the (finite) TL alge-
bras initially introduced in the physics literature [19] and further studied on more formal
grounds in [21], which we follow in terms of conventions and notations. The fusion’s def-
inition is based on the standard embeddings (2.3). We then use this fusion construction
to define N-graded tensor-product structure (with an associator) on the direct sum of
the categories of TL representations.

Let CN denotes the category of finite-dimensional TLN -modules (we will usually drop
the parameter m for brevity.)

Definition 2.2.1 ([19, 21]). Let M1 and M2 be two modules over TLN1 and TLN2 respec-
tively. Then, the tensor product M1 ⊗M2 is a module over the product TLN1 ⊗ TLN2 of
the two algebras. Using the standard embedding, we consider this product of algebras as
a subalgebra in TLN , for N = N1 +N2. The fusion (bi-)functor

(2.4) ×f : CN1 × CN2 → CN1+N2

on two modules M1 and M2 is then defined as the module induced from this subalgebra,
i.e.,

(2.5) M1 ×f M2 = TLN ⊗(
TLN1

⊗TLN2

)M1 ⊗M2 ,

where we used the balanced tensor product over TLN1 ⊗ TLN2.

An explicit calculation of the TL fusion for a large class of indecomposable represen-
tations at any non-zero q (i.e. including the root of unity cases) is given in [21], see also
recent works [29, 27, 30].

We emphasize that the TL fusion is associative, i.e. the functor ×f in (2.4) is equipped
with a family of natural isomorphisms

(
M1 ×f M2

)
×f M3

∼= M1×f
(
M2 ×f M3

)
, for each

triple of TLNi
modulesMi, i = 1, 2, 3, and each triple of the natural numbers (N1, N2, N3).

We leave the proof of the associativity till Sec. 5.4 and give the associator explicitly in
Prop. 5.4.1 and prove the pentagon identity in Prop. 5.4.2. On top of it, we also have
the braiding, i.e. the tensor product ×f is commutative, see Sec. 5.5 below.

It is then natural to introduce a large category embracing these structures. We call it
the “enveloping” TL representation category (that formally contains TL representations
at any N)

(2.6) C =
⊕

N≥1

CN .

The direct sum here means that C contains CN as a full subcategory and there are no
morphisms between the full subcategories for different N . The category C is thus graded
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by N. We will label an object M from CN as M [N ] to emphasize its grade. We can thus
consider ×f defined in (2.5) as an N-graded tensor-product functor on C:

Proposition 2.2.2. Let ×f denote the N-graded bilinear tensor product on C as defined
for each pair (N1, N2) ∈ N × N in (2.4) and (2.5). It is equipped with an associator
satisfying the pentagon identity.

Note that we do not have the tensor unit in C, as we do not have the zero grade. Let
us call such a category (a monoidal category weaken by removing the tensor unit axioms)
as a semi-group category.

For the later use, we will need the structure of a highest-weight category on CN and
we recall below few standard facts from the representation theory of TLN (q+ q

−1).

2.3. Standard and projective TL modules. We also recall [3] the standard TLN(m)
modules Wj [N ] of weight x ≤ j ≤ N/2, where x = 1

2
(N mod 2). First, we need to intro-

duce “half-diagrams” (usually called link states) obtained from Temperley-Lieb diagrams
(i.e., non-crossing pairings on a rectangle with N points on each of the opposite sides)
by cutting these diagrams horizontally in the middle. Each half has N points: some of
them are connected by arcs, and some others are not connected to anything. The latter
are often called through-lines (or defects). The algebra acts in the obvious diagrammatic
way by concatenating Temperley-Lieb diagrams with link states, eliminating all loops at
the price of multiplying the diagram by mn, where n is the number of loops, and keeping
track of the connectivities using isotopy. It is clear that the number of through-lines
cannot increase under the action of the algebra. Standard modules Wj [N ] are obtained
by letting the algebra act as usual when the number of through-lines – denoted by 2j – is
conserved, and setting this action to zero when the number of through-lines decreases. It
is well known that these modules are irreducible for q generic [3], while their dimension
is given by differences of binomial coefficients

(2.7) dj [N ] =

(
N

N
2
+ j

)
−

(
N

N
2
+ j + 1

)
.

It is well-known also [37] that the category of finite-dimensional TLN modules is a
highest-weight category, i.e., it has a special class of objects – the standard modules
Wj [N ] – with morphisms only in one direction (there is a homomorphism from Wk[N ] to
Wj [N ] only if k ≥ j) and the projective and invective modules have a nice filtration with
sections given by the standard and costandards modules, respectively, see more details
in [38] . When q is generic (not a root of unity) then the category is semi-simple and the
structure of a highest-weight category is trivial.

Let q = eiπ/p for integer p ≥ 2 and set s ≡ s(j) = (2j + 1) mod p, we then recall
the subquotient structure of Wj [N ], which was studied in many works from different
perspectives [29, 21, 37, 39] (though we use slightly different conventions here). The
standard modules with s(j) = 0 are simple. For non-zero s(j) there is a non-trivial
homomorphism from Wk[N ] to Wj [N ] only if k = j or k = j + p− s, and in the second
case:

φj : Wj+p−s[N ] → Wj [N ]

with ker φj given by the socle of Wj+p−s[N ] and imφj is the socle of Wj [N ] and is
isomorphic to the head of Wj+p−s[N ]. Note that φj exists only if 2(j + p− s) ≤ N . We
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thus have the subquotient diagram (for non-zero s)

Wj [N ] = Xj[N ] −→ Xj+p−s[N ]

where we introduce the notation Xj[N ] for the irreducible quotient of Wj [N ] and set
here Xk[N ] ≡ 0 if 2k > N .

Let Pj [N ] denotes the projective cover of the simple module Xj[N ]. The subquotient
structure of the projective covers can be easily deduced due to a reciprocity relation for a
highest-weight category. Let [Wj : Xj′] and [Pj : Wj′ ] denote the number of appearances
of Xj′[N ] in the subquotient diagram for Wj [N ] and the number of appearances of
Wj′[N ] in the standard filtration for the projective cover Pj [N ], respectively. Then,
the reciprocity relation reads

(2.8) [Pj : Wj′] = [Wj′ : Xj ],

or, in words, the projective modules Pj are composed of the standard modules that have
the irreducible module Xj as a subquotient. The projective covers Pj [N ] are then simple
if s(j) = 0, they are equal to Wj [N ] for 0 ≤ j ≤ 1

2
(p−2) and otherwise have the following

structure

Pj [N ] =

Xj[N ]

yyss
ss
ss
ss

&&▲▲
▲▲▲

▲▲▲
▲

Xj−s[N ]

%%❑
❑❑

❑❑
❑❑

❑
Xj+p−s[N ]

xxrrr
rrr

rrr

Xj[N ]

(2.9)

where the nodes are irreducible subquotients and the arrows correspond to TLN action,
i.e., Xj[N ] in the bottom of the diagram is the irreducible submodule (or socle), while the
socle of the quotient Pj [N ]/Xj [N ] is the direct sum Xj−s[N ] ⊕ Xj+p−s[N ] in the middle
of the diagram, etc. Also note that the diagram (2.9) has three nodes instead of four if
2(j + p− s) > N .

3. Affine Temperley–Lieb embedding

We have seen in the previous section embeddings of the finite Temperley–Lieb algebras
TLN1 → TLN , for N1 < N , that are naturally defined in terms of TL diagrams by adding
the vertical strings, or by the use of the standard embeddings TLN → TLN+1 repeatedly.
This standard embedding is the basic step in the definition of the TL fusion. Constructing
embeddings of periodic or affine TL algebras is a non-trivial problem that we solve in
this section. We first recall the definition of the affine TL algebras (also parametrized
by N ∈ N) and then propose a novel diagrammatical way of defining a tower of these
algebras.

3.1. The affine Temperley–Lieb algebras. We recall here two equivalent definitions
of the affine Temperley–Lieb algebra - independently introduced and studied in many
works [40, 41, 2, 1, 42]. We follow mainly conventions and notations from the work of
Graham and Lehrer [1, 43] whenever possible.
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, , ,

Figure 4. Examples of affine diagrams for N = 4, with the left and right
sides of the framing rectangle identified. The first diagram represents
the translation generator u while the second diagram is for the generator
e4 ∈ T

a
4(m). The third and fourth ones are examples of j = 0 diagrams.

3.1.1. Definition I: generators and relations. The affine Temperley–Lieb (aTL) algebra
T
a
N(m) is an associative algebra over C generated by u, u−1 , and ej , with j ∈ Z/NZ,

satisfying the defining relations

e2j = mej ,

ejej±1ej = ej,(3.1)

ejek = ekej (j 6= k, k ± 1),

which are the standard TL relations but defined now for indices modulo N , and

ueju
−1 = ej+1,

u2eN−1 = e1 . . . eN−1,(3.2)

where the indices j = 1, . . . , N are again interpreted modulo N .

3.1.2. Definition II: diagrammatic. The affine Temperley–Lieb (TL) algebra T
a
N(m) is an

associative algebra over C spanned by particular diagrams on an annulus with N sites
on the inner and N on the outer boundary. The sites are connected in pairs, and only
configurations that can be represented using lines inside the annulus that do not cross
are allowed. Diagrams related by an isotopy leaving the labeled sites fixed are considered
equivalent. We call such (equivalence classes of) diagrams affine diagrams. Examples of
affine diagrams are shown in Fig. 4 for N = 4, where we draw them in a slightly different
geometry: we cut the annulus and transform it to a rectangle which we call framing so
that the sites labeled by ‘1’ are closest to the left and sites labeled by ‘N ’ are to the right
sides of the rectangle. Multiplication a · b of two affine diagrams a and b is defined in a
natural way, by joining an inner boundary of a to an outer boundary of the annulus of b,
and removing the interior sites. Whenever a closed contractible loop is produced when
diagrams are multiplied together, this loop must be replaced by a numerical factor m
that we often parametrize by q as m = q+ q

−1.

We also note that the diagrams in this algebra allow winding of through-lines around
the annulus any integer number of times, and different windings result in independent
algebra elements. Moreover, in the ideal of zero through-lines, any number of non-
contractible loops (like in the fourth diagram in Fig. 4) is allowed. The algebra T

a
N(m)

is thus infinite-dimensional. For N = 1, it is just the polynomial algebra C[u, u−1].

3.2. The affine TL and the affine braid group. Let CBN be the group algebra of the
Artin’s braid group. As an associative algebra, it is generated by g±1

i , with 1 ≤ i ≤ N−1,
subject to gigj = gjgi for |i− j| > 1 and to the standard braid relations:

(3.3) gigi±1gi = gi±1gigi±1
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or with the graphical notation

gi = g−1
i =

the relations (3.3) can be graphically depicted as

(3.4)

=

It is well-known that the finite TL algebra TLN(q+q
−1) is a finite-dimensional quotient

of CBN where we set

(3.5) g±1
i = ±i(q±

1
21− q

∓ 1
2 ei)

and imply the TL relations (2.1).

Let now B̂N be the affine braid group – the group of braids on the surface of a cylinder
– it is generated by the translation u (like above) and g±1

i , with 0 ≤ i ≤ N − 1, subject
to ug±1

i u−1 = g±1
i+1 and to the braid relations (3.3) where the index i is now interpreted

modulo N . We recall [45] that the affine TL algebra T
a
N(q + q

−1) can be defined as a

quotient of CB̂N where we again set (3.5) and imply the relations (3.1) and (3.2).
Using this connection of TaN with the braid groups, we will sometimes use below the

braid generators as a replacement for the TL generators. In the diagrams like (3.4) we
emphasize that each under/above crossing of lines should be interpreted as the replace-
ment for the linear combination in (3.5).

3.3. A tower of affine TL algebras. Our approach to the fusion of affine TL modules
in the next section relies on the induction functor which associates with any pair of mod-
ules over the algebras TaN1

(m) and T
a
N2
(m) a module over the bigger algebra T

a
N1+N2

(m).
This functor uses an explicit embedding of the two “small” algebras on N1 and N2 sites
into the “big” one on N1 +N2 sites.

We start with defining a “one-step” embedding T
a
N(m) → T

a
N+1(m):

u(1) 7→ u g−1
N ,

e
(1)
i 7→ ei, 1 ≤ i ≤ N − 1 ,(3.6)

e
(1)
0 7→ gN e0 g

−1
N ,

where we label the generators in T
a
N with the superscript (1) and gN stands for the

combination in (3.5). It is straightforward to check that this map is an algebra map.
The kernel of this map is trivial: we have a basis in the image given by placing an extra
“vertical” string between the Nth and 1st sites of the cylindrical or affine diagram for a
basis element in T

a
N , while each crossing is replaced by the corresponding under-crossing:

this gives obviously a bijection between the two bases (explicit diagrams will be given
below).

We can use the map (3.6) recursively and define the embedding T
a
N(m) → T

a
N+k(m).

Similarly, we can embed the product of two affine TL algebras, TaN1
and T

a
N2
, into T

a
N
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with N = N1 +N2. Let us denote the generators in the ith algebra as u(i) and e
(i)
j , with

i = 1, 2, and use standard notations for the generators in the “big” algebra T
a
N . We first

define the map on the TL generators e
(i)
j , where j 6= 0, in the standard way

(3.7) e
(1)
j 7→ ej , e

(2)
k 7→ eN1+k, 1 ≤ j ≤ N1 − 1, 1 ≤ k ≤ N2 − 1.

The translation generators u(1) and u(2) are mapped as (recall, we set N = N1 +N2)

(3.8) u(1) 7→ u g−1
N−1 . . . g

−1
N1
, u(2) 7→ gN1 . . . g1u.

In terms of diagrams, these two translation generators are presented as simply as

(3.9)

u(1) 7→ =

where we assumed that N1 = 3 and N2 = 2, and for the second translation u(2) we have
the diagram

(3.10)
u(2) 7→ =

or in words the rightmost string of u(1) (the one that starts at position N1) passes above
the N2 through-lines on the right from it and ends at the position 1, and similarly for
u(2) – the leftmost string passes under the N1 through-lines on the left from it. It is then
an easy (in terms of diagrams) calculation using the braid relations to check

(3.11) u(1)u(2) = u(2)u(1).

Due to the normalization of gi’s as in (3.5), we have the relations

(3.12) gigi+1ei = ei+1ei, g−1
i g−1

i+1ei = ei+1ei

and many others similar to these. In terms of diagrams, these relations tell us that a
TL arc (“half” of the diagram for ei) can be pulled out under or above any string at the
price of the factor 1. We can thus simplify calculations using diagrams with braids and
TL arcs only. It is only the twisting that produces a non-trivial factor iq

3
2 :

(3.13) eigi+1ei = iq
3
2 ei

but these relations will not appear in calculations below.
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Using the remarks above, we then immediately check the affine TL relations

(3.14)
(
u(1)

)2
eN1−1 = e1 . . . eN1−1,

(
u(2)

)2
eN−1 = eN1+1 . . . eN−1 .

We then define the map on the periodic TL generators e
(i)
0 as

e
(1)
0 7→ gN1 . . . gN−1 e0 g

−1
N−1 . . . g

−1
N1
,(3.15)

e
(2)
0 7→ g−1

0 . . . g−1
N1−1 eN1 gN1−1 . . . g0.(3.16)

Note that in terms of diagrams, this result is natural, as illustrated below (again for
N1 = 3 and N2 = 2)

(3.17)

e
(1)
0 =

(3.18)

e
(2)
0 =

where e
(i)
0 are considered now as the images of the maps (3.15) and (3.16) (we will often

use the same notation for the images of elements in the subalgebras.)
Using again the diagrammatical calculation, it is straightforward to check that

(3.19)
(
e
(i)
0

)2

= (q+ q
−1)e

(i)
0 , i = 1, 2.

Further, we also check all the other affine TL relations

(3.20) e
(i)
0 = u(i)e

(i)
Ni−1

(
u(i)

)−1
= (u(i)

)−1
e
(i)
1 u

(i), i = 1, 2,

and

e
(i)
0 e

(i)
1 e

(i)
0 = e

(i)
0 , e

(i)
1 e

(i)
0 e

(i)
1 = e

(i)
1 ,(3.21)

e
(i)
0 e

(i)
Ni−1e

(i)
0 = e

(i)
0 , e

(i)
Ni−1e

(i)
0 e

(i)
Ni−1 = e

(i)
Ni−1,(3.22)

where we recall that e
(1)
k = ek and e

(2)
k = eN2+k. We also see using diagrammatic

computation that both the subalgebras TaN1
and T

a
N2

indeed commute

(3.23) e
(1)
0 e

(2)
0 = e

(2)
0 e

(1)
0 ,

in addition to (3.11).
So, we have thus constructed a homomorphism of algebras

(3.24) εN1,N2 : T
a
N1

⊗ T
a
N2

−→ T
a
N ,

with the image of the generators given in (3.7), (3.8) and (3.15), and (3.16). This
homomorphism has trivial kernel (by recursively using the one-step embedding (3.6)
that has zero kernel), so we have actually an embedding of algebras.
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4. Fusion of affine TL modules

In this section, we introduce fusion for modules over the affine TL algebras using the
embeddings defined in the previous section. We will use this fusion construction in the
next section to define a N-graded tensor product in the affine TL representation category.

Definition 4.1. Let M1 and M2 be two modules over T
a
N1
(m) and T

a
N2
(m) respectively.

Then, the tensor product M1 ⊗M2 is a module over the product TaN1
(m) ⊗ T

a
N2
(m) of

the two algebras. Using the embedding (3.24), we consider this product of algebras as a
subalgebra in T

a
N(m), for N = N1 +N2. The (affine) fusion functor ×̂f on two modules

M1 and M2 is then defined as the module induced from this subalgebra, i.e.

(4.1) M1 ×̂f M2 = T
a
N ⊗(

Ta
N1

⊗Ta
N2

)M1 ⊗M2,

where we used the balanced tensor product over TaN1
⊗T

a
N2

and we abuse the notation by
writing T

a
N instead of TaN(m).

Below we give explicit examples of the affine TL fusion calculation. Before doing this,
let us recall the basic T

a
N -modules called the standard modules.

4.2. Standard T
a
N modules. We introduce here the standard modules Wj,z[N ] over

T
a
N(m), which are generically irreducible, and give then several examples of explicit

calculations of the fusion. The standard modules are parametrized by pairs (j, z), with
a half-integer j and a non-zero complex number z. In terms of diagrams, the first is
the number of through-lines, which we denote by 2j, 0 ≤ j ≤ N/2, connecting the
inner boundary of the annulus with 2j sites and the outer boundary with N sites. For

example, the diagrams and correspond to N = 4 and j = 1, where as
usual we identify the left and right sides of the framing rectangles, so the diagrams live
on the annulus. We call such diagrams affine. The action of an element a ∈ T

a
N(m) on

v ∈ Wj,z is then defined by stacking the diagrams: joining the inner boundary of a to
the outer boundary of the diagram for v, and removing the interior sites. As usual, a
closed contractible loop is replaced by the factor m = q + q

−1 (we will often use this
parametrisation by a complex number q). Whenever the affine diagram thus obtained
has a number of through lines less than 2j, the action is zero. For a given non-zero value
of j, it is possible in this action to earn a winding number of the through-lines. In this
case, we imply the relation [1]

µ = µ′ ◦ unj ≡ znµ′,

where µ is an affine diagram with 2j through lines, µ′ is a so-called standard diagram
which has no through lines winding the annulus and uj is the translational operator
acting on the 2j sites of the inner boundary of µ′. Said differently, whenever 2j through-
lines wind counterclockwise around the annulus l times, we unwind them at the price of
a factor z2jl; similarly, for clockwise winding, the phase is z−2jl [40, 2]. This is for j > 0.
If j = 0, by the concatenating the diagrams we can produce a non-contractible loop
and it has to be replaced by the factor z + z−1. Such action gives rise to a generically
irreducible T

a
N(m) module, which we denote by Wj,z[N ].

The dimensions of these modules Wj,z are then given by

(4.2) d̂j [N ] ≡ dimWj,z[N ] =

(
N

N
2
+ j

)
, j ≥ 0.
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Note that these numbers do not depend on z (but modules with different z are not
isomorphic).

4.3. Examples of the fusion. We consider here examples of the fusion defined in
Def. 4.1 for several pairs of standard modules. We also assume that q is generic, i.e. not
a root of unity.

4.3.1. Fusion on 1 + 1 sites. We begin with a simple example of the fusion of the pair
of standard modules W 1

2
,z on 1 + 1 sites:

(4.3) W 1
2
,z1
[1] ×̂f W 1

2
,z2
[1] = Ind

T
a
2

Ta
1⊗Ta

1
W 1

2
,z1
[1]⊗W 1

2
,z2
[1],

where the affine TL on 1 site is the commutative algebra generated by the translation
generator, i.e. T

a
1 = C[u±1]. We say that the left Ta1 (the left component of the tensor

product Ta1 ⊗ T
a
1) is generated by u(1) and the right one is generated by u(2). Then, the

module W 1
2
,z1

⊗W 1
2
,z2

is one-dimensional and has the basis element v with the action

(4.4) u(1)v = z1v, u(2)v = z2v.

We have to write now all the relations in the moduleW 1
2
,z1
⊗W 1

2
,z2

using expressions (3.8)

for the generators of the “small” algebra Ta1⊗T
a
1 in terms of elements of the “big” algebra

T
a
2. So, using (4.4) and (3.8) we have

z1v = ug−1
1 v = −i

(
q
− 1

2u− q
1
2ue1

)
v,(4.5)

1

z1
v = g1u

−1
v = i

(
q

1
2u−1 − q

− 1
2 e1u

−1
)
v,(4.6)

z2v = g1uv = i
(
q

1
2u− q

− 1
2 e1u

)
v,(4.7)

1

z2
v = u−1g−1

1 v = −i
(
q
− 1

2u−1 − q
1
2u−1e1

)
v(4.8)

and we note here that ue1 = u−1e1 and e1u
−1 = e1u because of the relation (3.2) that

takes the form u2e1 = e1.
Therefore, we have two equations: taking the difference between first and fourth equa-

tions we get

(4.9) (u− u−1)v = iq
1
2 (z1 − z−1

2 )v

and second minus third gives

(4.10) (u− u−1)v = iq−
1
2 (z−1

1 − z2)v

and finally the relation between z1 and z2 is

(4.11) q(z1 − z−1
2 ) = (z−1

1 − z2)

that has only two solutions

(4.12) z2 = z−1
1 or z2 = −qz1.

It tells us that the fusion or the induced module in (4.3) is zero when the condition (4.12)
is not satisfied.

We then construct a basis for the fusion in the two different cases: (i) z2 = −qz1 and
(ii) z2 = z−1

1 . It turns out that in the case (i) the fusion is a one-dimensional Ta2-module
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while it is two-dimensional in the case (ii). Indeed, assume that z2 = −qz1 then we have
the relation (using (4.9))

(4.13) u2v = iq
1
2 (z1 + q

−1z−1
1 )uv + v.

The relations (4.5)-(4.8) are not the only independent relations in W 1
2
,z1

⊗ W 1
2
,z2
. We

have four more

z1z2v = u(1)u(2)v = u2v,(4.14)

1

z1z2
v =

(
u(1)u(2)

)−1
v = u−2

v,(4.15)

z1

z2
v = u(1)

(
u(2)

)−1
v = (−q

−1 + e1 + e0 − qe0e1)v,(4.16)

z2

z1
v = u(2)

(
u(1)

)−1
v = (−q + e1 + e0 − q

−1e1e0)v.(4.17)

Using the first one together with (4.13) we get

(4.18) uv = iq
1
2z1v

and using then (4.6) we get (recall that e0 = ue1u
−1)

(4.19) e1v = 0, e0v = 0.

Note that the relations (4.16) and (4.17) are then trivially satisfied. The equation (4.19)
actually could be immediately deduced directly from the equation (4.14) that tells that
u2 acts on v by −qz21 and for generic z1 it is not possible for the T

a
2-module W0,z, where

u2 acts as identity. Therefore v has to belong to W1,z where e1 and e0 act by zero. The

value of z here is iq
1
2 z1 as follows from (4.18). So, we conclude that because all the

generators of Ta2 but u±1 act on v as zero, the induced module (4.3) is one-dimensional
and isomorphic to W

1,iq
1
2 z1

.

Now we turn to the case (ii) when we fix z2 = z−1
1 . In this case, both (4.9) and (4.14)

give the same relation

(4.20) u2v = v

Using our basic relations (4.5)-(4.6) we obtain the relations

ue1v = q
−1uv − iq−

1
2 z1v,(4.21)

e1uv = quv+ iq
1
2 z−1

1 v(4.22)

and so applying u−1 on the both sides of the equations and using (4.20) we get

e1v = q
−1
v − iq−

1
2z1uv,(4.23)

e0v = qv + iq
1
2 z−1

1 uv(4.24)

and similar formulas for ue0v and e0uv. Therefore, the action of e0e1, e1e0, etc., on v is
a linear combination of v and uv. Therefore the induced module (4.3) for z2 = z−1

1 is
two-dimensional and irreducible (the irreducibility is easy to check for generic z1) and
thus isomorphic to W0,z. The basis in this module can be chosen as {v1 = e1v, v0 =

−iq−3/2z1e0v} which is the standard affine diagrams basis: v1 = and v0 =

. The weight of the non-contractible loops z + z−1 is then computed as

(4.25) e0v1 = (z + z−1)v0 and e1v0 = (z + z−1)v1
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and a simple calculation gives z = −iq−
1
2 z1. Note that in this case, there is in fact an

ambiguity for the sign of z, since the pair (v1, z) is defined only up to a sign: in fact, the
two modules W0,±z[2] are isomorphic and our choice of the sign in z is just a convention.

Finally, after simple but long calculations we conclude the fusion formula

(4.26) W 1
2
,z1[1] ×̂f W 1

2
,z2[1] =





W
1,iq

1
2 z1

[2] when z2 = −qz1,

W
0,−iq−

1
2 z1

[2] when z2 = z−1
1 ,

0 otherwise.

Note that we have the same conditions on non-zero fusion W 1
2
,z1
[1] ×̂f W 1

2
,z2
[3] on 1+3

sites, as the basic relations have the same form as here. It just takes more calculations
to find a basis in the two non-zero cases. It will be proven below (using our construction
of direct systems of categories) that the formula (4.26) holds in this case as well.

4.3.2. Fusion on 1+2 sites. By a direct calculation on 1+2 sites similar to the previous
calculation, we have found the following fusion

(4.27) W 1
2
,z1
[1] ×̂f W1,z2 [2] =





W 3
2
,−qz1

[3] when z2 = −iq3/2z1,

W 1
2
,−q/z1

[3] when z2 = iq1/2z−1
1 ,

0 otherwise.

A general formula for the fusion on N1+N2 sites for any pair of the standard modules
Wj1,z1[N1] and Wj2,z2[N2] is derived in [36], where we also discuss physical implications
of the results.

An alternative to the diagrammatical calculation is presented in App. A.3 where we
give a few more examples. We use there the relation to the affine Hecke algebra discussed
below.

4.4. Remark on the affine Hecke algebra. The affine Temperley Lieb algebra TaN(m)

is known to be deeply related to the affine Hecke algebra ĤN(q) with m = q + q
−1. It

is useful here to recall some basic facts about the latter [44]. We then show how our
definition of the affine TL tower is related to the more standard tower of affine Hecke
algebras.

4.4.1. Definition I:. The algebra ĤN (q) is usually defined as follows: it is an associative
algebra over C generated by σi, with 1 ≤ i ≤ N − 1, and y±1

j , with 1 ≤ j ≤ N , subject

to the relations2

(σi + 1)(σi − q
−2) = 0

[σi, σj ] = 0, |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1(4.28)

together with

[yi, yj] = 0

[yj, σi] = 0, j 6= i, i+ 1

σiyiσi = q
−2yi+1 .(4.29)

2We use here the standard conventions to facilitate comparison with the literature. A variant - more
suitable to the T

a
N quotient is discussed in the appendix.
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Note that we have thus the braid generators σi (subject to the standard Hecke relations)
and the family of commutative generators yj that have the commutation relations σiyi =

q
−2yi+1σ

−1
i = yi+1σi+(1−q

−2)yi+1. The algebra ĤN can be thus considered as a twisted
tensor product HN ⊗ C[y±1

1 , . . . , y±1
N ], where HN is the finite Hecke algebra. It is well-

known indeed that ĤN is isomorphic as a vector space to the tensor product of the finite
Hecke algebra and the algebra of Laurent polynomials in yj.

4.4.2. Zelevinsky’s tensor product. The definition of ĤN given above in terms of σi and
yj leads us to a (well known) homomorphism of algebras

(4.30) ĤN1(q)⊗ ĤN2(q) 7→ ĤN1+N2(q)

where, in the same notations as in (3.7), we have

(4.31) σ
(1)
j 7→ σj , σ

(2)
k 7→ σN1+k, 1 ≤ j ≤ N1 − 1, 1 ≤ k ≤ N2 − 1.

and

(4.32) y
(1)
j 7→ yj, y

(2)
k 7→ yN1+k, 1 ≤ j ≤ N1, 1 ≤ k ≤ N2.

It is thus an embedding of the algebras.

Having the embedding in (4.30), we can now define the affine Hecke fusion ×̂
H

f as the
induced module (see e.g. [44])

(4.33) M1 ×̂
H

f M2 = ĤN(q)⊗(
ĤN1

⊗ĤN2

)M1 ⊗M2,

where M1 and M2 are modules over ĤN1(q) and ĤN2(q), respectively. This fusion was
originally introduced by Zelevinsky and since then is usually called the Zelevinsky’s tensor
product of affine Hecke algebra modules.

4.4.3. Definition II:. Meanwhile, the algebra ĤN (q) admits another definition involving
generators σi, i = 1, . . . , N (recall i was running only up to N − 1 in the previous
definition) and a translation generator τ such that

(σi + 1)(σi − q
−2) = 0

[σi, σj ] = 0, |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1

τσiτ
−1 = σi+1(4.34)

and the indices have to be interpreted modulo N . The equivalence of the two definitions
follows from the identification

(4.35) τ = y1σ1 . . . σN−1 ,

see a complete proof in [45]. Note that the relations are invariant under rescaling of τ
in the second definition, and y1 in the first definition.

Let us now see what happens to the homomorphism (4.31)-(4.32) with the second

definition of ĤN . We have now

(4.36) τ (1) 7→ y1σ1 . . . σN1−1, τ (2) 7→ yN1+1σN1+1 . . . σN1+N2−1

Meanwhile, we have also for the algebra on N1 +N2 sites

(4.37) τ = y1σ1 . . . σN1+N2−1
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An easy calculation then leads to

τ (1) = τσ−1
N1+N2−1 . . . σ

−1
N1
, τ (2) = q

2N1σN1 . . . σ1τ(4.38)

These formulas become identical3 with those we used earlier in (3.8) after taking the

proper quotient of ĤN(q) which we describe now.
We now recall that the affine Temperley–Lieb algebra T

a
N ≡ T

a
N(q + q

−1) can be
obtained from the affine Hecke in two steps [45]: first, we demand the relations

(4.39) Ei ≡ 1 + σi + σi+1 + σiσi+1 + σi+1σi + σiσi+1σi = 0, i = 1, . . . , N,

or equivalently take a quotient of the affine Hecke algebra ĤN by the two sided ideal

generated by E1 (note that all Ei’s are in the ideal). This quotient – denote it T̂LN – is
not in itself the affine Temperley-Lieb algebra T

a
N because of the second relation in (3.2)

which does not follow from (4.39). (This relation follows instead from considering the
realization as an algebra of diagrams.) The second step in obtaining T

a
N is thus, after

identifying τ with (iq−1/2)N−1u, and σi with iq−1/2gi, to take a quotient by the ideal
generated by the element

(4.40) ω ≡ u2eN−1 − e1 . . . eN−1.

In total, we have

(4.41) T
a
N = ĤN/I, where I = 〈E1, ω〉

where we introduce the two-sided ideal I generated by E1 and ω.

4.5. The affine TL fusion from Zelevinsky’s tensor product. We will use the
following lemma that relates induced modules over an algebra and over its quotient.

Lemma 4.5.1. Let A be an associative algebra, I a two-sided ideal in A and B = A/I
the quotient algebra. Let also C be a subalgebra in A and IC = C ∩ I (IC is thus an
ideal in C). Then, C/IC is a subalgebra in B and we have an isomorphism of induced
modules

(4.42) IndBC/ICM
∼= IndACM/(I · IndACM) ,

where M is a left C-module with trivial action of IC, i.e., M is also a module over the
quotient algebra C/IC.

Proof. We first show that IC = C ∩ I is an ideal in C: let r ∈ IC then on one side
a · r · b ∈ C for any a, b ∈ C because r ∈ C and on the other side a · r · b is also in I
because r ∈ I; therefore, a · r · b is in IC . We consider then the quotient C/IC which is
obviously a subalgebra in B = A/I. Therefore, the left hand side of (4.42) is well-defined.
We rewrite then the right hand side of (4.42) as

A⊗C M/(I · A⊗C M) ∼= (A/I)⊗C/IC (M/IC ·M) = B ⊗C/IC M,

where the first isomorphism follows simply from the definition of the balanced tensor
product while the second is by definition of B and our assumption on M , which has the
trivial IC action. This finishes the proof of the lemma. �

3Note that in the affine Hecke algebra, the overall normalization of the yi generators (in the first
definition) or the τ generator (in the second definition) is not fixed, in contrast with the normalization
of u in the definition of affine TL (see eq. (3.2)).
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In our context, A = ĤN with the ideal I = I defined in (4.41) and the quotient algebra

B = T
a
N , the subalgebra C is the product ĤN1 ⊗ ĤN2 , with N1 + N2 = N , and we

denote IC = I ∩ C. Using Lemma 4.5.1, we have for T
a
Ni
-modules Mi an isomorphism

(reading (4.42) from right to the left)

(4.43) M1 ×̂
H

f M2/(I ·M1 ×̂
H

f M2) ∼= T
a
N ⊗

ĤN1
⊗ĤN2

/IC

(
M1 ⊗M2/(IC ·M1 ⊗M2)

)
,

where ×̂
H

f is the affine Hecke fusion introduced in (4.33) and the quotient ĤN1 ⊗ ĤN2/IC
is considered as a subalgebra in T

a
N . Note that in App. A we actually compute the left-

hand side of (4.43) and it agrees with the affine TL fusion computed here and in [36].
Let us formulate the following conjecture:

Conjecture 4.5.2. We have an isomorphism ĤN1 ⊗ ĤN2/IC
∼= T

a
N1

⊗ T
a
N2

of algebras,
where the ideal IC is defined as the intersection of the ideal I = 〈E1, ω〉 with the subalgebra

ĤN1 ⊗ ĤN2 in ĤN1+N2.

Under Conj. 4.5.2, we obtain the affine TL fusion M1 ×̂f M2 on the right hand side
of (4.43). We demonstrate in several examples in App. A that the fusion ×̂f for T

a
N

modules indeed can be computed as the quotient M1 ×̂
H

f M2/(I ·M1 ×̂
H

f M2) of the fusion

×̂
H

f of the same modules but considered as ĤN -modules, i.e. of the pull-back of the affine

TL modules. However, while arbitrary modules of ĤN1 and ĤN2 can be fused to give a
non trivial result, in general, the quotient turns out to be empty, except when some
specific “resonance” conditions are satisfied. This is discussed more in the appendix.

5. Limits of TL-mod categories

We now go back to the finite TL representation categories and prepare the machinery
that we are going to use in the case (more interesting to us) of affine TL to show that
the affine TL fusion does not depends on the choice of the pair (N1, N2) and is equipped
with an associator. The affine case will be treated in the next section.

5.1. Arc-tower of TL algebras. Recall that in Section 2.1 we introduced a standard
tower of TL algebras by using the standard embeddings. These embeddings were used to
define the fusion functor for each pair of numbers (N1, N2). Our task here is to connect
the TLN -mod categories at different N , i.e. to construct an inductive system of TLN -mod
and to show that the fusion functors induce a monoidal structure in the inductive limit
category. For such a connection between different N , we use another tower of the finite
Temperley–Lieb algebras given by what we call (right) arc-embeddings :

TLN
ψ

−−−−→ TLN+2

defined in terms of TL diagrams by enlarging the TLN diagrams with arcs (instead of
the vertical strings) at sites (N + 1, N + 2) in the top and bottom of the diagram, or in
other words

ψ(ej) = e(N)ej e(N) ,

where we introduce the idempotent

(5.1) e(N) =
1

m
eN+1 .
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It is straightforward to check that ψ defines a homomorphism of algebras with trivial
kernel. Such a tower will be called arc-tower.

Note also that we have an isomorphism TLN
∼= e(N)TLN+2 e(N) and can thus consider

TLN as an idempotent subalgebra in TLN+2. This allows us to define two functors
between the categories of TL modules as follows. Recall that CN denotes the category
of finite-dimensional TLN -modules. We have the localization functor

(5.2) LN : CN+2 → CN such that M 7→ e(N)M ,

with an obvious map on morphisms, and its right inverse, the so called globalization
functor

(5.3) GN : CN → CN+2 such that M 7→ TLN+2 e(N) ⊗TLN
M,

where TLN+2 e(N) is considered as a left module over TLN+2 (by the left multiplication)
and a right module over the idempotent subalgebra e(N)TLN+2 e(N) (by the right mul-
tiplication), the balanced tensor product is also taken over the idempotent subalgebra
TLN = e(N)TLN+2 e(N). On morphisms, we have G(f) = id⊗TLN

f . It is a simple exercise
to check that the composition LN ◦GN is naturally isomorphic to the identity functor on
CN . The reverse composition is not the identity, as the two categories are obviously not
equivalent. Instead, we have the following statement.

Proposition 5.2. The composition GN ◦ LN maps a TLN+2-module M to Ie ·M , where
Ie is the two-sided ideal generated by e(N) in TLN+2.

Proof. We compute the composition GN ◦ LN as

(5.4) GN ◦ LN : M 7→ TLN+2 e(N) ⊗TLN

(
e(N)TLN+2 ⊗TLN+2

M
)
,

where we rewrote M as TLN+2 ⊗TLN+2
M . Then, we use the associativity of the tensor

product over algebras and rewrite the expression in (5.4) as

(5.5) GN ◦ LN(M) =
(
TLN+2 e(N) ⊗TLN

e(N)TLN+2

)
⊗TLN+2

M ,

where recall that the tensor product is over TLN = e(N)TLN+2 e(N). We also note the
isomorphism

TLN+2 e(N) ⊗TLN
e(N)TLN+2

∼=
−−−−→ TLN+2 · e(N) · TLN+2 = Ie

of the TLN+2 bimodules (by the left and right multiplication) given by

(5.6) a e(N) ⊗ e(N)b 7→ a e(N)b , for a, b ∈ TLN+2 .

The inverse to this map can be constructed as follows: any element in Ie can be presented
as a e(N)b (though not in a unique way, one can rewrite a e(N)b = a′ e(N)d with a

′ = a e(N)c if
b = c e(N)d); take any of these representatives and map a e(N)b 7→ a e(N)⊗ e(N)b. This map
is well-defined, i.e., does not depend on the representative because the tensor product is
over e(N)TLN+2 e(N), and obviously inverse to the map (5.6). Finally, using (5.5) together
with the isomorphism in (5.6) we obtain an isomorphism of vector spaces

GN ◦ LN(M)
∼=

−−−−→ Ie ⊗TLN+2
M = Ie ·M.

Note also that the TLN+2 actions are equal on both of sides – they are simply given by
the multiplication, so the modules are actually equal and not just isomorphic. �

Remark 5.2.1. Note that the ideal Ie generated by e(N) in TLN+2 is spanned by all
TL diagrams except the unit 1. This is easy to see in terms of the generators of the
subalgebra Ie: all ei’s are in Ie.
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5.3. The direct limit C∞. We use the globalisation functors GN , for N ≥ 1, in con-
structing certain direct systems of the TL representation categories CN and eventually
their direct limits. By a direct (or inductive) system of categories we mean a pair
{Ci, Fij} of a family of categories Ci indexed by an ordered set I and a family of functors
Fij : Ci → Cj for all i ≤ j satisfying the following properties: (i) Fii is the identity
functor on Ci, and (ii) Fik is naturally isomorphic to Fjk ◦ Fij for all i ≤ j ≤ k. The
direct limit

(5.7) C∞ ≡ lim
−→

Ci

of the direct system {Ci, Fij} is defined as the disjoint union
∐

i Ci/ ∼ modulo an
equivalence relation: two objects Vi ∈ Ci and Vj ∈ Cj in the disjoint union are equivalent
if and only if there is k ∈ I such that Fik(Vi) = Fjk(Vj); and similarly for morphisms: two
morphisms fi : Vi →Wi and fj : Vj → Wj are equivalent if the equality Fik(fi) = Fjk(fj)
holds in Hom(Fik(Vi), Fik(Wi)). We obtain from this definition canonical functors Fi∞ :
Ci → C∞ mapping each object to its equivalence class. We will use these functors to
define additional structures on C∞, such as tensor product etc.

Recall that we introduced the “enveloping” TL category

(5.8) C =
⊕

N≥1

CN

which means that C contains CN as a full subcategory and there are no morphisms
between the full subcategories for different N (it is also known as the disjoint union of
CN ’s). The category C is thus graded by N. We will label an object M from CN asM [N ]
to emphasize its grade.

Inside C, we consider two direct systems (recall the definition above, where Ci = Ci

and Fij = Gj−2 ◦ . . .Gi+2 ◦ Gi, with i ≤ j)

C1
G1−−→ C3

G3−−→ . . .

and

C2
G2−−→ C4

G4−−→ . . . .

We denote the corresponding direct limits as

(5.9) C
odd
∞ = lim

−→
Codd and C

ev
∞ = lim

−→
Ceven .

Then, we define the category

(5.10) C∞ = C
ev
∞ ⊕ C

odd
∞ .

Note that by the construction the category C∞ is an abelian C-linear category for any
non-zero value of q, i.e., including the roots of unity cases (except q = ±i where our
construction is not defined).

Remark 5.3.1. We note that left arc-embeddings can be introduced similarly enlarging
diagrams on the left with the pair of the arcs: introduce a new idempotent ẽ(N) in TLN+2

as

(5.11) ẽ(N) =
1

m
e1 ∈ TLN+2

and define left arc-embeddings:

TLN
ψ̃

−−−−→ TLN+2
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with
ψ̃(ej) = ẽ(N)ej+2 ẽ(N) .

We have also new localization LlN and globalization GlN functors corresponding to the
new idempotent subalgebra TLN

∼= ẽ(N)TLN+2 ẽ(N): they are defined similarly to LN
and GN as in (5.2) and (6.9), respectively. It is clear that LlN and LN are naturally
isomorphic, as well as their adjoint functors GlN and GN . (The isomorphism can be
explicitly stated in terms of the TL diagrams.)

The interesting property of the localization functors LN is that they map the standard
(resp., costandard) module of a weight j on N+2 sites to the standard (resp., costandard)
module of the same weight j but on N sites. We state this as follows.

Proposition 5.3.2. For any non-zero q, the TLN -module e(N)Wj [N + 2] is equal to the
standard module Wj[N ] for j ≤ N/2 and 0 otherwise.

Proof. We recall that TLN+2 is a quasi-hereditary algebra and the idempotent e(N) be-
longs to a heredity chain of TLN+2, therefore TLN = e(N)TLN+2 e(N) is also a quasi-
hereditary algebra. The proof of the proposition is then standard (in the theory of
quasi-hereditary algebras) and follows for example from [46, Sec. 3.3 and Prop. 3.4].

It is also possible to prove the result by elementary means. First, by adding an arc
to the right of any link diagram in Wj [N ], it is clear that we obtain a link diagram in
e(N)Wj [N+2]. Let us call this map by ρ : Wj [N ] → e(N)Wj [N+2], its kernel is obviously
trivial. Conversely, we start from a link diagram in Wj [N + 2]. If the last two points
are both occupied by through-lines, the action of the idempotent e(N) is zero. If none
of the last two points are occupied by through-lines, the action of e(N) simply produces,
apart from the arc between the N + 1th and N + 2th points, a new connection between
two points among the first N ones, resulting in a link diagram in Wj [N ] after this arc
is removed. If only one point is occupied by a through-line, this point is necessarily the
N + 2th one. The action of e(N) then moves this through-line to a new position – the
point to which the N + 1th point was connected by an arc, resulting again, apart from
the arc between the N + 1th and N + 2th points, into a link diagram with the same
number of through-lines, that is a link diagram in Wj [N ]. We have thus shown by the
first map ρ that Wj[N ] ⊂ e(N)Wj [N + 2] and the inclusion e(N)Wj [N + 2] ⊂ Wj [N ] by
the second map. Hence, we have a bijection. Also, both the maps are obviously module
maps and we have thus an isomorphism of the TLN modules. Moreover, the first map
ρ is the identity map – adding the arc on the right is only a convention in terms of the
diagrammatical bases in the two spaces – and its inverse is the identity as well. We have
thus shown that LN sends the standard module Wj [N + 2] to Wj [N ]. �

As a consequence, we obtain the important property of the globalisation functors:

Proposition 5.3.3. For x ≤ j ≤ N
2
and x = 1

2
(N mod2), we have

(5.12) GN : Wj [N ] 7→ Wj [N + 2] .

Proof. We first compute the composition GN◦LN on the moduleWj [N+2] using Prop. 5.2
and obtain

(5.13) GN ◦ LN : Wj [N + 2] 7→ Ie · Wj [N + 2] ,

which is Wj [N + 2] for x ≤ j ≤ N
2
and zero otherwise, see Rem. 5.2.1. Then, recall that

the composition LN ◦GN is naturally isomorphic to the identity functor on CN . Together
with Prop. 5.3.2, we then obtain (5.12). �
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The idea is then to study the direct limit of the standard modules (their subquotient
structure) and their fusion rules in the direct limit category. So, our next step is to use
the bilinear N-graded tensor product ×f on C, recall Prop. 2.2.2, and to show that it
defines a monoidal structure on C∞, with braiding. We start by exploring an associator
for ×f on C and prove the statement about associativity in Prop. 2.2.2.

5.4. Associativity of TL fusion. The important property of the fusion tensor-product
×f introduced in (2.5) is the associativity.

Proposition 5.4.1. Let M1, M2 and M3 be three modules over TLN1(m), TLN2(m) and
TLN3(m), respectively. The tensor product ×f is equipped with an associator, i.e., we
have a family αM1,M2,M3 of natural isomorphisms of TLN1+N2+N3(m) modules

(5.14) αM1,M2,M3 :
(
M1 ×f M2

)
×f M3

∼=
−−−−→M1 ×f

(
M2 ×f M3

)

given explicitly as, for any triple of vectors mi ∈ Mi, with i = 1, 2, 3,

(5.15) αM1,M2,M3 : a⊗ (b⊗m1 ⊗m2)⊗m3 7→ a · b⊗
(
m1 ⊗ (12+3 ⊗m2 ⊗m3)

)
,

where a ∈ TLN1+N2+N3(m), b ∈ TLN1+N2(m), and 12+3 is the identity in TLN2+N3, and
a · b stands for the product of the element a with the image of b under the standard
embedding of TLN1+N2 into TLN1+N2+N3.

Proof. To prove that the map αM1,M2,M3 in (5.14) is an isomorphism, we show that it
is a composition of two isomorphisms: ℓ and the inverse to r, where ℓ is defined as the
composition of the isomorphisms

(5.16)

ℓ :
(
M1 ×f M2

)
×f M3 = TL1+2+3 ⊗TL1+2⊗TL3

[(
TL1+2 ⊗TL1⊗TL2 M1 ⊗M2

)
⊗M3

]

∼=
−−−−→ TL1+2+3 ⊗TL1+2⊗TL3

[(
TL1+2 ⊗ TL3 ⊗TL1⊗TL2⊗TL3 (M1 ⊗M2 ⊗M3)

)]

∼=
−−−−→ TL1+2+3 ⊗TL1⊗TL2⊗TL3 (M1 ⊗M2 ⊗M3),

where we use the short-hand notations TLi ≡ TLNi
(m), TLi+j ≡ TLNi+Nj

(m), etc.; the
first line is by definition, in the second line we used that M3

∼= TL3 ⊗TL3
M3 and an

obvious rearrangement of the tensor factors, to establish an isomorphism in the third
line we used the associativity of the tensor product over rings — the final result is obvious
then. In the third line, we consider the tensor product M1 ⊗M2 ⊗M3 as the module
over the algebra TL1⊗TL2⊗TL3 which is considered as a subalgebra in TL1+2+3, by the
embedding (3.24). Explicitly, the isomorphism ℓ is given by

(5.17) ℓ : a⊗ (b⊗m1 ⊗m2)⊗m3 7→ a · b⊗ (m1 ⊗m2 ⊗m3) .

Similarly, we introduce the isomorphism r of the right-hand side of (5.14) to the third
line in (5.16):

(5.18) r : a⊗
(
m1 ⊗ (c⊗m2 ⊗m3)

)
7→ a · c⊗ (m1 ⊗m2 ⊗m3) ,

where c ∈ TLN2+N3(m). We have thus the inverse to r, and the map αM1,M2,M3 is defined
as the composition r−1 ◦ ℓ with the final result in (5.15).

The naturality of αM1,M2,M3 is obvious. This finishes our proof of the proposition. �

Note that ×f defines the tensor product also for morphisms: for two morphisms in CN

f : M → M ′ and g : K → K ′, we say f ×f g : M ×f K → M ′ ×f K
′ for idTLN

⊗ f ⊗ g
where ⊗ is in the category of vector spaces.
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Proposition 5.4.2. The family αM1,M2,M3 of natural isomorphisms of TLN1+N2+N3-modules
from (5.14) satisfies the pentagon identity

(5.19) αM1,M2,M3×fM4 ◦ αM1×fM2,M3,M4

= (idM1 ×f αM2,M3,M4) ◦ αM1,M2×fM3,M4 ◦ (αM1,M2,M3 ×f idM4)

or, equivalently, the “pentagon” diagram

((M1 ×f M2)×f M3)×f M4

(M1 ×f M2)×f (M3 ×f M4)

αM1×M2,M3,M4

99ttttttttttttttt

M1 ×f (M2 ×f (M3 ×f M4))

αM1,M2,M3×M4

%%❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

(M1 ×f (M2 ×f M3))×f M4

αM1,M2,M3
×f idM4

��✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱✱
✱

M1 ×f ((M2 ×f M3)×f M4)
αM1,M2×M3,M4 //

idM1
×f αM2,M3,M4

II✒✒✒✒✒✒✒✒✒✒✒✒✒✒

commutes (we use here the abbreviation × instead of ×f in the indices of α).

Proof. We denote an element from ((M1 ×f M2)×f M3)×f M4 as

(5.20) a⊗
(
b⊗ (c⊗m1 ⊗m2)⊗m3

)
⊗m4,

for mi ∈ Mi, i = 1, 2, 3, 4, and a ∈ TL1+2+3+4, b ∈ TL1+2+3, and c ∈ TL1+2. (It is clear
which tensor products in (5.20) are the balanced tensor products over the TL subalgebras,
so we do not indicate them explicitly.) Using (5.15), we begin with calculating the left-
hand side of (5.19) applied to such a vector:

(5.21) a⊗
(
b⊗ (c⊗m1 ⊗m2)⊗m3

)
⊗m4

7→ a · b⊗
(
(c⊗m1 ⊗m2)⊗ (13+4 ⊗m3 ⊗m4)

)

7→ a · b · c⊗m1 ⊗
(
12+3+4 ⊗m2 ⊗ (13+4 ⊗m3 ⊗m4)

)
.

On the other hand, the right side of (5.19) gives

(5.22) a⊗
(
b⊗ (c⊗m1 ⊗m2)⊗m3

)
⊗m4

7→ a⊗
(
(b · c)⊗m1 ⊗ (12+3 ⊗m2 ⊗m3)

)
⊗m4

7→ a · b · c⊗m1 ⊗
(
12+3+4 ⊗ (12+3 ⊗m2 ⊗m3)⊗m4

)

7→ a · b · c⊗m1 ⊗
(
12+3+4 ⊗m2 ⊗ (13+4 ⊗m3 ⊗m4)

)
,

which equals the third line of (5.21), and so the pentagon diagram indeed commutes. �

We have thus proven that C is a semi-group category (note that we have no tensor
unit because we do not have the grade zero N = 0 subcategory.) Our next step is the
introduction of braiding isomorphisms in C.
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5.5. Braiding for TL fusion. Motivated by a construction in [19], we introduce the
braiding in C as follows. Let gN1,N2 defines the following element in TLN1+N2

(5.23) gN1,N2 =
(
g−1
N2
. . . g−1

2 g−1
1

) (
g−1
N2+1 . . . g

−1
2

)
. . .

(
g−1
N2+N1−1 . . . g

−1
N1

)

which passes strings from the left over those from the right (here, N1 = 3, N2 = 2):

(5.24)

gN1,N2
≡ =

and each braid-crossing (or equivalently g±1
i ) stands for the linear combination (3.5).

Note that the element gN1,N2 defines an automorphism on TLN1+N2 by the conjugation
a 7→ gN1,N2 · a · g−1

N1,N2
which maps the subalgebra TLN1 ⊗ TLN2 (under the standard

embedding) to the subalgebra TLN2 ⊗ TLN1 as

(5.25) a⊗ b 7→ gN1,N2 · (a · b) · g
−1
N1,N2

= b⊗ a , a ∈ TLN1 , b ∈ TLN2 ,

where a · b stands for the multiplication of a and b which are considered as the elements
in TLN1+N2 under the standard embedding, and the last equality is most easily computed
in terms of the diagrams. Of course, the conjugation on TLN1+N2 is non-trivial, which is
easily seen for the generator eN1 .

Because of this flip of the two subalgebras, the action by gN1,N2 relates the two induc-
tions from modules over these two subalgebras. This allows us to define the family of
braiding isomorphisms on the (N1, N2) graded components of C as

(5.26) cM1,M2 : M1[N1]×f M2[N2]
∼=

−−−−→M2[N2]×f M1[N1]

by the conjugation with gN1,N2 :

(5.27) a⊗m1 ⊗m2 7→ gN1,N2
· a · g−1

N1,N2
⊗m2 ⊗m1 ,

where a ∈ TLN1+N2 , and m1 ∈ M1[N1], m2 ∈ M2[N2]. Here, we write a ⊗ m1 ⊗m2 for
a representative in the corresponding class in M1[N1] ×f M2[N2]. We first check that
the map (5.27) is well-defined, i.e., does not depend on a representative in the class.
Indeed, assume that m1 = b · m′

1 and m2 = c · m′
2 for some b ∈ TLN1, c ∈ TLN2 and

some m′
1 ∈M1[N1], m

′
2 ∈M2[N2], and let us compute (5.27) for the other representative

(setting here g ≡ gN1,N2)

(5.28)

a · (b · c)⊗m′
1 ⊗m′

2 7→ g · abc · g−1 ⊗m′
2 ⊗m′

1 = g · a · g−1 · (g · bc · g−1)⊗m′
2 ⊗m′

1

= g · a · g−1 ⊗ (c⊗ b)⊗m′
2 ⊗m′

1 = g · a · g−1 ⊗m2 ⊗m1 ,
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where we used (5.25) for the second equality, and the first and third ⊗’s in the second
line are over the subalgebra TLN2 ⊗ TLN1 . The final result in (5.28) agrees with (5.27).

We emphasize that the TLN1+N2 action on the left-hand side of (5.27) is given by the
multiplication while an element a′ ∈ TLN1+N2 acts by multiplication with gN1,N2

·a′ ·g−1
N1,N2

on the right-hand side of (5.27), by the definition of its module structure which is given
by applying the automorphism on the algebra. This shows the intertwining property of
the map cM1,M2. This map is obviously bijective. We have thus proven that cM1,M2 is an
isomorphism in C.

Note finally that the family cM1,M2 satisfies the coherence (hexagon) conditions re-
quired for the braiding (we use conventions from Kassel’s book [47], see the hexagon
conditions in eqs. (1.3)-(1.4) in Chapter 13.1.)

Proposition 5.5.1. The family cM1,M2 of isomorphisms defined in (5.26)-(5.27) satisfies
the hexagon conditions:

(5.29) αM2,M3,M1◦cM1,M2×fM3◦αM1,M2,M3 = (idM2×f cM1,M3)◦αM2,M1,M3◦(cM1,M2×f idM3)

on the maps from
(
M1 ×f M2

)
×f M3 to M2 ×f

(
M3 ×f M1

)
and

(5.30) α−1
M3,M1,M2

◦cM1×fM2,M3◦α
−1
M1,M2,M3

= (cM1,M3×f idM2)◦α
−1
M1,M3,M2

◦(idM1×f cM2,M3)

on the maps from M1 ×f
(
M2 ×f M3

)
to

(
M3 ×f M1

)
×f M2.

Proof. To show the equalities, we first note that the isomorphism αM1,M2,M3 from (5.15)
maps a representative to another representative in the same equivalence class correspond-
ing to a · b ⊗ m1 ⊗ m2 ⊗ m3. Therefore, the map (5.14) on the set of the equivalence
classes, which is the set

(
M1 ×f M2

)
×f M3, is actually the identity map. The equal-

ity (5.29) then follows from the identity gN1,N2+N3 = (1N2 ⊗ gN1,N3) · (gN1,N2 ⊗ 1N3),
where 1N is the unit on N sites, while the equality (5.30) holds because of the identity
gN1+N2,N3 = (gN1,N3 ⊗ 1N2) · (1N1 ⊗ gN2,N3). �

We have thus proven the following theorem.

Theorem 5.6. The category C = ⊕N>0CN is a braided semi-group category: it has the
N-graded tensor product ×f equipped with the associator αA,B,C defined in (5.14)-(5.15)
and satisfying the pentagon condition and equipped with the braiding isomorphisms cA,B
defined in (5.26)-(5.27) that satisfy the hexagon conditions.

5.7. Braided monoidal category C∞. We now recall the category C∞ obtained in
Sec. 5.1 as the direct limit, see (5.10) with (5.9), of a direct sequence of the categories
CN inside C. The direct limit C∞ is an abelian C-linear category by construction (for
any q which is not 0 or ±i). Our first objective is to study subquotient structure of
objects, e.g. the projective objects in C∞. It turns out that there is an interesting corre-
spondence between these projective objects and the so-called staggered representations
of the Virasoro algebra (this will be discussed below in Sec. 7). Our second objective is
to study different structures on C∞, as tensor product, braiding, dual objects, etc. The
idea here is to use the tensor product ×f in C, its associator αM1,M2,M3 and the braiding
cM1,M2 and to show that these structures can be lifted to the limit category C∞.

5.7.1. Standard and projective objects in C∞. For the first objective, we recall the def-
inition of the standard TL modules given above (2.7) and Prop. 5.3.3 – it suggests the
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following numeration of standard objects in the direct limit C∞:

(5.31) Wj ≡ {Wj[2j], Wj [2j + 2], . . . , Wj [N ], . . . } , j ∈
1

2
N ,

where the set in the figure brackets is the equivalence class of the objects in C connected
by the globalization functors GN for different values of N . In general, for any non-zero
TLN -module M [N ] such that its localisation is zero, we define

(5.32) M ≡ {M [N ], M [N + 2], . . . }, with M [N + 2] ≡ GN(M [N ]), etc.,

as the corresponding equivalence class in the direct limit C∞.
To study the subquotient structure of Wj and their projective covers, we recall first

the definition of the space of morphisms in the direct limit category, see definitions
below (5.7): letM1,M2 ∈ C∞ then the vector space of morphisms is the set of equivalence
classes

(5.33) HomC∞
(M1,M2) =

∐

N∈N

HomCN
(M1[N ],M2[N ])/ ∼ ,

where the equivalence relations are defined as f1 ∼ f2 iff f2 is the image of a sequence
of the functors GN applied to f1. Therefore, to specify a morphism in HomC∞

(M1,M2)
it is enough to choose a non-zero representative in HomCN

(M1[N ],M2[N ]).

Recall then the description of the abelian categories CN in Sec. 2.3. It is clear that when
q is not a root of unity the direct limit C∞ is a semi-simple category and isomorphism
classes of simple objects are exhausted by Wj from (5.31).

Let q = eiπ/p with integer p ≥ 3 and recall the notation s ≡ s(j) = (2j+1) mod p. By
the definition of the Hom spaces in C∞ we have a morphism from Wk to Wj iff k = j or
k = j+p−s and the properties of the morphism for k = j+p−s are similar to the finite
N case: its kernel is the socle and its image is the socle as well. Then, the subquotient
structure of the standard objects Wj is the following: if s(j) = 0 the objects are simple
while for non-zero s(j) we have the subquotient structure

(5.34) Wj = Xj −→ Xj+p−s

where we introduce the notation Xj for the irreducible quotient of Wj – it is the equiv-
alence class of the simple TL modules Xj [N ] in C (note that now there are no zero
conditions on Xk as we had for finite N cases).

We note further that the projective cover of Xj[N + 2] is Pj [N + 2] = GN(Pj [N ]). We
have thus the projective objects in the direct limit C∞:

(5.35) Pj ≡ {Pj[2j], Pj [2j + 2], . . . , Pj[N ], . . . } , j ∈
1

2
N ,

as the equivalence classes of the objects in C connected by the globalisation functors
GN for different values of N . Following the description of the projective covers in CN

around (2.9), the projective objects Pj are then simple if s(j) = 0, they are equal to Wj
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for 0 ≤ j ≤ 1
2
(p− 2) and otherwise have the following structure

Pj =

Xj

}}③③
③③
③③
③

##●
●●

●●
●●

●

Xj−s

!!❉
❉❉

❉❉
❉❉

Xj+p−s

{{✇✇
✇✇
✇✇
✇

Xj

(5.36)

That they are projective covers of the simple objects Xj is easy to show by the definition
of the direct limit (they are projective indecomposable and obviously cover Xj). Note
that now in C∞ we do not have the zero conditions as on the nodes for (2.9) and the
subquotient structure for Pj has always four non-zero simple subquotients (if s(j) 6= 0
and 2j ≥ p).

We have thus the reciprocity relation

(5.37) [Pj : Wj′] = [Wj′ : Xj]

in C∞ as well (as in CN ) and it is a highest-weight category with the standard objects
described by (5.31) and (5.34).

We will come back to the Wj and their projective covers Pj for q a root of unity at the
last section 7 where we discuss the connection with the Virasoro algebra representation
theory.

5.7.2. Tensor product in C∞. We now turn to our second objective in this section and
study the monoidal structure on C∞. Let us define the tensor product ⊗C∞

on C∞ as

(5.38) ⊗C∞
: (M1,M2) 7→ M1 ⊗C∞

M2 = lim
[
M1[N1]×f M2[N2]

]
,

where lim[. . .] stands for taking the direct limit of the object (in this case, from CN1+N2)
or the corresponding equivalence class (with respect to the functors GN ). We show now
that (5.38) is well-defined and does not depend on representatives in the classes M1

and M2.
We begin by establishing a simple lemma.

Lemma 5.7.3. Let T be an associative algebra over a field k with unit 1, and Ie = T · e
is its left ideal generated by an idempotent e ∈ T . We then have

Ie · Ie = Ie .

Proof. It is obvious that Ie · Ie ⊂ Ie because Ie is the left ideal. On the other hand, we
also have Ie ⊂ Ie · Ie. Indeed, any element of the form a · e ∈ Ie can be rewritten in the
form (a · e) · (1 · e) ∈ Ie · Ie. This proves the statement in the lemma. �

And now we use this lemma to prove yet another one.

Lemma 5.7.4. The TL modules M1[N1]×fM2[N2] and M1[N1]×f M2[N2+2] are in the
same equivalence class in C∞ or, equivalently, we have

(5.39) GN1+N2 : M1[N1]×f M2[N2] 7→M1[N1]×f M2[N2 + 2] .
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Proof. By definition of ×f and the functor GN , we set N = N1 +N2 (also TL1 ≡ TLN1 ,
etc.) and we have

(5.40) M1[N1]×f M2[N2] = TLN ⊗(TL1⊗TL2) M1[N1]⊗M2[N2]

GN−−−−−→ TLN+2 e(N) ⊗TLN

(
TLN ⊗(TL1⊗TL2) M1[N1]⊗M2[N2]

)

and then we establish the following sequence of isomorphisms of the right-hand side
of (5.40)

(5.41) RHS of (5.40)
associativity
−−−−−−−→

(
TLN+2 e(N) ⊗TLN

TLN

)
⊗(TL1⊗TL2) M1[N1]⊗M2[N2]

TLN= e(N)TLN+2 e(N)
−−−−−−−−−−−−−→ TLN+2 e(N)TLN+2 e(N) ⊗(TL1⊗TL2) M1[N1]⊗M2[N2]

Lem. 5.7.3
−−−−−−→ TLN+2 e(N) ⊗(TL1⊗TL2) M1[N1]⊗M2[N2] ,

where the second isomorphism is due to the first balanced tensor product in the first line
which is over the subalgebra TLN = e(N)TLN+2 e(N), while we used Lem. 5.7.3 for the
third isomorphism. Note that TL2 in the third line stands for e(N)TLN2+2 e(N) and e(N) is
considered as the corresponding idempotent in the subalgebra TLN2+2 ⊂ TLN+2, also the
module M2[N2] has to be considered as the corresponding module over e(N)TLN2+2 e(N).
Then, we rewrite TLN+2 as TLN+2 ⊗(TLN1

⊗TLN2+2) TLN1 ⊗ TLN2+2 and establish further
isomorphisms

(5.42)

RHS of (5.41)
∼=
−→ TLN+2⊗(TLN1

⊗TLN2+2)

((
TLN1⊗TLN2+2 e(N)

)
⊗(TL1⊗TL2)M1[N1]⊗M2[N2]

)

∼=
−−−−→ TLN+2 ⊗(TLN1

⊗TLN2+2) M1[N1]⊗
(
TLN2+2 e(N) ⊗TL2

M2[N2]
)
,

where we used simple rearrangement of the tensor factors and that TLN1 ⊗TL1
M1[N1] =

M1[N1]. The right-hand side of (5.42) obviously equals to M1[N1] ×f
(
GN2(M2[N2])

)

which is M1[N1]×fM2[N2+2] by the definition of M2[N2+2]. We have thus established
an isomorphism between the right-hand sides of (5.40) and (5.42). Finally, note that the
TLN+2 actions on these two spaces are equal and not just isomorphic and the composition
of the maps is the identity map.

Indeed, the isomorphism from the right-hand side of (5.40) (or GN(M1[N1]×fM2[N2]))
to the right-hand side of (5.42) is given explicitly by the map

(5.43) κ : a e(N) ⊗ b⊗m1 ⊗m2 7→ a · b⊗m1 ⊗ (1N2+2 e(N) ⊗m2) ,

where a ∈ TLN+2 and b ∈ TLN , and mi ∈ Mi[Ni], and we label the generators ej of
TLN2+2 from j = N1 + 1 to N + 1, as usual for the “right” subalgebra, so e(N) is in
the subalgebra TLN2+2. Both the elements (in LHS and RHS of (5.43)) are just different
representatives of the same equivalence class, which is the element of the balanced tensor
product in the third line of (5.41). The map κ is therefore the identity map on the set
of the equivalence classes. This finishes our proof. �

Equivalently, we have the following lemma for the adjoint functors.

Lemma 5.7.5. Let N = N1 + N2 and M1 ∈ CN1 and M2 ∈ CN2+2. The localisation
functor has the following property:

LN1+N2 : M1[N1]×f M2[N2 + 2] 7→ M1[N1]×f e(N)M2[N2 + 2] .
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Proof. We have by definition

LN1+N2

(
M1[N1]×f M2[N2 + 2]

)
= e(N)TLN+2 ⊗(

TLN1
⊗TLN2+2

)M1[N1]⊗M2[N2 + 2].

Note then that the latter expression is isomorphic to

(5.44) e(N)TLN+2 e(N) ⊗(
TLN1

⊗ e(N)TLN2+2 e(N)

) e(N)

(
M1[N1]⊗M2[N2 + 2]

)

because we have (by Lem. 5.7.3)

e(N)TLN e(N)TLN
∼= e(N)TLN .

The expression in (5.44) obviously coincides with M1[N1] ×f e(N)M2[N2 + 2] and thus
finishes the proof. �

Applying repeatedly Lem. 5.7.4, we see that the TL modules M1[N1] ×f M2[N2] and
M1[N1] ×f M2[N2 + 2n], for integer n, are in the same equivalence class, as an object
in C∞. Now, we would like to vary the index N1. For this, recall the definition of the left-
arc embeddings using the idempotents ẽ(N) and the corresponding globalisation functors
GlN introduced in Rem. 5.3.1. Repeating arguments in the proof of Lem. 5.7.4 we obtain

(5.45) GlN1+N2
: M1[N1]×f M2[N2] 7→ GlN1

(M1[N1])×f M2[N2] .

Finally, note that the module GlN1
(M1[N1]) is identical to GN1(M1[N1]), as the TLN1+2

actions are equal (the use of ẽ(N) instead of e(N) is a matter of convention). We thus
obtain that the TL modules M1[N1] ×f M2[N2] and M1[N1 + 2n] ×f M2[N2], for integer
n, are in the same equivalence class in C∞. Altogether, we conclude with the following
corollary.

Corollary 5.7.6. The TL modules M1[N1]×f M2[N2] and M1[N1+2n]×fM2[N2+2m],
for integer n and m, are in the same equivalence class in the direct limit C∞ and thus
just different representatives of the same object in C∞. If m = −n, the two TLN1+N2

modules are even identical in CN1+N2. Their equivalence class is by definition the fusion
M1 ⊗C∞

M2 of two classes M1 and M2 in C∞.

We next define the associator and the braiding for the tensor product ⊗C∞
in C∞. Re-

call that to specify a morphism in HomC∞
(M1,M2) it is enough to choose a representative

in HomCN
(M1[N ],M2[N ]).

Definition 5.7.7. For a triple of objects M1, M2, M3 in C∞ we define an isomorphism

(5.46) αC∞

M1,M2,M3
:

(
M1 ⊗C∞

M2

)
⊗C∞

M3

∼=
−−−−→M1 ⊗C∞

(
M2 ⊗C∞

M3

)

as follows: take any triple of positive integers (N1, N2, N3) such that Mi[Ni] are non-zero,
for i = 1, 2, 3, and take then the corresponding associator αM1[N1],M2[N2],M3[N3] defined in

Prop. 5.4.1, then αC∞

M1,M2,M3
is its equivalence class, i.e. the corresponding element in the

quotient (5.33).

Of course, we have to show that our αC∞ is well-defined and does not depend on the
choice of representatives in the Hom spaces. For this, we first note by Cor. 5.7.6 that(
M1[N1] ×f M2[N2]

)
×f M3[N3] is the same object in CN for any choice of (N1, N2, N3)

such that N = N1 +N2 +N3, and similarly for the other bracketing. The corresponding
isomorphisms αM1[N1],M2[N2],M3[N3] for the different choices of Ni are also identical. We
then only need to show that the associators for (N1, N2, N3) and (N1, N2, N3 + 2) are in
the same equivalence class, i.e. the second is the image of the first through the functor
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GN . Recall that GN(f) = idTLN+2
×f f . To show this, we first calculate the isomorphism

GN (αM1[N1],M2[N2],M3[N3]) on a general element from GN
(
(M1[N1] ×f M2[N2]) ×f M3[N3]

)

as
(5.47)
id⊗α : c e(N)⊗

(
a⊗ (b⊗m1⊗m2)⊗m3

)
7→ c e(N)⊗a · b⊗

(
m1⊗ (1N2+N3 ⊗m2⊗m3)

)

and it can be further rewritten as (by applying the identity map (id ⊗ κ) ◦ κ, see the
definition in (5.43))

c · a · b⊗m1 ⊗
(
1N2+N3+2 ⊗m2 ⊗ (1N3+2 e(N) ⊗m3)

)
.

We then note that the last expression coincides with the image of αM1[N1],M2[N2],M3[N3+2]◦κ
on the left-hand side of (5.47). We have thus shown explicitly (on representatives in the
balanced tensor products) the equality

GN (αM1[N1],M2[N2],M3[N3]) = αM1[N1],M2[N2],M3[N3+2]

and this finishes our proof that Def. 5.7.7 is well-defined. It is obvious by the construction
that the family of isomorphisms in (5.46) satisfies the pentagon identities because each
representative does, recall Prop. 5.4.2.

Definition 5.7.8. In C∞, we similarly define the braiding by the family of isomorphisms

(5.48) cC∞

M1,M2
: M1 ⊗C∞

M2

∼=
−−−−→M2 ⊗C∞

M1

as the equivalence class corresponding to cM1,M2 from HomCN
(M1[N1]×fM2[N2],M2[N2]×f

M1[N1]), which is defined in (5.26), for a choice of N1 and N2 such that both M1[N1]
and M2[N2] are non-zero.

Like in the discussion below the definition of the associator in C∞, we show that (5.48)
does not depend on the choice of (N1, N2), or Def. 5.7.8 is well-defined. For this, it is
enough to show that the two braidings (denote them for brevity as) c1 and c2, one for
M1[N1] ×f M2[N2] and the second for M1[N1] ×f M2[N2 + 2], are in the same equiva-
lence class, or GN1+N2(c1) = c2. We check the equality by a direct calculation on the
representatives in the tensor product GN1+N2

(
M1[N1]×f M2[N2]

)
.

Finally, the braiding isomorphisms (5.48) satisfy the hexagon identities because each
representative does, recall Prop. 5.5.1. We have thus proven the following theorem.

Theorem 5.8. The direct-limit category C∞ defined in (5.10) with (5.9) is a braided
monoidal category with the tensor product ⊗C∞

given in (5.38), with the tensor unit W0,
with the associator αC∞

A,B,C introduced in Def. 5.7.7 and with the braiding isomorphisms

cC∞

A,B defined in Def. 5.7.8.

We only need to comment on the tensor unit W0 – it is the equivalence class of the
standard TL modules with zero number of through-lines. The tensor unit properties of
W0 follows from the finite TL fusion (with even N1 of course)

W0[N1]×f M [N2] ∼=M [N2]×f W0[N1] ∼=M [N1 +N2] .

It is easy to prove for N1 = 2 that M [N2] ×f W0[2] actually equals to GN2(M [N2]) =
M [N2 + 2] and then one proceeds by the induction in N1 using W0[2]×f W0[2] = W0[4]
and the associativity of the fusion.
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5.9. On rigidity and non-rigidity of C∞. We can also introduce (right) duals for
the standard objects Wj in C∞ (though not in C because C does not have the tensor
unit) as follows. We introduce first contragredient objects: for an object M ∈ C∞ let
us pick up its representative M [N ], we then define the contragredient object M∗ as the
equivalence class corresponding to the space of linear forms

(
M [N ]

)∗
where the TLN

action is given with the help of the anti-involution reflecting a TL diagram along the
horizontal line in the middle of the diagram. (Note that the definition does not depend
on the choice of N .) We then introduce right dual for each standard objects Wj , with
j ∈ 1

2
N, as the contragredient object W∗

j – this duality is equipped with an evaluation
map ev : W∗

j ⊗C∞
Wj → W0 and a coevaluation map coev : W0 → Wj⊗C∞

W∗
j (they can

be explicitly fixed on representatives at finite N using the diagrammatical formulation of
the fusion) satisfying the zig-zag rules. One can similarly introduce right duals for any
other objects which are filtered by the standard objects, e.g. for the projective covers.
For generic q, this gives thus duals for all objects in C∞ and the category is actually
rigid.

The problem appears at q a root of unity: the contragredient objects X ∗
j do not give

right duals to Xj for 0 ≤ j ≤ 1
2
(p− 2). Moreover for these values of j, the simple objects

Xj can not have duals (for our choice of the tensor unit) because the Xj’s form a tensor
ideal that does not contain our tensor unit W0, e.g. for p = 3 we compute directly
X ∗

0 [N ] ×f X0[N ] = X0[2N ] which is the simple (one-dimensional) quotient of W0[2N ].
We thus conclude that C∞ is not rigid (for q = eiπ/p and p = 3, 4, 5, . . . ).

We note that the presence of such a tensor ideal that spoils the rigidity is an interesting
property which is in common with representation theory of the Virasoro algebra at critical
central charges, like c = 0, to be discussed in Sec. 7.

We are now going to use the approach elaborated in this section in the case of affine
TL algebra representations. Our proofs of statements in this section were designed in
such a way that the generalization to the affine case is straightforward.

6. A semi-group affine TL category

Recall that in the finite TL case we used the idempotent subalgebras to construct
direct sequences of TL representation categories and their limit C∞. For the affine TL
case, we obtain surprisingly analogous statement by using the same idempotent.

Proposition 6.1. Let m be non zero. Introduce the idempotent e(N) =
1
m
eN+1. Then,

there is an isomorphism

ψ : T
a
N

∼=
−−−−→ e(N)T

a
N+2 e(N),

such that the generators of TaN are mapped as

u±1 7→ m e(N)u
±1

e(N),(6.1)

ej 7→ e(N)ej , 1 ≤ j ≤ N − 1,(6.2)

eN 7→ m e(N)eNeN+2 e(N).(6.3)



34

Proof. To prove that ψ is a homomorphism of algebras is a straightforward use of the
relations in T

a
N+2. For instance, under the mapping we have

u2eN−1 7→ m−1eN+1ueN+1ueN+1eN−1

= m−1eN+1eN+2u
2eN+1eN−1

= m−1e1e2 . . . eN−1eN+1(6.4)

where the first relation in (3.2) (but for TaN+2) was used to go from the first to the second
line, and similarly the second relation in (3.2) was used to go from the second to the
third line. Meanwhile, it is easy to check that

(6.5) e1 . . . eN−1 7→ m−1e1e2 . . . eN−1eN+1

as well, hence checking (3.2) in the image of TaN+2.
To prove that the kernel of ψ is zero, we use the graphical representation of the images

in (6.1)-(6.3), some of which are shown below for N = 4:

(6.6)

u = 7→ 1
m

(6.7)

eN = 7→ 1
m

�

We can thus consider TaN as the idempotent subalgebra in T
a
N+2. This allows us simi-

larly to Sec. 5.1 to define two functors between the categories of affine TL modules. Let

ĈN denotes the category of finite-dimensional TaN -modules. We introduce the localisation
functor

(6.8) L̂N : ĈN+2 → ĈN such that M 7→ e(N)M ,

with an obvious map on morphisms, and its right inverse, so called globalisation functor

(6.9) ĜN : ĈN → ĈN+2 such that M 7→ T
a
N+2 e(N) ⊗Ta

N
M .
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The composition L̂N ◦ ĜN is naturally isomorphic to the identity functor on ĈN . Sim-
ilarly to Prop. 5.2, for the reverse composition we establish the analogous result for TaN
(the proof is just a repetition of the proof of Prop. 5.2 replacing TLN by T

a
N , etc.)

Proposition 6.2. The composition ĜN ◦ L̂N maps a T
a
N+2-module M to Ie ·M , where

Ie is the two-sided ideal generated by e(N) in T
a
N+2.

Remark 6.2.1. Note that the ideal Ie generated by e(N) in T
a
N+2 is spanned by all affine

TL diagrams except the powers of the translation generator un, for n ∈ Z. This is easy
to see in terms of the generators of the subalgebra Ie: all ei, with i ∈ ZN+2, are in Ie.

We study then properties of the two functors L̂N and ĜN with respect to the standard

modules introduced in Sec. 4.2. As in the finite TL case, the localisation functors L̂N send
the standard (resp., costandard) modules to the standard (resp., costandard) modules
of the same weight (j, z).

Proposition 6.3. For any non-zero q, the TaN -module e(N)Wj,z[N+2] is equal to Wj,z[N ]
for j ≤ N/2 and 0 otherwise.

Proof. We begin with determining e(N)Wj,z[N + 2] as a module over the TL subalgebra
TLN ⊂ T

a
N . For this, we use results of [1, Sec. 2.12] and decompose (for a generic value

of q)

Wj,z[N + 2] =

(N+2)/2⊕

k=j

Wk[N + 2]

as a module over the TLN+2 subalgebra. For q a root of unity, the direct sum is replaced
by the filtration by Wk modules such that Wj is a submodule in Wj,z (it is the span
of affine TL diagrams of rank-0), Wj+1 is a submodule in the quotient Wj,z/Wj (it is
the span of affine TL diagrams of rank-1), etc. Note then that e(N) is in the subalge-
bra TLN+2. So, the problem reduces to the finite TL problem: we have to compute

⊕
(N+2)/2
k=j e(N)Wk[N + 2] (or, equivalently, the action of e(N) on each section in the filtra-

tion by Wk’s if q is a root of unity). For this, we use the finite TL result from Prop. 5.3.2:
e(N)Wk[N + 2] = Wk[N ] and obtain

e(N)Wj,z[N + 2] =

N/2⊕

k=j

Wk[N ]

as the TLN module (or the corresponding filtration by Wk’s for q a root of unity). We
have thus e(N)Wj,z[N + 2] ∼= Wj,z′[N ] for some complex number z′.

The fact that the parameter z′ = z can be proven by considering powers of the trans-
lation generator. We known by definition that in Wj,z[N + 2] there is the relation
uN+2 = z2j1. Consider now the image of uN in Wj,z[N ]. We have

uN 7→ m−1(eN+1u)
NeN+1

= m−1ueN(eN+1u)
N−1eN+1

= m−1u2eN−1eN(eN+1u)
N−2eN+1

= . . .

= m−1uNe1e2 . . . eNeN+1(6.10)
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where the relation eju = uej−1 in T
a
N+2 was repeatedly used. We can now replace

the product of Temperley–Lieb elements on the right using the second relation in first
relation in (3.2) for TaN+2, leading to

(6.11) uN 7→ uN+2
e(N) = z2j e(N)

as required. This finishes our proof of the proposition. �

Then, we prove the following property of the globalisation functor in the affine case,
the proof repeats the one for Prop. 5.3.3 with the use of Prop. 6.3.

Proposition 6.3.1. For x ≤ j ≤ N
2
and x = 1

2
(N mod2), we have

(6.12) ĜN : Wj,z[N ] 7→ Wj,z[N + 2] .

6.4. Associativity of the affine TL fusion. Similarly to the finite TL case, we intro-
duce the “enveloping” affine TL category

(6.13) Ĉ =
⊕

N≥1

ĈN

where ĈN is a full subcategory and there are no morphisms between the full subcategories

for different N . The category Ĉ is thus graded by N. We will label an object M from

ĈN as M [N ] to emphasize its grade.
As in the previous section, our next step is to introduce a bilinear N-graded tensor

product (bi-functor) on Ĉ and to show that it defines an associative tensor product in

the direct limit category Ĉ∞ introduced below. We will use then Prop. 6.3 for studying
the affine TL fusion rules in the direct limit.

Recall that in (4.1) we have defined the affine TL fusion bi-functor

(6.14) ×̂f : ĈN1 × ĈN2 → ĈN1+N2

on two modules M1 and M2 as the induced module. It obviously respects the N grading.
The important property of the fusion ×̂f is the associativity.

Proposition 6.4.1. Let M1, M2 and M3 be three modules over T
a
N1
(m), TaN2

(m) and

T
a
N3
(m), respectively. The tensor product ×̂f is equipped with an associator, i.e., we

have a family αM1,M2,M3 of natural isomorphisms of TaN1+N2+N3
(m) modules

(6.15) αM1,M2,M3 :
(
M1 ×̂f M2

)
×̂f M3

∼=
−−−−→M1 ×̂f

(
M2 ×̂f M3

)

given explicitly as, for any triple of vectors mi ∈ Mi, with i = 1, 2, 3,

(6.16) αM1,M2,M3 : a⊗ (b⊗m1 ⊗m2)⊗m3 7→ a · b⊗
(
m1 ⊗ (12+3 ⊗m2 ⊗m3)

)
,

where a ∈ T
a
N1+N2+N3

(m), b ∈ T
a
N1+N2

(m), and 12+3 is the identity in T
a
N2+N3

, and a · b
stands for the product of the element a with the image of b under the εN1+N2,N3 embedding
of TaN1+N2

into T
a
N1+N2+N3

defined in (3.24).
The isomorphisms αM1,M2,M3 satisfy the pentagon identity.

Proof. The proof essentially repeats the poof of Prop. 5.4.1: we replace TLN by T
a
N and

×f by ×̂f , and our manipulations in (5.16) with the balanced tensor products are valid
for the infinite-dimensional algebras, and define the maps ℓ and r as in (5.17) and (5.18).
The map ℓ gives an isomorphism from

(
M1 ×̂f M2

)
×̂f M3 to T

a
1+2+3 ⊗Ta

1⊗Ta
2⊗Ta

3
(M1 ⊗

M2 ⊗M3) where T
a
1 ⊗ T

a
2 ⊗ T

a
3 ≡ T

a
N1

⊗ T
a
N2

⊗ T
a
N3

is considered as the subalgebra in
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T
a
N1+N2+N3

under the composition εN1+N2,N3 ◦ (εN1,N2 ⊗ id), recall the definition (3.24).

Similarly the map r gives an isomorphism from the other bracketing M1 ×̂f
(
M2 ×̂f M3

)

to T
a
1+2+3 ⊗Ta

1⊗Ta
2⊗Ta

3
(M1 ⊗M2 ⊗M3) where now T

a
N1

⊗ T
a
N2

⊗ T
a
N3

is considered as the
subalgebra in T

a
N1+N2+N3

under a different composition εN1,N2+N3 ◦ (id ⊗ εN2,N3). We
finally note that both the compositions have identical images (this is trivial in the finite
TL case and a non-trivial but simple check for the affine algebras). Therefore we can
define the composition r−1 ◦ ℓ and it gives the associativity isomorphism αM1,M2,M3 . The
pentagon identity is proven along the same lines as in Prop. 5.4.2. �

We have thus shown the following.

Proposition 6.4.2. Let ×̂f denote the N-graded bilinear tensor product on Ĉ as defined
for each pair (N1, N2) ∈ N × N in (6.14) and (4.1). It is equipped with the associator

α from Prop. 6.4.1 and it satisfies the pentagon identity. The category Ĉ is thus an
N-graded semi-group category.

6.5. The direct-limit category Ĉ∞. Inside the enveloping category Ĉ, we consider

two direct systems (recall the definition (5.7) with Ci = Ĉi and Fij = Ĝj−2 ◦ . . . Ĝi+2 ◦ Ĝi,
i ≤ j)

Ĉ1
Ĝ1−−→ Ĉ3

Ĝ3−−→ . . .

and

Ĉ2
Ĝ2−−→ Ĉ4

Ĝ4−−→ . . . .

We denote the corresponding direct limits as

(6.17) Ĉ
odd
∞ = lim

−→
Ĉodd and Ĉ

ev
∞ = lim

−→
Ĉeven .

Then, we define the category

(6.18) Ĉ∞ = Ĉ
ev
∞ ⊕ Ĉ

odd
∞ .

Note that by the construction the category Ĉ∞ is an abelian C-linear category for any
non-zero value of q (except q = ±i where our construction is not defined).

6.6. Objects in Ĉ∞. Prop. 6.3.1 suggests the following numeration of standard objects

in the direct limit Ĉ∞:

(6.19) Wj,z ≡ {Wj,z[2j], Wj,z[2j + 2], . . . , Wj,z[N ], . . . } , j ∈
1

2
N, z ∈ C

× ,

where the set in the figure brackets is the equivalence class of the objects in Ĉ mapped
by the globalisation functors GN for different values of N . In general, for any non-zero
T
a
N -module M [N ] such that its localisation is zero, we define

(6.20) M ≡ {M [N ], M [N + 2], . . . }, with M [N + 2] ≡ ĜN(M [N ]), etc.,

as the corresponding equivalence class in the direct limit Ĉ∞.

Lemma 6.7. LetM1[N1] andM2[N2] be affine TL modules. Then, the affine TL modules

M1[N1] ×̂f M2[N2] and M1[N1] ×̂f M2[N2+2] are in the same equivalence class in Ĉ∞ or,
equivalently, we have

(6.21) ĜN1+N2 : M1[N1] ×̂f M2[N2] 7→M1[N1] ×̂f M2[N2 + 2] .
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The proof of this lemma repeats the proof of the analogous Lem. 5.7.4 where our
manipulations with the balanced tensor products are also valid for infinite-dimensional
algebras. One has only to replace TLN by T

a
N and the product a · b in the map (5.43)

stands now for the product of a and the image of b under our affine TL embedding of
T
a
N into T

a
N+2, recall Sec. 3.3.

Using Lem. 6.7 together with Prop. 6.3.1, we have an immediate application to the
calculation of affine TL fusion rules:4

(6.22) W 1
2
,z1
[N1] ×̂f W 1

2
,z2
[N2] = δz2,−qz1W1,iq

1
2 z1

[N1 +N2]

⊕ δz2,z−1
1
W

0,−iq−
1
2 z1

[N1 +N2] ,

for odd N1 and N2, and

(6.23) W 1
2
,z1
[N1] ×̂f W1,z2 [N2] = δz2,−iq3/2z1W 3

2
,−qz1

[N1 +N2]

⊕ δz2,iq1/2z−1
1
W 1

2
,−q/z1

[N1 +N2] ,

for odd N1 and even N2, where we also used the result of the calculation on 1 + 1 and
1+ 2 sites in (4.26) and (4.27), respectively. We thus see that the fusion rules are stable
with the index N .

We also get the following result, similarly to the finite TL case.

Proposition 6.7.1. The modules M1[N1] ×̂f M2[N2] and M1[N1 + 2n] ×̂f M2[N2 + 2m]
over the corresponding affine TL algebras, for integer n and m, are in the same equiva-

lence class in the direct limit Ĉ∞. If m = −n, the two T
a
N1+N2

modules are even identical

in ĈN1+N2. Their equivalence class is by definition the fusion M1 ⊗Ĉ∞

M2 of two classes

M1 and M2 in Ĉ∞.

By this proposition we can introduce the definition of the tensor product in Ĉ∞.

Definition 6.8. We define the tensor product ⊗
Ĉ∞

in Ĉ∞ as

(6.24) ⊗
Ĉ∞

: (M1,M2) 7→ M1 ⊗Ĉ∞

M2 = lim
[
M1[N1] ×̂fM2[N2]

]
,

where lim[. . .] stands for taking the direct limit of the object (in this case, from ĈN1+N2)
or the corresponding equivalence class, for any choice of (N1, N2) such that M1[N1] and
M2[N2] are non-zero. (This definition does not depend on such a choice because of
Prop. 6.7.1.)

By the definition of ⊗
Ĉ∞

, note that the fusion obtained in (6.22) and (6.23) allows
us to calculate or decompose the tensor products W 1

2
,z1

⊗
Ĉ∞

W 1
2
,z2

and W 1
2
,z1

⊗
Ĉ∞

W1,z2

in Ĉ∞: we have just to remove the square brackets in the formulas (6.22) and (6.23)
replacing ×̂f by ⊗

Ĉ∞

.

We next define the associator for the tensor product ⊗
Ĉ∞

in Ĉ∞. Recall that to
specify a morphism in Hom

Ĉ∞

(M1,M2) it is enough to choose a representative in the
space Hom

ĈN
(M1[N ],M2[N ]).

4To vary the index N1, we introduce the globalisation functors Ĝl
N corresponding to the idempotents

ẽ(N) as in Rem. 5.3.1 and obtain Ĝl
N1+N2

: M1[N1] ×̂f M2[N2] 7→ Ĝl
N1

(M1[N1]) ×̂f M2[N2]. And then

note that the T
a
N1+2 module Ĝl

N1
(M1[N1]) is identical to ĜN1

(M1[N1]).
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Definition 6.9. For a triple of objects M1, M2, M3 in Ĉ∞ we define an isomorphism

(6.25) αĈ∞

M1,M2,M3
:

(
M1 ⊗Ĉ∞

M2

)
⊗

Ĉ∞

M3

∼=
−−−−→M1 ⊗Ĉ∞

(
M2 ⊗Ĉ∞

M3

)

as follows: take any triple of positive integers (N1, N2, N3) such that Mi[Ni] are non-zero,
for i = 1, 2, 3, and take then the corresponding associator αM1[N1],M2[N2],M3[N3] defined in

Prop. 6.4.1, then αĈ∞

M1,M2,M3
is its equivalence class, i.e. the corresponding element in the

quotient space as in (5.33).

The arguments showing that αĈ∞ is well-defined and does not depend on the choice of
representatives in the Hom spaces are similar to those after Def. 5.7.7. The arguments

that the family αĈ∞

M1,M2,M3
satisfies the pentagon identity (5.19) are identical to those in

the finite TL case.

For the moment, we were not able to deduce a tensor unit in the limit category Ĉ∞

of affine TL modules, so we have obtained at least a semi-group category. We have thus
proven the main theorem of this section.

Theorem 6.10. The category Ĉ∞ defined in (6.18) with (6.17) is a semi-group category

with the tensor product ⊗
Ĉ∞

given in (6.24) with the associator αĈ∞

A,B,C given in (6.25)
satisfying the pentagon condition.

The question on existence of the tensor unit in this category will be explored in our
next paper [36].

It is now time to explore the braiding properties of the affine TL fusion.

6.11. Non-commutativity of affine TL fusion. In contrast to the finite TL fusion,
the affine one ×̂f is trivial in most of the cases, recall the result in (4.26) as well as (6.22)
and (6.23), except certain resonance conditions on the z-parameters. It makes the fusion
×̂f non-commutative. Indeed, we compute the fusion in (4.26) in the two orders:

(6.26) W 1
2
,z[1] ×̂f W 1

2
,−qz[1] = W

1,iq
1
2 z
[2] while W 1

2
,−qz[1] ×̂f W 1

2
,z[1] = 0

(if q is not ±1) and

W 1
2
,z[1] ×̂f W 1

2
,z−1[1] = W

0,−iq−
1
2 z
[2] while W 1

2
,z−1[1] ×̂f W 1

2
,z[1] = W

0,−iq−
1
2 z−1

[2] .

We thus conclude that in contrast to the finite TL fusion ×f , which has the braid-
ing, our affine TL fusion is non-commutative and there exists no braiding. However, we
can introduce another affine TL fusion by replacing gi by its inverse g−1

i in the defini-
tion (3.24) of the embedding εN1,N2 : T

a
N1

⊗T
a
N2

→ T
a
N1+N2

introduced in Sec. 3.3, which
diagrammatically corresponds to the interchange between under- and above-crossings.
Let us denote such embedding as ε−N1,N2

. The definition 4.1 using the embedding ε−N1,N2

gives then a different tensor product that we denote as ×̂
−

f . With this new embedding,
the two translation generators correspond now, instead of (3.8), to

(6.27) ũ(1) = ugN−1 . . . gN1, ũ(2) = g−1
N1
. . . g−1

1 u .

In terms of diagrams, we have for instance (with N1 = 3 and N2 = 2), instead of (6.6)
and (6.7), the following
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(6.28)

ũ(1) 7→ =

and

(6.29)
ũ(2) 7→ =

It is interesting that there is a braiding-type operation that relates the two affine TL

fusions ×̂f and ×̂
−

f . Indeed, recall that in Sec. 5.5 we have introduced the braiding
cM1,M2 for the TL fusion given by conjugation (5.26)-(5.27) with the “braid-like” element
gN1,N2 . It is easy to see graphically – or by direct calculation using repeatedly that
ugi = gi+1u – that the following identities hold:

gN1,N2 u
(1)
N1,N2

= ũ
(2)
N2,N1

gN1,N2 ,

gN1,N2 u
(2)
N1,N2

= ũ
(1)
N2,N1

gN1,N2 ,(6.30)

where we temporarily used the notation u
(1,2)
Nj ,Nk

and ũ
(1,2)
Nj ,Nk

for images of the translation

generators u(1,2) under the homomorphisms εNj ,Nk
and ε−Nj ,Nk

, respectively.

Similarly to the finite TL case, we note that the element gN1,N2 defines an automor-
phism on T

a
N1+N2

by the conjugation a 7→ gN1,N2 · a · g
−1
N1,N2

which maps the subalgebra

εN1,N2

(
T
a
N1
⊗T

a
N2

)
(i.e., under the first type of the affine TL embedding) to the subalgebra

ε−N2,N1

(
T
a
N2

⊗ T
a
N1

)
(i.e., under the second embedding) as

(6.31) ε(a⊗ b) 7→ gN1,N2 · ε(a⊗ b) · g−1
N1,N2

= ε−(b⊗ a) , a ∈ T
a
N1

, b ∈ T
a
N2

.

Then, we can introduce a braiding-type relation between ×̂f and ×̂
−

f given by the
isomorphism

(6.32) ĉM1,M2 : M1[N1] ×̂f M2[N2]
∼=

−−−−→ M2[N2] ×̂
−

f M1[N1]

with

(6.33) ĉM1,M2 : a⊗m1 ⊗m2 7→ gN1,N2
· a · g−1

N1,N2
⊗m2 ⊗m1 ,

where a ∈ T
a
N1+N2

, and m1 ∈ M1[N1], m2 ∈ M2[N2]. Recall that we write a ⊗m1 ⊗m2

here for a representative in the corresponding class in M1[N1] ×̂f M2[N2]. The only non-
trivial thing to check is that the map (6.33) is well-defined, i.e., does not depend on
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a representative in the class. Indeed, assume that m1 = b · m′
1 and m2 = c · m′

2 for
some b ∈ T

a
N1
, c ∈ T

a
N2

and some m′
i ∈ Mi[Ni], and let us compute (6.33) for the other

representative (setting here g ≡ gN1,N2, ε ≡ εN1,N2 and ε− ≡ ε−N2,N1
for brevity):

(6.34)

a·ε(b⊗c)⊗m′
1⊗m

′
2 7→ g ·a·ε(b⊗c)·g−1⊗m′

2⊗m
′
1 = g ·a·g−1 ·

(
g ·ε(b⊗c)·g−1

)
⊗m′

2⊗m
′
1

= g · a · g−1 · ε−(c⊗ b)⊗m′
2 ⊗m′

1 = g · a · g−1 ⊗m2 ⊗m1 ,

where we used (6.31) for the second equality, and note that the ⊗ in front of m′
2 on the

right-hand side from ‘ 7→’ is over the subalgebra ε−N2,N1

(
T
a
N2

⊗T
a
N1

)
, as assumed in (6.32).

The final result in (6.34) thus agrees with (6.33). Note that if we would use the same

tensor product ( ×̂f or ×̂
−

f ) in (6.32)-(6.33), the map would not be well-defined.
The rest of the proof of the isomorphism property repeats the finite TL case discussed

in Sec. 5.5: recall that an element a′ ∈ T
a
N1+N2

acts on the left-hand side of (6.33) by the
multiplication with a′ while on the right-hand side of (6.33) it acts by the multiplication
with gN1,N2

· a′ · g−1
N1,N2

. The intertwining property of the map ĉM1,M2 in (6.33), i.e.,
that it commutes with the two T

a
N1+N2

actions, is then straightforward to check. This
map is obviously bijective. We have thus proven that ĉM1,M2 is an isomorphism in the

category Ĉ.

We call the isomorphisms ĉM1,M2 as semi-braiding associated with the two tensor prod-

ucts ×̂f and ×̂
−

f . We finally note that the family of isomorphisms ĉM1,M2 defined
in (6.32)-(6.33) satisfies an analogue of the coherence (hexagon) conditions (required for
the ordinary braiding in a tensor category) but involving the two tensor products ×̂f
and ×̂

−

f . More properties of the relation between ×̂f and ×̂
−

f will be explored in our
forthcoming paper [36].

We finally note that the semi-braiding ĉM1,M2 is lifted to the corresponding family

of isomorphisms ĉ Ĉ∞

M1,M2
in the direct-limit category Ĉ∞, similarly to what we have in

Def. 5.7.8. This extends Thm. 6.10 by the semi-braiding structure on Ĉ∞ with respect
to the two tensor products – the chiral ⊗

Ĉ∞

and the anti -chiral ⊗−

Ĉ∞

.

7. Outlook: a relation to Virasoro algebra

Let Vp be the Virasoro algebra of central charge

(7.1) c(p) = 1−
6

p(p− 1)
, p ∈ (1,∞]

i.e., a Lie algebra generated by Ln, with n ∈ Z, and the central element c with brackets

(7.2) [Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 .

Verma modules Vh are highest-weight representations of Vp and completely character-
ized by the central charge c and the eigenvalue h (so called “conformal weight”) of L0 on
their highest weight vector. These modules Vh admit singular vectors iff their conformal
weights are of the form

(7.3) hr,s =
[pr − (p− 1)s]2 − 1

4p(p− 1)
,
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with r, s ∈ Z+. The first singular vector appears at level rs, that is, with L0 eigenvalue
given by hr,s + rs = hr,−s. For generic central charge c, these modules admit a unique
singular vector. The corresponding Kac module is then defined as the quotient of the
Verma module with hr,s by its submodule of the weight hr,s + rs (which is also a Verma
module): Kr,s ≡ Vhr,s/Vhr,−s . This module is irreducible when the central charge is
generic. More generally, the Kac module Krs is defined as the submodule of the Feigin-
Fuchs module [48] FFrs generated by the subsingular vectors of grade strictly less than rs.

We define then a certain abelian C-linear category of Vp representations which is a
highest-weight category with the standard objects given by the Kac modules K1,n, with
n ∈ N, and where indecomposable projective objects admit non-diagonalizable action
of L0 and are filtered by the Kac modules and the length of the filtration is at most
two. Here, the projective covers (those which are reducible) are the so-called staggered
modules [49, 50], which means an extension of two highest-weight modules such that
the action of L0 is non-diagonalizable. In our case, their subquotient structure has a
diamond shape, for jmod p 6= kp−1

2
with k = 0, 1,

P1,2j+1 :

h1,2j+1

•

����
��
��
�

  ❆
❆❆

❆❆
❆❆

❆

h1,1+2(j−s)

•

��❃
❃❃

❃❃
❃❃

❃

h1,1+2(j+p−s)

•

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

h1,2j+1

•

for j ≥
p

2
,

(7.4)

where we set s ≡ s(j) = (2j + 1) mod p, and the nodes ‘•’ together with conformal
weights h1,j denote irreducible Vp subquotients. We note that the modules with this
subquotient structure and the requirement that the action of L0 is non-diagonalisable
on them are unique up to an isomorphism for the central charges c(p) and integer p ≥ 3,
see [49]. For j < p/2, the projective covers P1,2j+1 are K1,2j+1. We denote such an
abelian category (generated by the staggered modules P1,2j+1) as Virp.

By a direct comparison of the projective objects in Virp and in C∞ for q = eiπ/p

described in Sec. 5.7.1 we establish an isomorphism between the Hom spaces in both the
categories and eventually the following equivalence.

Proposition 7.1. There exists an equivalence of abelian C-linear categories C∞ for q =
eiπ/p from Sec. 5.7.1 and Virp such that the simple objects Xj are identified with irreducible
representations of conformal weight h1,2j+1, the standard objects Wj are identified with
the Kac modules K1,1+2j, and the projective covers Pj with the staggered modules P1,2j+1.

This equivalence has an interesting interpretation from the physics point of view, as
already mentioned in the introduction.

When |m| ≤ 2, statistical mechanics models whose Boltzmann weights are built using
representations of the Temperley–Lieb algebra are heuristically known to be critical,
and have their continuum limit “described” by conformal field theories, with central
charge (7.1) if we parametrize m = q+q

−1 with q = eiπ/p and p ∈ (1,∞]. This statement
can be made more precise as follows. The spectrum of eigenvalues of the Hamiltonian
H = −

∑N−1
i=1 ei (which describes a statistical system with “open boundary conditions”)

in modules over the TL algebra has been found to coincide, in the limit N → ∞ and
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after proper rescaling, with the spectrum of the generator L0−
c
24

(note, there is a single
Virasoro algebra here because we deal with open boundary conditions, corresponding to
boundary conformal field theory) in some corresponding Virasoro modules for the central
charge (7.1). When q is not a root of unity, one can choose without loss of generality to
study the TL modules Wj . The corresponding Virasoro module is then found to be the
Kac module with lowest weight given by the conformal weight

(7.5) h1,1+2j =
(1− 2j(p− 1))2 − 1

4p(p− 1)
.

Using the definition of the Kac module as the quotient K1,1+2j = Vh1,1+2j
/Vh1,−1−2j

, the
character of this module is

(7.6) TrK1,1+2j
qL0−c/24 = q−c/24

qh1,1+2j − qh1,−1−2j

P (q)

where P (q) =
∏∞

n=1(1 − qn), and q here is a formal parameter. In the case when q is a
root of unity – that is integer p – the representation theory of both the Temperley-Lieb
algebra and the Virasoro algebra become more complicated. The correspondence be-
tween these two algebras however continues to hold, after we fix an appropriate category
for Vp representations of course. In particular, the projective modules Pj described in
Sec. 5.7.1, see the “diamond shape” diagram in (5.36), can now be put in correspondence
with staggered modules P1,2j+1, which are composed of two Kac modules, i.e., have a
subquotient structure with a diamond shape again (7.4).

Further, we believe that the category Virp has the tensor product structure (or fusion)
that we denote by ⊗Vir, and that it is endowed with the tensor unit K1,1 (this part is clear
from the Vertex-Operator Algebra realization of Vp), with the associator and the braiding
for any p from (7.1): this is based on the rigorous VOA theory of tensor products in [17].
There are then indications from physics (based on computation of the fusion rules) that
our result in Prop. 7.1 extends further to the level of monoidal or tensor categories. We
make the following conjecture:

Conjecture 7.2. Let C∞ be the direct limit of TL module categories at any q such that
q = eiπ/p, which is the braided tensor category from Thm. 5.8, and Virp be the braided
tensor category of the Virasoro algebra representations at central charge c(p). We have
then an equivalence of the braided tensor categories

(7.7) C∞
∼

−−−−→ Virp

such that it reduces to an equivalence from Prop. 7.1 if the categories are considered just
as abelian C-linear categories.

The indications are the following. The category Virp or the representation theory of Vp
within the category Virp is believed to serve as the fundamental description of a class of
conformal field theories (CFTs). A fundamental question about CFTs is to determine the
operator product expansions (OPEs) of their quantum fields. Thanks to the conformal
symmetry, the OPEs are essentially determined by the fusion rules for the corresponding
modules over the Virasoro algebra. Going back to our conjecture for generic q, it is well
known indeed that the OPEs of primary fields of conformal field theory associated with



44

the Kac modules obey the following Virasoro fusion rules [51, 52]

(7.8) K1,1+2j1 ⊗Vir K1,1+2j2 =

j1+j2⊕

j=|j1−j2|

K1,1+2j ,

which corresponds exactly to the result of fusion in the Temperley-Lieb case, or strictly
speaking, to the decomposition for ⊗C∞

in our direct-limit category C∞:

(7.9) Wj1 ⊗C∞
Wj2 =

j1+j2⊕

|j1−j2|

Wj .

Moreover, in the case q a root of unity, fusion of the Temperley-Lieb modules [20, 21, 27]
can again be compared with fusion in the corresponding (logarithmic) conformal field
theory based on calculations of logarithmic OPEs in [53] and in [21, Sec. 5] (see also
more references therein) and in the works [54, 55, 56, 57] that use the so-called Nahm–
Gaberdiel–Kausch algorithm [58, 59]. Having the identification from Prop. 7.1 between
the modules from both sides, from C∞ and Virp, we have as well an identification of the
fusion rules (or multiplicities of the modules in tensor products of two indecomposables)
for all the cases explored so far on the Virasoro side. This agreement motivates Conj. 7.2,
to which we hope to get back in subsequent work.

7.3. Non-chiral case and affine TL category Ĉ∞. The physics of critical statistical
lattice models away from their boundaries (the so called “bulk” case) is described by two
copies of the Virasoro algebra, corresponding to the chiral and anti-chiral dependencies
of the correlation functions. While in the case of rational conformal field theories, most
properties in the bulk can be inferred from those near the boundary [60], no such rela-
tionship is known to exist in general (see [61] for a discussion) in the case of logarithmic
conformal field theories. Meanwhile, lattice models away from their boundaries are ob-
tained by choosing periodic boundary conditions, which corresponds to considering now
the affine instead of the finite Temperley-Lieb algebra.

In a series of works on some simple cases, we have begun to explore [22, 32, 28, 35] the
relationship between modules of TaN(m) and modules of products of two Virasoro algebras
with central charge (7.1). This had led to a deeper understanding of the subquotient
structures appearing in logarithmic CFT for values q = i, q = eiπ/3, (corresponding to
central charges c = −2 and c = 0), and to the introduction of the promising concept of
interchiral algebra.

In order to go further in our understanding of LCFTs by using lattice models, it is
necessary to understand fusion of non-chiral fields, i.e., the fusion of modules over the
product of two Virasoro algebras. Since in the chiral case we observed a full correspon-
dence between fusion in TL and Virasoro fusion rules, it is natural to expect we can
learn something about fusion of non-chiral fields by studying fusion of modules of the
affine Temperley-Lieb algebra.

It is not so simple to make progress in this direction however. First, we saw that
doing a direct calculation of fusion in the periodic case is technically much harder than
in the open because of complicated relations between different words in gi’s and ej ’s. We
thus need to find another and more constructive way to compute the fusion in periodic
systems: this will be studied in our next paper [36]. Second, note that the fusion we
have defined in the periodic case does not “reduce” to fusion in the open case once we
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restrict to the finite Temperley-Lieb (sub)algebra. Indeed, from the TLN module

(7.10) Wj,z[N ] =

N/2⊕

k=j

Wk[N ]

we see the TL fusion of the right hand side of this equation using ×f and thus (7.9) gives
a direct sum over many TL modules, while the fusion of the left hand side using ×̂f
gives in most cases a trivial result. Moreover, it is easy to check that even when this
fusion is non trivial, the result does not decompose over TLN according to the tensor
product ×f . This is a priori different from what one would expect in conformal field
theory, where fusion of non-chiral fields is expected to decompose in some simple way in
terms of the fusion of the chiral components. It would be also interesting to understand

better our semi-braiding in Ĉ∞ and its relation to non-chiral conformal field theory. We
will discuss what happens in our next paper [36].

Meanwhile, we note that it would be interesting to find a duality with a quantum
algebra. Recall that in the finite TL case, there is a well known duality with (a finite-
dimensional quotient of) the quantum algebra Uqsl(2): this duality was actually used
in [20] (for p = 2, 3 and for projective objects) and then in [21] to compute a large and
almost exhaustive list of fusion rules for a pair of indecomposable TL modules at any
root of unity. One could then expect that in the periodic case there is a duality but now

with (a quotient of) the affine quantum algebra Uqŝl(2). The idea would be then to use
this duality and compute the affine TL fusion using the coproduct in the affine quantum
group [44]. We leave this interesting problem for a future work.

Appendix A. Affine TL fusion: examples

In this section we consider the affine TL fusion from the perspective of the affine Hecke
algebra calculations. More precisely, we compute the right-hand side of (4.43) and the
results of these calculations agree with the diagrammatical calculation of the fusion in
the main text of the paper in Sec. 4.3. This also supports our Conj. 4.5.2.

A.1. j1 = j2 = 1/2. We consider again the fusion of W 1
2
,z1[1] and W 1

2
,z2 [1] discussed in

Sec. 4.3.1 but now from the point of view of the affine Hecke algebra, i.e. we are going to

analyze W 1
2
,z1
[1] ×̂

H

f W 1
2
,z2
[1] where ×̂

H

f is introduced in (4.33). With the normalizations

adopted in this paper, we use gi, xi instead of σi, yi and modify the relations (4.29) into

(A.1) gixigi = xi+1

together with

(A.2) u = x1g1 . . . gN−1

instead of (4.35). Recall then (4.4):

u(1)v = z1v, u(2)v = z2v ,

we therefore have

(A.3) x1v = z1v, x2v = z2v .

We introduce w = g1v and note that the two vectors v and w form a basis in the induced

module W 1
2
,z1
[1] ×̂

H

f W 1
2
,z2
[1]. This is easy to see using the relations xigi = xi+1g

−1
i ,
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recall (A.1). We use then these affine Hecke relations to obtain the matrix representation
of the generators in the space Cv ⊕ Cw:

(A.4) x1 =

(
z1 −iq−1/2z2(1− q

2)
0 −qz2

)
, x2 =

(
z2 iq−3/2(q2 − 1)z2
0 −q

−1z1

)
.

We have meanwhile

(A.5) g1 =

(
0 −q

−1

1 −iq1/2(q−2 − 1)

)

and similarly for g2 with a bit more complicated matrix. We check then that e1 and e2
defined via ei = q+ iq1/2gi do satisfy the Temperley–Lieb relations. Moreover, u = x1g1
obeys u2 = z1z21 (recall that uN is central). Finally, we find

e1e2e1 = (z + z−1)2e1

e2e1e2 = (z + z−1)2e2(A.6)

with z = ±iq−1/2
√
z1z

−1
2 . For N = 2, the second relation in (3.2) becomes simply

u2e1 = e1 and combining with u2 = z1z21 this gives the condition z1z2 = 1. So, the
result of the fusion is therefore zero unless z2 = z−1

1 , and thus z = −iq−1/2z1 (with the
same sign convention as discussed in the main text in Sec. 4.3.1). Hence, we have found

(A.7) W 1
2
,z1
[1] ×̂f W 1

2
,z2
[1] = W

0,−iq−
1
2 z1

[2] when z2 = z−1
1 .

The result (A.7) is obtained assuming w is linearly independent of v. Otherwise, one
gets g1v = λv where λ is a constant easily determined – using the relation between g2i
and gi – to be λ = iq1/2. It follows that

(A.8) W 1
2
,z1
[1] ×̂f W 1

2
,z2
[1] = W

1,iq
1
2 z1

[2] when z2 = −qz1.

In other words, the induced affine Hecke module admits an invariant subspace at z2 =
−qz1 and the quotient by this submodule allows the action of Ta2(q + q

−1). This re-
sult can be interpreted as follows: for generic values of z1 and z2 the induced module

W 1
2
,z1
[1] ×̂

H

f W 1
2
,z2
[1] does not admit the action of Ta2 because the ideal I from (4.41) gener-

ates the whole module, so the right hand side of (4.43) is zero, while for z2 = z−1
1 the ideal

I acts as zero and (4.43) gives (A.7), and for z2 = −qz1 it generates a one-dimensional
invariant subspace and (4.43) gives (A.8), and these are all possible cases.

Combining (A.7) with (A.8), we see that our affine Hecke calculation of the affine TL
fusion (under the result in (4.43) and Conj. 4.5.2) is in agreement with the previous
diagrammatical calculation in the main text resulted in (4.26).

A.2. j1 = 0 and j2 = 1/2. The definition of fusion ×̂f holds for all modules of course,
not just the standard ones. As an example, we consider here the case of W0,q[N ], which
is well known [1] to be reducible with a submodule isomorphic to W1,1[N ], and admits a

simple (for generic q) quotientW0,q/W1,1 ≡ W0,q[N ] of dimension d̂0[N ]−d̂1[N ], see (4.2).

Restricting to the simplest case N = 2, the module W0,q[2] is one-dimensional and has
the basis vector u with the action of the affine Hecke generators: g1u = −iq−3/2

u, and

u(1)u = u, and x1u = −iq−3/2
u. We consider then the fusion ×̂

H

f with a one dimensional
module W 1

2
,z[1]. Within the induced module, the vectors g2u ≡ v and g1v ≡ w are
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linearly independent and form a basis with u. We then find in the u, v,w basis the
matrix representation:
(A.9)

g1 =




iq−3/2 0 0
0 0 −q

−1

0 1 iq1/2(1− q
−2)


 , g2 =




0 −q
−1 0

1 iq1/2(1− q
−2) 0

0 0 −iq−3/2


 .

It is easy to check however that the generators ei ≡ q + iq1/2gi now do not satisfy the
required relation eiei+1ei = ei for i = 1, 2. It is necessary to take a quotient implying
the linear relation u = −iq−1/2

v + q
−1
w. In the v,w basis for instance, one finds now

(A.10) g1 =

(
0 −q

−1

1 iq1/2(1− q
−2)

)

and

(A.11) g2 =

(
iq1/2 0
−q

−2 −iq−3/2

)

together with

(A.12) x1 =

(
iq3/2 0
0 z

)
, x2 =

(
−zq−1 izq−5/2(q2 − 1)

izq−3/2(q2 − 1) −iq1/2 − zq−3(q2 − 1)2

)

and a slightly more complicated expression for x3. The point however is that, in this
restricted space, [xi, xj] = 0 if and only if z = iq3/2. We find then

(A.13) u =

(
iq−3/2 −q

−1

1− q
2 − q

−2 i(q1/2 − q
−3/2)

)

and check that, in the quotient, we have

(A.14) u2e2 = e1e2

while u3 = iq3/21. In other words, the ideal I from (4.41) does not generate the whole
module but only a proper invariant subspace only at z = iq3/2. The resulting quotient-
module being two dimensional is a quotient of the standard (three dimensional) T

a
3-

module W 1
2
,z[3] when z = iq3/2: it is known that W 1

2
,iq3/2 is reducible and admits a two

dimensional irreducible quotient-module W1/2,iq3/2 [3], and it is the only two-dimensional
irreducible module for Ta3 at generic q. Therefore, we obtain the affine TL fusion

(A.15) W0,q[2] ×̂f W 1
2
,z[1] =

{
W1/2,z [3] z = iq3/2 ,

0 otherwise .

again using the result in (4.43) and Conj. 4.5.2. We finally note that the result (A.15)
will be also confirmed in our next paper [36].

A.3. j1 = 1/2 and j2 = 1. Finally we consider the fusion W 1
2
,z1
[1] ×̂f W1,z2 [2] with the

first module on one site the second on two sites. Starting with the only basis element u
in the ordinary tensor product W 1

2
,z1
[1]⊗W1,z2 [2] we again generate the two more basis

elements g1u = v and g2v = w in the induced module. Using relations in the module
W1,z2 , we have u(2)u = z2u and on the other hand u(2)u = iq1/2x2u (because u(2) = x2g2)
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and therefore x2u = −iq−1/2z2u, while x1u = z1u. The defining relations lead, in the
u, v,w basis, to

(A.16) x1 =




z1 z2(q− q
−1) iq1/2z2(q− q

−1)
0 iq1/2z2 0
0 0 iq1/2z2




and similar matrix expressions for the other generators. The generators g1 and g2 give
rise to generators e1, e2 that satisfy the Temperley–Lieb relations:

(A.17) e1 =




q −iq−1/2 0
iq1/2 q

−1 0
0 0 0


 , e2 =




0 0 0
0 q −iq−1/2

0 iq1/2 q
−1




One also finds u3 = z1z
2
21. However, the T

a
3 relation u2e2 = e1e2 implies the con-

straint z1z2 = iq1/2, and so u3 = iq1/2z21. This leads to the three dimensional module
W 1

2
,iq1/2z2

[3] = W 1
2
,−qz−1

1
[3], or in other words, we have shown that the ideal I from (4.41)

acts by zero only at z1 = iq1/2z−1
2 .

We can also consider the case where the ideal I generates an invariant subspace. It
happens indeed when v is proportional to u, which implies that w is proportional to
u as well. After taking the corresponding quotient, one finds then e1 = e2 = 0 and
u = −qz11, while z2 = −iq3/2z1. It follows that the quotient is the (one-dimensional)
standard module W3/2,−qz1 = W3/2,−iq−1/2z2 .

We thus conclude that the affine TL fusion is zero at all values of z1 and z2 except the
following cases:

W 1
2
,z1
[1] ×̂f W1,z2 [2] = W 1

2
,iq1/2z2

[3], z1 = iq1/2z−1
2 ,(A.18)

W 1
2
,z1
[1] ×̂f W1,z2 [2] = W3/2,−iq−1/2z2[3], z1 = iq−3/2z2 ,(A.19)

which is in agreement with (4.27).
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